Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Biotechnol Lett ; 46(4): 627-639, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38662307

RESUMO

Dye contamination in printing and dyeing wastewater has long been a major concern due to its serious impact on both the environment and human health. In the quest for bioremediation of these hazardous dyes, biological resources such as biodegradation bacteria and enzymes have been investigated in severely polluted environments. In this context, the triphenylmethane transporter gene (tmt) was identified in six distinct clones from a metagenomic library of the printing and dyeing wastewater treatment system. Escherichia coli expressing tmt revealed 98.1% decolorization efficiency of triphenylmethane dye malachite green within 24 h under shaking culture condition. The tolerance to malachite green was improved over eightfold in the Tmt strain compared of the none-Tmt expressed strain. Similarly, the tolerance of Tmt strain to other triphenylmethane dyes like crystal violet and brilliant green, was improved by at least fourfold. Site-directed mutations, including A75G, A75S and V100G, were found to reinforce the tolerance of malachite green, and double mutations of these even further improve the tolerance. Therefore, the tmt has been demonstrated to be a specific efflux pump for triphenylmethane dyes, particularly the malachite green. By actively pumping out toxic triphenylmethane dyes, it significantly extends the cells tolerance in a triphenylmethane dye-rich environment, which may provide a promising strategy for bioremediation of triphenylmethane dye pollutants in the environments.


Assuntos
Biodegradação Ambiental , Corantes , Escherichia coli , Corantes de Rosanilina , Compostos de Tritil , Escherichia coli/genética , Escherichia coli/metabolismo , Corantes/metabolismo , Compostos de Tritil/metabolismo , Corantes de Rosanilina/metabolismo , Poluentes Químicos da Água/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
2.
Bioorg Med Chem Lett ; 30(19): 127458, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32755678

RESUMO

Sirtuin proteins are a highly conserved class of nicotinamide adenine dinucleotide (NAD+)-dependent lysine deacylases. The pleiotropic human isoform 2 of Sirtuins (SIRT2) has been engaged in the pathogenesis of cancer in a plethora of reports around the globe. Thus, SIRT2 modulation is deemed as a promising approach for pharmaceutical intervention. Previously, we reported S-Trityl-l-Cysteine (STLC)-ornamented dimethylaminopyridine chemical entity named STC4 with a significant SIRT2 inhibitory capacity; this was separate from the conventional application of STLC scaffold as a kinesin-5 inhibitor. An interactive molecular docking study of SIRT2 and STC4 showed interaction between Asn168 of SIRT2 and the methyl ester of STC4, that appears to hinder STC4 to reach the selective pocket of the protein unlike strong SIRT2 inhibitor SirReal2. To improve its activity, herein, we utilized S-trityl cysteamine pharmacophore lacking the methyl ester. Nine compounds were synthesized and assayed affording three biopertinent SIRT2 inhibitors, and two of them, STCY1 and STCY6 showed higher inhibitory activity than STC4. These compounds have pronounced anti-proliferative activities against different cancer cell lines. A molecular docking study was executed to shed light on the supposed binding mode of the lead compound, STCY1, into the selective pocket of SIRT2 by interaction of the nitrogen of pyridine ring of the compound and Ala135 of the protein. The outcome of the study exposes that the active compounds are effective intermediates to construct more potent biological agents.


Assuntos
Aminopiridinas/farmacologia , Cisteamina/análogos & derivados , Cisteamina/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Sirtuína 2/antagonistas & inibidores , Compostos de Tritil/farmacologia , Aminopiridinas/síntese química , Aminopiridinas/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisteamina/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/metabolismo , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Sirtuína 2/metabolismo , Relação Estrutura-Atividade , Compostos de Tritil/síntese química , Compostos de Tritil/metabolismo
3.
Appl Microbiol Biotechnol ; 104(7): 3193-3204, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32067057

