Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.241
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(19): 7687-7696, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38693877

RESUMO

Smart theranostic nanoprobes with the integration of multiple therapeutic modalities are preferred for precise diagnosis and efficient therapy of tumors. However, it remains a big challenge to arrange the imaging and two or more kinds of therapeutic agents without weakening the intended performances. In addition, most existing fluorescence (FL) imaging agents suffer from low spatiotemporal resolution due to the short emission wavelength (<900 nm). Here, novel three-in-one Ag2S quantum dot (QD)-based smart theranostic nanoprobes were proposed for in situ ratiometric NIR-II FL imaging-guided ion/gas combination therapy of tumors. Under the acidic tumor microenvironment, three-in-one Ag2S QDs underwent destructive degradation, generating toxic Ag+ and H2S. Meanwhile, their FL emission at 1270 nm was weakened. Upon introduction of a downconversion nanoparticle (DCNP) as the delivery carrier and NIR-II FL reference signal unit, the formed Ag2S QD-based theranostic nanoprobes could achieve precise diagnosis of tumors through ratiometric NIR-II FL signals. Also, the generated Ag+ and H2S enabled specific ion/gas combination therapy toward tumors. By combining the imaging and therapeutic functions, three-in-one Ag2S QDs may open a simple yet reliable avenue to design theranostic nanoprobes.


Assuntos
Imagem Óptica , Pontos Quânticos , Compostos de Prata , Pontos Quânticos/química , Compostos de Prata/química , Humanos , Animais , Camundongos , Raios Infravermelhos , Nanomedicina Teranóstica , Sulfeto de Hidrogênio/análise , Sulfeto de Hidrogênio/química , Concentração de Íons de Hidrogênio
2.
Anal Chem ; 96(21): 8837-8843, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38757510

RESUMO

Breast cancer poses the significance of early diagnosis and treatment. Here, we developed an innovative photoelectrochemical (PEC) immunosensor characterized by high-level dual photocurrent signals and exceptional sensitivity. The PEC sensor, denoted as MIL&Ag2S, was constructed by incorporating Ag2S into a metal-organic framework of MIL-101(Cr). This composite not only enhanced electron-hole separation and conductivity but also yielded robust and stable dual photocurrent signals. Through the implementation of signal switching, we achieved the combined detection of cancer antigen 15-3 (CA15-3) and carcinoembryonic antigen (CEA) with outstanding stability, reproducibility, and specificity. The results revealed a linear range for CEA detection spanning 0.01-32 ng/mL, with a remarkably low detection limit of 0.0023 ng/mL. Similarly, for CA15-3 detection, the linear range extended from 0.1 to 320 U/mL, with a low detection limit of 0.014 U/mL. The proposed strategy introduces new avenues for the development of highly efficient, cost-effective, and user-friendly PEC sensors. Furthermore, it holds promising prospects for early clinical diagnosis, contributing to potential breakthroughs in medical detection and ultimately improving patient outcomes.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Antígeno Carcinoembrionário , Técnicas Eletroquímicas , Estruturas Metalorgânicas , Mucina-1 , Compostos de Prata , Estruturas Metalorgânicas/química , Humanos , Neoplasias da Mama/diagnóstico , Antígeno Carcinoembrionário/sangue , Antígeno Carcinoembrionário/análise , Mucina-1/análise , Mucina-1/sangue , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/análise , Compostos de Prata/química , Imunoensaio/métodos , Técnicas Biossensoriais , Feminino , Limite de Detecção , Processos Fotoquímicos , Anticorpos Imobilizados/imunologia , Anticorpos Imobilizados/química
3.
Microb Pathog ; 192: 106724, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38834135

RESUMO

Staphylococcus haemolyticus is a cause of bovine mastitis, leading to inflammation in the mammary gland. This bacterial infection adversely affects animal health, reducing milk quality and yield. Its emergence has been widely reported, representing a significant economic loss for dairy farms. Interestingly, S. haemolyticus exhibits higher levels of antimicrobial resistance than other coagulase-negative Staphylococci. In this study, we synthesized silver/silver chloride nanoparticles (Ag/AgCl-NPs) using Solanum lasiocarpum root extract and evaluated their antibacterial and antibiofilm activities against S. haemolyticus. The formation of the Ag/AgCl-NPs was confirmed using UV-visible spectroscopy, which revealed maximum absorption at 419 nm. X-ray diffraction (XRD) analysis demonstrated the crystalline nature of the Ag/AgCl-NPs, exhibiting a face-centered cubic lattice. Fourier transform infrared (FT-IR) spectroscopy elucidated the functional groups potentially involved in the Ag/AgCl-NPs synthesis. Transmission electron microscopy (TEM) analysis revealed that the average particle size of the Ag/AgCl-NPs was 10 nm. Antimicrobial activity results indicated that the minimum inhibitory concentration (MIC) and maximum bactericidal concentration (MBC) of the Ag/AgCl-NPs treatment were 7.82-15.63 µg/mL towards S. haemolyticus. Morphological changes in bacterial cells treated with the Ag/AgCl-NPs were observed under scanning electron microscopy (SEM). The Ag/AgCl-NPs reduced both the biomass of biofilm formation and preformed biofilm by approximately 20.24-94.66 % and 13.67-88.48 %. Bacterial viability within biofilm formation and preformed biofilm was reduced by approximately 21.56-77.54 % and 18.9-71.48 %, respectively. This study provides evidence of the potential of the synthesized Ag/AgCl-NPs as an antibacterial and antibiofilm agent against S. haemolyticus.


Assuntos
Antibacterianos , Biofilmes , Mastite Bovina , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Extratos Vegetais , Raízes de Plantas , Compostos de Prata , Prata , Solanum , Staphylococcus haemolyticus , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química , Prata/farmacologia , Prata/química , Biofilmes/efeitos dos fármacos , Compostos de Prata/farmacologia , Compostos de Prata/química , Bovinos , Mastite Bovina/microbiologia , Mastite Bovina/tratamento farmacológico , Raízes de Plantas/química , Nanopartículas Metálicas/química , Staphylococcus haemolyticus/efeitos dos fármacos , Feminino , Solanum/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Microscopia Eletrônica de Transmissão
4.
Analyst ; 149(10): 3008-3016, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38606455

RESUMO

Fast-scan cyclic voltammetry (FSCV) is a widely used technique for detecting neurotransmitters. However, electrode fouling can negatively impact its accuracy and sensitivity. Fouling refers to the accumulation of unwanted materials on the electrode surface, which can alter its electrochemical properties and reduce its sensitivity and selectivity. Fouling mechanisms can be broad and may include biofouling, the accumulation of biomolecules on the electrode surface, and chemical fouling, the deposition of unwanted chemical species. Despite individual studies discussing fouling effects on either the working electrode or the reference electrode, no comprehensive study has been conducted to compare the overall fouling effects on both electrodes in the context of FSCV. Here, we examined the effects of biofouling and chemical fouling on the carbon fiber micro-electrode (CFME) as the working electrode and the Ag/AgCl reference electrode with FSCV. Both fouling mechanisms significantly decreased the sensitivity and caused peak voltage shifts in the FSCV signal with the CFME, but not with the Ag/AgCl reference electrode. Interestingly, previous studies have reported peak voltage shifts in FSCV signals due to the fouling of Ag/AgCl electrodes after implantation in the brain. We noticed in a previous study that energy-dispersive spectroscopy (EDS) spectra showed increased sulfide ion concentration after implantation. We hypothesized that sulfide ions may be responsible for the peak voltage shift. To test this hypothesis, we added sulfide ions to the buffer solution, which decreased the open circuit potential of the Ag/AgCl electrode and caused a peak voltage shift in the FSCV voltammograms. Also, EDS analysis showed that sulfide ion concentration increased on the surface of the Ag/AgCl electrodes after 3 weeks of chronic implantation, necessitating consideration of sulfide ions as the fouling agent for the reference electrodes. Overall, our study provides important insights into the mechanisms of electrode fouling and its impact on FSCV measurements. These findings could inform the design of FSCV experiments, with the development of new strategies for improving the accuracy and reliability of FSCV measurements in vivo.