RESUMO

Malachite green is a carcinogenic dye that has been detected in fish tissues and freshwater. Here we evaluated the malachite green decoloring ability of a photoautotrophic cyanobacterium, Synechococcus elongatus PCC 7942 (Synechococcus), that lives in freshwater. Results show that 99.5% of the dye was removed by Synechococcus through bioabsorption and bioaccumulation; however, the dye was not degraded or chemically modified. Next, we established an engineered Synechococcus strain to degrade the dye after uptake. The triphenylmethane reductase gene katmr was heterologously expressed, resulting in high production of a soluble recombinant protein. The engineered strain showed advanced decoloring abilities at a low cell density and in stressful environments. It degraded malachite green into the smaller molecules 4-methylaminobenzoic acid and 4-hydroxyl-aniline. After treatment with the engineered cyanobacterium, the growth of wheat seeds was fully recovered in the presence of malachite green. These results demonstrate the potential application of the engineered Synechococcus as a photosynthetic cell factory for the removal of malachite green from wastewater.


Assuntos
Proteínas de Bactérias/genética , Corantes/metabolismo , Oxirredutases/genética , Corantes de Rosanilina/metabolismo , Synechococcus/metabolismo , Poluentes Químicos da Água/metabolismo , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Enterobacter aerogenes/enzimologia , Enterobacter aerogenes/genética , Engenharia Metabólica , Oxirredutases/metabolismo , Fotobiorreatores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Synechococcus/genética , Compostos de Tritil/metabolismo
4.
Mol Pharm ; 16(9): 3985-3995, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31356752

RESUMO

Folate-based small molecule drug conjugates (SMDCs) are currently under development and have shown promising preclinical and clinical results against various cancers and polycystic kidney disease. Two requisites for response to a folate-based SMDC are (i) folate receptor alpha (FRα) protein is expressed in the diseased tissues, and (ii) FRα in those tissues is accessible and functionally competent to bind systemically administered SMDCs. Here we report on the development of a small molecule reporter conjugate (SMRC), called EC2220, which is composed of a folate ligand for FRα binding, a multilysine containing linker that can cross-link to FRα in the presence of formaldehyde fixation, and a small hapten (fluorescein) used for immunohistochemical detection. Data show that EC2220 produces a far greater IHC signal in FRα-positive tissues over that produced with EC17, a folate-fluorescein SMRC that is released from the formaldehyde-denatured FRα protein. Furthermore, the extent of the EC2220 IHC signal was proportional to the level of FRα expression. This EC2220-based assay was qualified both in vitro and in vivo using normal tissue, cancer tissue, and polycystic kidneys. Overall, EC2220 is a sensitive and effective reagent for evaluating functional and accessible receptor expression in vitro and in vivo.


Assuntos
Receptor 1 de Folato/metabolismo , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , Doenças Renais Policísticas/tratamento farmacológico , Células A549 , Animais , Doxiciclina/farmacologia , Fluoresceína-5-Isotiocianato/química , Fluoresceína-5-Isotiocianato/metabolismo , Receptor 1 de Folato/análise , Ácido Fólico/análogos & derivados , Ácido Fólico/química , Ácido Fólico/metabolismo , Células HeLa , Humanos , Lisina/análogos & derivados , Lisina/química , Lisina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos Transgênicos , Neoplasias/metabolismo , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Doenças Renais Policísticas/induzido quimicamente , Doenças Renais Policísticas/metabolismo , Proteína Quinase C/genética , Distribuição Tecidual , Compostos de Tritil/química , Compostos de Tritil/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Appl Microbiol Biotechnol ; 103(5): 2141-2153, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30613897

RESUMO

Endophytic microorganisms can metabolize organic contaminants and assist in plant growth, thus facilitating the phytoremediation of polluted environments. An endophytic bacterium capable of decoloring malachite green (MG) was isolated from the leaves of the wetland plant Suaeda salsa and was identified as Klebsiella aerogenes S27. Complete decolorization of MG (100 mg/l) was achieved in 8 h at 30 °C and pH 7.0. Ultraviolet-visible spectroscopy and Fourier-transform infrared spectroscopy analyses indicated the degradation of MG by the isolate. The enzymic assays of the strain showed the triphenylmethane reductase (TMR) activity. A gene encoding putative TMR-like protein (named as KaTMR) was cloned and heterologously expressed in Escherichia coli. KaTMR showed only 42.6-43.3% identities in amino acids compared with well-studied TMRs, and it phylogenetically formed a new branch in the family of TMRs. The degraded metabolites by recombinant KaTMR were detected by liquid chromatography-mass spectrometry, showing differences from the products of reported TMRs. The biotransformation pathway of MG was proposed. Phytotoxicity studies revealed the less-toxic nature of the degraded metabolites compared to the dye. This study presented the first report of an endophyte on the degradation and detoxification of triphenylmethane dye via a novel oxidoreductase, thus facilitating the study of the plant-endophyte symbiosis in the bioremediation processes.