Assuntos
Incrustação Biológica , Técnicas Eletroquímicas , Neurotransmissores , Neurotransmissores/análise , Incrustação Biológica/prevenção & controle , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Animais , Compostos de Prata/química , Fibra de Carbono/química , Microeletrodos , Sulfetos/química , Eletrodos
5.
Sensors (Basel) ; 23(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37447979

RESUMO

In this study, a range of miniaturized Ag/AgCl reference electrodes with various layouts were successfully fabricated on wafer-level silicon-based substrates with metallic intermediate layers by precisely controlling the electrochemical deposition of Ag, followed by electrochemical chlorination of the deposited Ag layer. The structure, as well as the chemical composition of the electrode, were characterized with SEM & EDS. The results showed that the chlorination is very sensitive to the applied electric field and background solution. Potentiostatic chlorination, in combination with an adjusted mushroom-shaped Ag sealing deposition, enabled the formation of electrochemical usable Ag/AgCl layers. The stability of the electrodes was tested using open circuit potential (OCP) measurement. The results showed that the reference electrodes stayed stable for 300 s under 3 M KCl solution. The first stage study showed that the stability of the Ag/AgCl reference electrode in a chip highly depends on chip size design, chlorination conditions, and a further protection layer.


Assuntos
Compostos de Prata , Prata , Prata/química , Compostos de Prata/química , Eletrodos , Microeletrodos
6.
Anal Chem ; 94(26): 9415-9423, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35726523

RESUMO

Cataluminescence as a highly efficient gas transduction principle has attracted wide attention among research in environmental monitoring and clinical diagnosis with increasing awareness of human safety. Nowadays, the development of innovation sensing systems and the construction of the sensing mechanism to improve the analytical performance of compounds remain a major challenge. Herein, we construct an advanced photoinduced thermocatalytic chemiluminescence (PI-TC-CL) gas-sensing system via the introduction of a Z-scheme heterojunction Ag3PO4/Ag/Bi4Ti3O12 to achieve higher efficient detection of H2S. The unique electron transport path of the Z-scheme heterojunction and the LSPR effect of Ag nanoparticles fascinate the generation of the photoinduced electron-hole pair on the surface of catalysts when stimulated by LED lamps and slow down the recombination of electron-hole pairs under thermal conditions. Thus, based on the cooperative effect of the Z-scheme heterojunction AgPO/Ag/BTO and PI-TC-CL system, we have successfully established an efficient H2S CTL detection system, which has a response three times higher than that on the traditional CTL system and even 45 times higher than that on BTO and ranges among the best of the state-of-the-art CTL performance in H2S detection with the linear range of 0.095-8.87 µg mL-1 and a limit of detection of 0.0065 µg mL-1. Besides, to explore the gas-sensing mechanism, the synergetic effects of photoinduction and thermal catalysis are investigated thoroughly via conductivity and electrochemical experiments. This research provides a new perspective of engineering highly efficient catalysts and ingenious sensor systems through designing the nanostructure of materials and synergism catalytic mechanism.


Assuntos
Luminescência , Nanopartículas Metálicas , Humanos , Prata/química , Compostos de Prata/química , Titânio
7.
Photochem Photobiol Sci ; 21(9): 1601-1616, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35644001

RESUMO

In this study, simultaneous photocatalytic degradation of different parabens (methyl-, ethyl-, propyl-, and butyl paraben) and UV filters (benzophenone-3, 4-methylbenzylidene camphor, 2-ethylhexyl 4-(dimethylamino) benzoate, ethylhexyl methoxycinnamate and octocrylene) in water matrices was performed under visible light irradiation using novel double plasmonic Ag@Ag3PO4/Ag@AgCl nanophotocatalyst, synthesized by an easy and fast photochemical conversion and photo-reduction. It was found that the nanophotocatalyst with appropriate mole ratio of Ag@Ag3PO4/Ag@AgCl (1:3) showed superior photocatalytic activity than individual plasmonic nanoparticles. This is because there are two simultaneous surface plasmon resonances (SPR) generated by the metallic Ag nanoparticles, in addition to the hetero-junction structure formed at the interface between Ag@Ag3PO4 and Ag@AgCl. The structures of the synthesized photocatalysts were characterized, and the principal reactive oxygen species in the photocatalytic process were identified via a trapping experiment, confirming superoxide radicals (∙O2-) as the key reactive species of the photocatalytic system. The process of photodegradation of the target pollutants was monitored using an optimized method that incorporated solid-phase extraction in combination with gas chromatography-mass spectrometry. The simultaneous photodegradation process was modeled and optimized using central composite design. The kinetic study revealed that the degradation process over Ag@Ag3PO4 (30%)/Ag@AgCl (70%) under visible light followed a pseudo-first-order kinetic model. The simultaneous degradation of target compounds was further investigated in sewage treatment plant effluent as well as tap water. It was found that the matrix constituents can reduce the photodegradation efficiency, especially in the case of highly contaminated samples.


Assuntos
Nanopartículas Metálicas , Compostos de Prata , Catálise , Luz , Nanopartículas Metálicas/química , Parabenos , Prata/química , Compostos de Prata/química , Água
8.
Curr Microbiol ; 79(9): 266, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35881211

RESUMO

The biosynthesis of nanoparticles (NPs) has gained an overwhelming interest due to their biological applications. However, NPs synthesis by pigmented extreme halophiles remains underexplored. The NPs synthesis using pigmented halophiles is inexpensive and less toxic than other processes. In this study, pigmented halophilic microorganisms (n = 77) were screened to synthesize silver chloride nanoparticles (AgCl-NPs) with silver nitrate as metal precursors, and their biological applications were assessed. The synthesis of AgCl-NPs was possible using the crude extract from cellular lysis (CECL) of six extreme halophiles. Two of the AgCl-NPs viz. AK2-NPs and MY6-NPs synthesized by the CECL of Haloferax alexandrinus RK_AK2 and Haloferax lucentense RK_MY6, respectively, exhibited antimicrobial, antioxidative, and anti-inflammatory activities. The surface plasmon resonance of the AgCl-NPs was determined with UV spectroscopy. XRD analysis of AK2-NPs and MY6-NPs confirmed the presence of silver in the form of chlorargyrite (silver chloride) having a cubic structure. The crystallite size of AK2-NPs and MY6-NPs, estimated with the Scherrer formula, was 115.81 nm and 137.50 nm. FTIR analysis verified the presence of diverse functional groups. Dynamic light-scattering analysis confirmed that the average size distribution of NPs was 71.02 nm and 117.36 nm for AK2-NPs and MY6-NPs, respectively, with monodisperse nature. The functional group in 1623-1641 cm-1 indicated the presence of protein ß-sheet structure and shifting of amino and hydroxyl groups from the pigmented CECL, which helps in capping and stabilizing nanoparticles. The study provides evidence that CECL of Haloferax species can rapidly synthesize NPs with unique characteristics and biological applications.


Assuntos
Halobacteriales , Nanopartículas Metálicas , Antibacterianos/metabolismo , Cloretos/farmacologia , Halobacteriales/metabolismo , Nanopartículas Metálicas/química , Extratos Vegetais , Compostos de Prata/química , Compostos de Prata/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Mikrochim Acta ; 189(2): 82, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35112159

RESUMO

As an effective analytical method, surface-enhanced Raman spectroscopy (SERS) is widely used in the detection of nucleic acids, amino acids, and other biomolecules. However, obtaining the SERS signal of nonaromatic amino acids is still a challenge. In this work, excess sodium borohydride was used as a reducing agent to prevent the surface of silver nanoparticles from being coated with AgO to enable amino acid molecules to reach the surface of silver nano-substrates. Calcium ions were used as aggregators for silver nano-substrates to successfully achieve the label-free and accurate fingerprint determination of various nonaromatic amino acids. Different types of amino acids were distinguished based on the changes in their peak intensity that were obtained using colorless and transparent organic dichloromethane (DCM) as the internal standard. A Raman signal for low-concentration amino acids in body fluids was detected, and the detection limit for tyrosine was 5 ng/mL. Moreover, the physical and chemical properties of peptides and the formation of peptide chains were further analyzed. The proposed method can potentially be applied to protein sequencing.