Assuntos
Biodegradação Ambiental , Enterobacter aerogenes/metabolismo , Oxirredutases/metabolismo , Corantes de Rosanilina/metabolismo , Poluentes Químicos da Água/metabolismo , Biotransformação/fisiologia , Chenopodiaceae/microbiologia , Corantes/metabolismo , Enterobacter aerogenes/classificação , Enterobacter aerogenes/isolamento & purificação , Compostos de Tritil/metabolismo
6.
Int J Mol Sci ; 20(23)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31817029

RESUMO

A triphenylmethane reductase derived from Citrobacter sp. KCTC 18061P was coupled with a glucose 1-dehydrogenase from Bacillus sp. ZJ to construct a cofactor self-sufficient bienzyme biocatalytic system for dye decolorization. Fed-batch experiments showed that the system is robust to maintain its activity after 15 cycles without the addition of any expensive exogenous NADH. Subsequently, three different machine learning approaches, including multiple linear regression (MLR), random forest (RF), and artificial neural network (ANN), were employed to explore the response of decolorization efficiency to the variables of the bienzyme system. Statistical parameters of these models suggested that a three-layered ANN model with six hidden neurons was capable of predicting the dye decolorization efficiency with the best accuracy, compared with the models constructed by MLR and RF. Weights analysis of the ANN model showed that the ratio between two enzymes appeared to be the most influential factor, with a relative importance of 54.99% during the decolorization process. The modeling results confirmed that the neural networks could effectively reproduce experimental data and predict the behavior of the decolorization process, especially for complex systems containing multienzymes.


Assuntos
Biocatálise , Coenzimas/metabolismo , Corantes/metabolismo , Modelos Teóricos , Oxirredutases/metabolismo , Algoritmos , Biodegradação Ambiental , Cor , Modelos Lineares , Redes Neurais de Computação , Especificidade por Substrato , Compostos de Tritil/metabolismo
7.
Plant Cell ; 27(10): 2972-90, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26475865

RESUMO

The acyclic monoterpene alcohol linalool is one of the most frequently encountered volatile compounds in floral scents. Various linalool oxides are usually emitted along with linalool, some of which are cyclic, such as the furanoid lilac compounds. Recent work has revealed the coexistence of two flower-expressed linalool synthases that produce the (S)- or (R)-linalool enantiomers and the involvement of two P450 enzymes in the linalool oxidation in the flowers of Arabidopsis thaliana. Partially redundant enzymes may also contribute to floral linalool metabolism. Here, we provide evidence that CYP76C1 is a multifunctional enzyme that catalyzes a cascade of oxidation reactions and is the major linalool metabolizing oxygenase in Arabidopsis flowers. Based on the activity of the recombinant enzyme and mutant analyses, we demonstrate its prominent role in the formation of most of the linalool oxides identified in vivo, both as volatiles and soluble conjugated compounds, including 8-hydroxy, 8-oxo, and 8-COOH-linalool, as well as lilac aldehydes and alcohols. Analysis of insect behavior on CYP76C1 mutants and in response to linalool and its oxygenated derivatives demonstrates that CYP76C1-dependent modulation of linalool emission and production of linalool oxides contribute to reduced floral attraction and favor protection against visitors and pests.