Assuntos
Aminoácidos/sangue , Líquidos Corporais/química , Peptídeos/sangue , Humanos , Óxidos/química , Compostos de Prata/química , Análise Espectral Raman
10.
Mikrochim Acta ; 189(2): 77, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35091865

RESUMO

A photochromic immunoassay was built for tumor marker detection based on ZnO/AgI nanophotocatalyst. Frist, ZnO/AgI nanoparticles were synthesized and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and Fourier transform infrared spectrometry (FTIR). The color development is caused by tetramethyl benzidine (TMB) solution oxidated by ZnO/AgI nanomaterials. The electron transitions in ZnO/AgI nanomaterials are driven by visible light irradiation, generating photogenerated hole and oxidizing TMB to blue solution. Appropriate band width between ZnO and AgI promotes separation of photogenerated electrons and holes and enhances oxidation efficiency. A sandwich-type immunoassay was constructed based on ZnO/AgI nanomaterial as labels. The absorbance at 650 nm of reaction solution is positively correlated with antigen concentration. The developed immunoassay showed good performance for carcinoma embryonic antigen (CEA) detection in the range 0.1-7.0 ng/mL with a detection limit of 65 pg/mL. The photochromic immunoassay also exhibited preferable selectivity, repeatability, and stability. A novel colorimetric immunoassay was constructed based on ZnO/AgI photocatalyst. ZnO/AgI nanomaterials occur electron transitions under visible light irradiation and generate photogenerated hole, which can oxidize TMB to blue solution. Carcinoembryonic antigen in sample was detected sensitively due to the high catalytic efficiency of ZnO/AgI nanomaterials.


Assuntos
Biomarcadores Tumorais/sangue , Imunoensaio/métodos , Iodetos/química , Processos Fotoquímicos , Compostos de Prata/química , Óxido de Zinco/química , Catálise , Humanos
11.
J Am Chem Soc ; 143(30): 11332-11336, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34270229

RESUMO

We developed a voltage-sensitive artificial transmembrane channel by mimicking the dipolar structure of natural alamethicin channel. The artificial channel featured a zwitterionic structure and could undergo voltage-driven flipping in the lipid bilayers. Importantly, this flipping of the channel could lead to their directional alignment in the bilayers and rectifying behavior for ion transport.


Assuntos
Canais Iônicos/química , Bicamadas Lipídicas/química , Condutividade Elétrica , Transporte de Íons , Estrutura Molecular , Prata/química , Compostos de Prata/química
12.
Anal Chem ; 93(4): 2160-2165, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33416308

RESUMO

Screening toxic-element-free and biocompatible electrochemiluminophores was crucial for electrochemiluminescence (ECL) evolution. Herein, l-glutathione (GSH)-capped Ag-Ga-In-S (AGIS) nanocrystals (NCs) were prepared by doping Ag-In-S (AIS) NCs in a doping-in-growth way and utilized as a model for both ECL modulating and developing multinary NC-based electrochemiluminophores with enhanced ECL performance than trinary NCs. AGIS NCs not only primarily preserved the morphology, size, phase structure, and water monodisperse characteristics of AIS NCs with broadened band gap but also demonstrated obviously enhanced oxidative-reduction ECL than AIS NCs. Importantly, ECL of AGIS NCs was located at the near-infrared region with a maximum emission wavelength of 744 nm and could be utilized for an ECL immunoassay with human prostate-specific antigen (PSA) as a model, which exhibited a linearity range from 0.05 pg/mL to 1.0 ng/mL and a low limit of detection of 0.01 pg/mL (S/N = 3). This work provided a promising alternative to the traditional binary NCs for developing toxic-element-free and biocompatible electrochemiluminophores with efficient near-infrared ECL.


Assuntos
Técnicas Biossensoriais , Medições Luminescentes/métodos , Nanopartículas Metálicas/química , Compostos de Prata/química , Técnicas Eletroquímicas , Gadolínio , Glutationa , Humanos
13.
Inorg Chem ; 60(9): 6585-6599, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33878862

RESUMO

Silver vanadate nanorods (ß-AgVO3) with silver nanoparticles (Ag-NPs) decorated on the surface of the rods were synthesized by using simple hydrothermal technique and later anchored onto nitrogen-doped reduced graphene oxide (N-rGO) to make a novel nanocomposite. Experimental analyses were carried out to identify the electronic configuration by X-ray diffraction analysis, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analysis, which revealed monoclinic patterns of the C12/m1 space group with Wulff construction forming beta silver vanadate (ß-AgVO3) crystals with optical density and phase transformations. Ag nucleation showed consistent results with metallic formation and electronic changes occurring in [AgO5] and [AgO3] clusters. Transmission electron microscopy and field-emission scanning electron microscopy with elemental mapping and EDX analysis of the morphology reveals the nanorod structure for ß-AgVO3 with AgNPs on the surface and sheets for N-rGO. Additionally, a novel electrochemical sensor is constructed by using Ag/AgVO3/N-rGO on screen-printed carbon paste electrodes for the detection of antiviral drug levofloxacin (LEV) which is used as a primary antibiotic in controlling COVID-19. Using differential pulse voltammetry, LEV is determined with a low detection limit of 0.00792 nm for a linear range of 0.09-671 µM with an ultrahigh sensitivity of 152.19 µA µM-1 cm-2. Furthermore, modified electrode performance is tested by real-time monitoring using biological and river samples.


Assuntos
Espectroscopia Dielétrica/instrumentação , Espectroscopia Dielétrica/métodos , Levofloxacino/análise , Nanocompostos/química , Antivirais/análise , Antivirais/sangue , Antivirais/urina , Carbono/química , Eletrodos , Grafite/química , Humanos , Levofloxacino/sangue , Levofloxacino/urina , Limite de Detecção , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Nanotubos/química , Espectroscopia Fotoeletrônica , Prata/química , Compostos de Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Comprimidos , Vanadatos/química , Difração de Raios X
14.
Nanotechnology ; 32(31)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33836506

RESUMO

The formation of biofilm is one of the causes of bacterial pathogenicity and drug resistance. Recent studies have reported a variety of anti-biofilm materials and achieved good results. However, it is still very important to develop some materials with wider application scenarios or higher biofilm resistance. In this study, a new method to rapidly synthesize nano silver chloride with anti-biofilm activity is proposed. It is a generalizable method in which bacterial extracellular polysaccharides are used to adsorb silver ions, thereby inhibiting the formation of white large-size silver chloride precipitates, and then ultraviolet light is used to induce the synthesis of small-sized nano silver chloride. A variety of polysaccharides can be utilized in the synthesis of nano silver chloride particles. The generated complex was characterized by XRD, UV-vis, EDX, FTIR and TEM methods. Further, the novel complex was found to show highly effective anti-biofilm and bactericidal activity within the biosafety concentration. In view of the high stability of nano sliver chloride, we propose that the novel nano material has the potential as a long-term antibacterial material.


Assuntos
Cloretos/química , Polissacarídeos/química , Compostos de Prata/química , Prata/química , Células A549 , Biofilmes/efeitos dos fármacos , Linhagem Celular , Precipitação Química , Humanos , Nanopartículas , Difração de Raios X
15.
Nanotechnology ; 32(20): 205103, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33556922

RESUMO

Dual-modal molecular imaging that combines photoacoustic imaging with near-infrared fluorescence imaging integrates the benefits of both imaging modalities and may achieve more precise detection of disease. In this study, silver sulfide quantum dots (Ag2S QDs) with superior photoacoustic properties and a strong fluorescent emission in the NIR region were successfully synthesized. They were further modified with the insulin-like growth factor 1 receptor (IGF-1R) targeted small scaffold protein, Affibody (ZIGF-1) to achieved targeted photoacoustic/fluorescent dual-modal imaging of cancer. Our results showed that the prepared nanoprobe had good tumor targeting properties in vivo, and the probe also showed good biocompatibility without any significant toxicity.


Assuntos
Imagem Óptica/métodos , Técnicas Fotoacústicas/métodos , Pontos Quânticos , Proteínas Recombinantes de Fusão , Animais , Sobrevivência Celular/efeitos dos fármacos , Feminino , Células HCT116 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/diagnóstico por imagem , Pontos Quânticos/química , Pontos Quânticos/toxicidade , Receptor IGF Tipo 1 , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/farmacocinética , Compostos de Prata/química , Compostos de Prata/farmacocinética , Distribuição Tecidual
16.
Anal Bioanal Chem ; 413(19): 4751-4761, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34132820

RESUMO

When nitrite is ingested and absorbed by the body, it can be converted into highly toxic nitrosamines (carcinogens, teratogens, and mutagens), posing health risks to the general population. Therefore, it calls for establishing a method for determination of nitrite. In this paper, the glass-SiO2-Ag surface-enhanced Raman scattering (SERS) substrate with a large number of "hot spots" were prepared by two kinds of silane coupling agents. The SERS substrate had high sensitivity and repeatability. Silicon dioxide supported the silver nanoparticles (Ag NPs), which increased surface roughness of the substrate, generated a great quantity of hot spots and enhanced the SERS signal. In the SERS spectrum, the intensity ratio of the two characteristic peaks (1287 cm-1 and 1076 cm-1) had a good linear correlation with the logarithm of the concentration of nitrite, R2 = 0.9652. The recoveries of 50 µM and 100 µM nitrite in three kinds of foods, three kinds of cosmetics and tap water were 90.9-105.3%.