Assuntos
Arabidopsis/enzimologia , Cicloexanóis/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Flores/enzimologia , Inseticidas/metabolismo , Monoterpenos/metabolismo , Compostos de Tritil/metabolismo , Monoterpenos Acíclicos , Álcoois/química , Álcoois/metabolismo , Animais , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cicloexanóis/química , Sistema Enzimático do Citocromo P-450/genética , Flores/genética , Flores/imunologia , Genes Reporter , Insetos/fisiologia , Inseticidas/química , Monoterpenos/química , Oxirredução , Estereoisomerismo , Compostos de Tritil/química
8.
Microb Pathog ; 103: 29-39, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27998733

RESUMO

Staphylococcus aureus, showing the greatest decolorization ability, was further investigated for Methyl Red (MR) Congo Red (CR), Crystal Violet (CV) and Malachite Green (MG) decolorization using response surface methodology (RSM). The chemometric methods use, based on statistical design of experiments (DOEs) such as RSM is becoming increasingly widespread in several sciences such as analytical chemistry, engineering and environmental chemistry. Stapphylococcus aureus ATCC 25923, Stapphylococcus aureus (S1) and Stapphylococcus aureus (S2), were isolated from textile wastewater plant located in KsarHellal, Tunisia and were tested for their decolorization capacity. PCR technique was utilized to identify the 3 bacterial strains and to detect the adhesin gene "cna". Biodegradation of MR, CR, CV and MG (750 ppm), were investigated under shaking condition in Mineral Salt Medium (MSM) solution at pH 7.5 and temperature 30 °C, using a 3.7 × 105 CFU/ml as inoculum size. Our results showed that Staphylococcus aureus had a high decolorization capacity. Nuclear magnetic resonance (NMR) spectroscopy analysis confirmed the biodegradation of dyes. The four dyes mutagenicity with the S9 metabolizing system decreased significantly after biodegradation and totally disappeared. Nuclear magnetic resonance (NMR) spectroscopy analysis confirmed the biodegradation of dyes.


Assuntos
Adesinas Bacterianas/genética , Compostos Azo/toxicidade , Bactérias/genética , Bactérias/metabolismo , Corantes/toxicidade , Mutação , Esgotos/microbiologia , Compostos de Tritil/toxicidade , Compostos Azo/química , Compostos Azo/metabolismo , Aderência Bacteriana/genética , Biodegradação Ambiental , Corantes/química , Corantes/metabolismo , Espectroscopia de Ressonância Magnética , Metabolômica/métodos , Mutagênese/efeitos dos fármacos , Mutagênicos/química , Mutagênicos/metabolismo , Mutagênicos/toxicidade , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Compostos de Tritil/química , Compostos de Tritil/metabolismo
9.
J Chem Ecol ; 42(10): 1004-1015, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27592244

RESUMO

Epilachna vigintioctopunctata Fabr. (Coleoptera: Coccinellidae) and Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae) are important pests of Solena amplexicaulis (Lam.) Gandhi (Cucurbitaceae), commonly known as creeping cucumber. The profiles of volatile organic compounds from undamaged plants, plants after 48 hr continuous feeding of adult females of either E. vigintioctopunctata or A. foveicollis, by adults of both species, and after mechanical damaging were identified and quantified by GC-MS and GC-FID analyses. Thirty two compounds were detected in volatiles of all treatments. In all plants, methyl jasmonate was the major compound. In Y-shaped glass tube olfactometer bioassays under laboratory conditions, both insect species showed a significant preference for complete volatile blends from insect damaged plants, compared to those of undamaged plants. Neither E. vigintioctopunctata nor A. foveicollis showed any preference for volatiles released by heterospecifically damaged plants vs. conspecifically damaged plants or plants attacked by both species. Epilachna vigintioctopunctata and A. foveicollis showed attraction to three different synthetic compounds, linalool oxide, nonanal, and E-2-nonenal in proportions present in volatiles of insect damaged plants. Both species were attracted by a synthetic blend of 1.64 µg linalool oxide + 3.86 µg nonanal + 2.23 µg E-2-nonenal, dissolved in 20 µl methylene chloride. This combination might be used as trapping tools in pest management strategies.