Assuntos
Nitritos/química , Óxidos/química , Dióxido de Silício/química , Compostos de Prata/química , Análise Espectral Raman/métodos , Nanopartículas/química , Nanosferas/química
17.
Anal Bioanal Chem ; 413(19): 4895-4906, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34236471

RESUMO

Considering the importance of determining the levels of hemoglobin (Hb) as a vital protein in red blood cells, in this work a highly sensitive electrochemical sensor was developed based on a gold electrode (AuE) modified with Ag metal-organic framework mesoporous carbon (Ag-MOF@MC) and molecularly imprinted polymers (MIPs). To that end, the MIP layer was formed on the Ag-MOF@MC by implanting Hb as the pattern molecule during the polymerization. The modified electrode was designed using electrochemical approaches including differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). Using a response level experimental design method, the most important parameters affecting the reaction of the sensing system including pH, incubation time, and scanning rate were optimized. Following the same route, the Hb concentration, pH, temperature, and elution times were optimized to prepare the imprinted polymer layer on the Ag-MOF@MC surface. By exploiting DPV techniques based on the optimal parameters, the electrochemical response of the AuE/Ag-MOF@MC-MIPs for Hb determination was recorded in a wide linear dynamic range (LDR) of 0.2 pM to 1000 nM, with a limit of detection (LOD) of 0.09 pM. Moreover, the Ag-MOF@MC-MIP sensing system showed good stability, high selectivity, and acceptable reproducibility for Hb determination. The sensing system was successfully applied for Hb determination in real blood samples, and the results were compared with those of the standard methods for Hb determination. Acceptable recovery (99.0%) and RDS% (4.6%) confirmed the applicability and reliability of the designed Hb sensing system.


Assuntos
Técnicas Eletroquímicas/instrumentação , Ouro/química , Hemoglobinas/química , Impressão Molecular/métodos , Compostos de Prata/química , Eletrodos , Compostos Organometálicos/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Anal Bioanal Chem ; 413(25): 6279-6288, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34373932

RESUMO

Herein, a novel signal-on photoelectrochemical (PEC) biosensor with nearly zero background noise (ZBN) was first fabricated to determine the presence of organophosphorus pesticide based on in situ formation of DNA-templated Ag2S photoactive materials, accompanied by hybridization chain reaction (HCR) signal amplification. The capture probe (S1) on the gold nanoparticle-modified electrode can hybridize with the aptamer molecule to generate a simple PEC biosensor. In the presence of a target molecule, the aptamer molecule is released on the double-stranded DNA (dsDNA)-modified PEC biosensor. Meanwhile, the capture probe remains on the electrode and can open the DNA hairpins (H1, H2) which are rich in cytosine, to trigger the HCR reaction. The rich "C" strands are uncovered after formation of a long dsDNA polymer strand, which can assemble multiple silver ions (Ag+) by means of by C-Ag+-C chelation. Then, a large number of Ag2S can be generated by challenging with S2- solution, producing a satisfactory photocurrent signal. The photoactive material is formed in situ, which eliminates the laborious operation. Moreover, the signal can be highly amplified with nearly zero background noise and HCR signal amplification. Under optimal conditions, the ZBN aptasensor exhibited high sensitivity and selectivity, with a low detection limit of 2 pg mL-1 for malathion. Importantly, the sensing platform can also be applied to determine the presence of malathion in real samples. In this assay, a novel signal-on photoelectrochemical biosensor with nearly zero background noise was first fabricated to determine the presence of organophosphorus pesticide based on in situ formation of DNA-templated Ag2S photoactive materials, accompanied by hybridization chain reaction signal amplification.