Assuntos
Besouros/fisiologia , Cucurbitaceae/fisiologia , Herbivoria , Folhas de Planta/fisiologia , Compostos Orgânicos Voláteis/metabolismo , Monoterpenos Acíclicos , Aldeídos/análise , Aldeídos/metabolismo , Animais , Cicloexanóis/análise , Cicloexanóis/metabolismo , Feminino , Monoterpenos/análise , Monoterpenos/metabolismo , Olfato , Compostos de Tritil/análise , Compostos de Tritil/metabolismo , Compostos Orgânicos Voláteis/análise
10.
Bioprocess Biosyst Eng ; 39(3): 381-90, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26684007

RESUMO

The ability of the white-rot fungus Ganoderma sp.En3 to decolorize different kinds of dyes widely applied in the textile and dyeing industry, including the anthraquinone dye Remazol Brilliant Blue R (RBBR), indigo dye indigo carmine and triphenylmethane dye methyl green, was evaluated in this study. Ganoderma sp.En3 had a strong capability of decolorizing high concentrations of RBBR, indigo carmine and methyl green. Obvious reduction of Chemical Oxygen Demand was observed after decolorization of different dyes. Ganoderma sp.En3 had a strong ability to tolerate RBBR, indigo carmine and methyl green with high concentrations. High concentrations of RBBR, indigo carmine and methyl green could also be efficiently decolorized by the crude enzyme of Ganoderma sp.En3. Different redox mediators such as syringaldehyde, acetosyringone and acetovanillone could enhance the decolorization capability for higher concentration of indigo carmine and methyl green. Different metal ions had little effect on the ability of the crude enzyme to decolorize indigo carmine and methyl green. Our study suggested that Ganoderma sp.En3 had a strong capability for decolorizing and tolerating high concentrations of different types of dyes such as RBBR, indigo carmine and methyl green.


Assuntos
Antraquinonas/metabolismo , Ganoderma/metabolismo , Índigo Carmim/metabolismo , Compostos de Tritil/metabolismo , Oxirredução
11.
J Basic Microbiol ; 56(11): 1173-1182, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27577103

RESUMO

Laccases of white-rot fungi provide a promising future as a tool to be used in the field of biodegradation of synthetic dyes with different chemical structures. The aim of this study was production, characterization, and application of laccases from the white-rot fungus Ceriporiopsis subvermispora ATCC 90467 for decolorization of triphenylmethane dyes that could remain persistent in wastewater. Laccase was purified from a C. subvermispora culture by a four-step method resulting high specific activity of 2,571 U g-1 , 88-fold higher than crude laccase. Purified laccase (molecular weight 45 kDa) had the optimum activity at pH 2.0 and the optimum temperature 50 °C using ABTS as chromogenic substrate. Laccases efficiently decolorized triphenylmethane dyes such as Malachite Green (87.8%), Bromocresol Purple (71.6%), and Methyl Violet (68.1%) without redox mediator. However, decolorization percentage of hardly degradable triphenylmethane dyes such as Phenol Red, Bromophenol Blue, and Brilliant Blue R-250 was increased the presence of some low-molecular weight compounds (natural or synthetic redox mediators). Purified laccases were resistant to Mg2+ , Ca2+ , Ba2+ , Mn2+ , Fe2+ , Cu2+ , Zn2+ , and Sn2+ (10 mmol L-1 ). These findings suggest that laccases from C. subvermispora are able to decolorize triphenylmethane dyes without the negative influence of metal ions that can be found in wastewater.


Assuntos
Corantes/metabolismo , Coriolaceae/enzimologia , Lacase/isolamento & purificação , Lacase/metabolismo , Biodegradação Ambiental , Púrpura de Bromocresol/metabolismo , Azul de Bromofenol/metabolismo , Cor , Coriolaceae/metabolismo , Violeta Genciana/metabolismo , Cinética , Lacase/química , Metais , Oxirredução , Fenolsulfonaftaleína/metabolismo , Corantes de Rosanilina/metabolismo , Temperatura , Compostos de Tritil/metabolismo , Águas Residuárias
12.
Appl Microbiol Biotechnol ; 99(1): 255-67, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24974280

RESUMO

The gene encoding a putative triphenylmethane reductase (TMR)-like protein derived from Geobacillus thermoglucosidasius C56-Y593 (named as GtAZR) was synthesized, heterologously expressed in Escherichia coli, and extensively characterized for the first time. The recombinant GtAZR displayed its maximum activity at pH 5.5 and 40 °C. GtAZR was stable at temperatures below 65 °C. It also exhibited a broad pH stability and retained more than 90% of its initial activities in pH range of 4.5-10.5 after incubating in various buffers for 1 h. Moreover, GtAZR showed significant stability against metal ions and organic solvents. GtAZR displayed broad substrate spectrum toward both azo and triphenylmethane dyes. As a sequence and structural TMR-like protein, GtAZR was characterized as an azoreductase biochemically due to its high specificity for azo dye rather than triphenylmethane dye. Molecular docking and mutagenesis analysis revealed that amino acids Asp-79 and Thr-80 are responsible for its azoreductase activity, which eliminated the steric hindrance caused by His-77 and Tyr-78 at the correspond sites in other structural homologous triphenylmethane reductase. The robust stability and substrate promiscuity of GtAZR made it a promising candidate for practical removal of mixed dye wastewater.


Assuntos
Compostos Azo/metabolismo , Corantes/metabolismo , Oxirredutases/metabolismo , Compostos de Tritil/metabolismo , Sequência de Aminoácidos , Biotransformação , Domínio Catalítico , Análise Mutacional de DNA , DNA Bacteriano/química , DNA Bacteriano/genética , Estabilidade Enzimática , Escherichia coli/genética , Geobacillus/enzimologia , Geobacillus/genética , Concentração de Íons de Hidrogênio , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Oxirredutases/química , Oxirredutases/genética , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Especificidade por Substrato , Temperatura
13.
J Environ Manage ; 150: 274-280, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25527986

RESUMO

Triphenylmethane dyes (TPM) are recalcitrant colorants brought into the environment. In this study, a lesser-known white rot fungus Coriolopsis sp. (1c3), isolated from compost of Empty Fruit Bunch (EFB) of oil palm, was explored for its decolorization potential of TPM dyes. The isolate 1c3 demonstrated good decolorization efficiencies in the treatment of Crystal Violet (CV; 100 mg l(-1)), Methyl Violet (MV; 100 mg l(-1)) and Cotton Blue (CB; 50 mg(-1)), with 94%, 97% and 91%, within 7, 7 and 1 day(s), respectively. Malachite Green (MG; 100 mg l(-1)) was the most recalcitrant dye, with 52% decolorization after 9 days. Dye removal by 1c3 was presumably via biosorption, whereby the process was determined to be influenced by fungal biomass, initial dye concentrations and oxygen requirements. Biodegradation was also a likely mechanism responsible for dye removal by 1c3, occurred as indicated by the reduction of dye spectra peaks. Detection of laccase, lignin peroxidase and NADH-DCIP reductase activities further substantiate the possible occurrence of biodegradation of TPM dyes by 1c3.


Assuntos
Biodegradação Ambiental , Corantes/metabolismo , Fungos/metabolismo , Compostos de Tritil/metabolismo , Corantes/química , Humanos , Óleo de Palmeira , Óleos de Plantas , Solo
14.
Appl Environ Microbiol ; 80(17): 5379-85, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24951782

RESUMO

The enzyme triphenylmethane reductase (TMR) reduces toxic triphenylmethane dyes into colorless, nontoxic derivatives, and TMR-producing microorganisms have been proposed as bioremediation tools. Analysis of the genome of Listeria monocytogenes H7858 (1998-1999 hot dog outbreak) revealed that the plasmid (pLM80) of this strain harboring a gene cassette (bcrABC) conferring resistance to benzalkonium chloride (BC) and other quaternary ammonium disinfectants also harbored a gene (tmr) highly homologous to TMR-encoding genes from diverse Gram-negative bacteria. The pLM80-associated tmr was located two genes downstream of bcrABC as part of a putative IS1216 composite transposon. To confirm the role of tmr in triphenylmethane dye detoxification, we introduced various tmr-harboring fragments of pLM80 in a pLM80-cured derivative of strain H7550, from the same outbreak as H7858, and assessed the resistance of the constructs to the triphenylmethane dyes crystal violet (CV) and malachite green. Transcriptional and subcloning data suggest that the regulation of TMR is complex. Constructs harboring fragments spanning bcrABC and tmr were CV resistant, and in such constructs tmr transcription was induced by sublethal levels of either BC or CV. However, constructs harboring only tmr and its upstream intergenic region could also confer resistance to CV, albeit at lower levels. Screening a panel of BC-resistant L. monocytogenes strains revealed that all those harboring bcrABC and adjacent pLM80 sequences, including tmr, were resistant to CV and decolorized this dye. The findings suggest a potential role of TMR as a previously unknown adaptive attribute for environmental persistence of L. monocytogenes.


Assuntos
Listeria monocytogenes/enzimologia , Listeria monocytogenes/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Plasmídeos , Compostos de Tritil/metabolismo , Compostos de Benzalcônio/metabolismo , Compostos de Benzalcônio/toxicidade , Biotransformação , Elementos de DNA Transponíveis , Ordem dos Genes , Violeta Genciana/metabolismo , Violeta Genciana/toxicidade , Listeria monocytogenes/isolamento & purificação , Oxirredução , Corantes de Rosanilina/metabolismo , Corantes de Rosanilina/toxicidade
15.
Appl Microbiol Biotechnol ; 98(7): 3133-41, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24136473

RESUMO

This study focuses on the possible use of Aspergillus fumigatus to remove acid violet 49 dye (AV49) from aqueous solution. In batch biosorption experiments, the highest biosorption efficiency was achieved at pH 3.0, with biosorbent dosage of 3.0 gL(-1) within about 30 min at 40 °C. The Langmuir and Freundlich models were able to describe the biosorption equilibrium of AV49 onto fungal biomass with maximum dye uptake capacity 136.98 mg g(-1). Biosorption followed a pseudo-second-order kinetic model with high correlation coefficients (R (2) > 0.99), and the biosorption rate constants increased with increasing temperature. Thermodynamic parameters indicated that the biosorption process was favorable, spontaneous, and endothermic in nature, with insignificant entropy changes. Fourier transform infrared spectroscopy strongly supported the presence of several functional groups responsible for dye-biosorbent interaction. Fungal biomass was regenerated with 0.1 M sodium hydroxide and could be reused a number of times without significant loss of biosorption activity. The effective decolorization of AV49 in simulated conditions indicated the potential use of biomass for the removal of color contaminants from wastewater.


Assuntos
Aspergillus fumigatus/metabolismo , Benzenossulfonatos/metabolismo , Compostos de Tritil/metabolismo , Poluentes Químicos da Água/metabolismo , Aspergillus fumigatus/crescimento & desenvolvimento , Biomassa , Concentração de Íons de Hidrogênio , Água/química
16.
Int J Syst Evol Microbiol ; 63(Pt 4): 1557-1561, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22888194

RESUMO

A Gram-staining-negative, non-endospore-forming, non-flagellated, non-motile and rod-shaped bacterium, designated strain LM2-5(T), was isolated from activated sludge in a sequencing batch reactor used for the treatment of triphenylmethane dye effluent. The taxonomy of strain LM2-5(T) was studied by phenotypic, chemotaxonomic and phylogenetic methods. Strain LM2-5(T) was aerobic, heterotrophic and positive for oxidase but negative for catalase activity. It grew at 16-37 °C (optimum 25 °C) and at pH 5.0-8.5 (optimum between pH 6.5 and pH 7.0). NaCl was not obligatory for growth but was tolerated at concentrations up to 2.0 % (w/v) NaCl. The novel strain formed yellow colonies on trypticase soy agar. Cells of strain LM2-5(T) were rods that measured 0.3-0.5 µm in width and 3.0-5.0 µm in length. The predominant respiratory quinone was Q-8. The major fatty acids were iso-C15 : 0 and iso-C17 : 1ω9c. The genomic DNA G+C content was 66.7 mol%. In phylogenetic analyses based on 16S rRNA gene sequences, strain LM2-5(T) clustered with members of the genus