Assuntos
Técnicas Biossensoriais , DNA/química , Técnicas Eletroquímicas , Malation/química , Praguicidas/química , Processos Fotoquímicos , Contaminação de Alimentos/análise , Sucos de Frutas e Vegetais/análise , Malus/química , Compostos Organofosforados , Compostos de Prata/química
19.
Anal Bioanal Chem ; 413(8): 2207-2215, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33515074

RESUMO

We developed a near-infrared (NIR) electrochemiluminescence (ECL) immunosensor for sensitively and selectively determining carbohydrate antigen 125 (CA125) with toxic-element-free and environmental-friendly AgInS2/ZnS nanocrystals (NCs) as tags. The core/shell-structured AgInS2/ZnS NCs not only can be conveniently prepared via an aqueous synthetic procedure, but also has high photoluminescence quantum yield (PLQY) of up to 61.7%, highly monodispersed, water-soluble, and desired biological compatibility. As AgInS2/ZnS NCs can be oxidized via electrochemically injecting holes into their valence band at + 0.84 V, both the monodispersed AgInS2/ZnS NCs in solution and the surface-confined AgInS2/ZnS NCs immobilized in sandwich-typed immuno-complexes with CA125 as analyte can exhibit efficient oxidative-reduction ECL around 695 nm under physiological conditions with the presence of tri-n-propylamine (TPrA). The ECL intensity from the AgInS2/ZnS NCs immobilized in sandwich-typed immuno-complexes increases linearly and selectively with an increased concentration of CA125 from 5 × 10-6 to 5 × 10-3 U/mL, and limit of detection (LOD) was 1 × 10-6 U/mL (S/N = 3). This reliable platform can provide an effective detection method in the early diagnosis and treatment of ovarian cancer.


Assuntos
Antígeno Ca-125/sangue , Proteínas de Membrana/sangue , Nanopartículas/química , Compostos de Prata/química , Sulfetos/química , Compostos de Zinco/química , Anticorpos Imobilizados/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas , Humanos , Imunoensaio/métodos , Limite de Detecção , Medições Luminescentes/métodos
20.
Mol Biol Rep ; 48(12): 7933-7946, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34655404

RESUMO

BACKGROUND: There is an emergency need for the natural therapeutic agents to treat arious life threatening diseases such as cardio- vascular disease, Rheumatoid arthritis and cancer. Among these diseases, cancer is found to be the second life threatening disease; in this view the present study focused to synthesize the silver oxide nanoparticles (AgONPs) from endophytic fungus. METHODS: The endophytic fungus was isolated from a medicinal tree Aegle marmelos (Vilva tree) and the potential strain was screened through antagonistic activity. The endophytic fungus was identified through microscopic (Lactophenol cotton blue staining and spore morphology in culture media) and Internal Transcribed Spacer (ITS) 1, ITS 4 and 18S rRNA amplification. The endophyte was cultured for the synthesis of AgONPs and the synthesized NPs were characterized through UV- Vis, FT- IR, EDX, XRD and SEM. The synthesized AgONPs were determined for antimicrobial, antioxidant and anti- angiogenic activity. RESULTS: About 35 pigmented endophytic fungi were isolated, screened for antagonistic activity against 12 pathogens and antioxidant activity through DPPH radical scavenging assay; among the isolates, FC36AY1 explored the highest activity and the strain FC36AY1 was identified as Aspergillus terreus. The AgONPs were synthesized from the strain FC36AY1 and characterized for its confirmation, functional groups, nanostructures with unit cell dimensions, size and shape, presence of elements through UV-Vis spectrophotometry, FT-IR, XRD, SEM with EDX analysis. The myco-generated AgONPs manifested their antimicrobial and antioxidant properties with maximum activity at minimum concentration. Moreover, the inhibition of angiogenesis by the AgONPs in Hen's Egg Test on the Chorio-Allantoic Membrane analysis were tested on the eggs of Chittagong breed evinced at significant bioactivity least concentration at 0.1 µg/mL. CONCLUSIONS: Thus, the results of this study revealed that the fungal mediated AgONPs can be exploited as potential in biomedical applications.


Assuntos
Aspergillus/metabolismo , Nanopartículas Metálicas/química , Óxidos/química , Compostos de Prata/química , Inibidores da Angiogênese/farmacologia , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Aspergillus/enzimologia , Embrião de Galinha/efeitos dos fármacos , Endófitos/metabolismo , Testes de Sensibilidade Microbiana/métodos , Óxidos/farmacologia , Compostos de Prata/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA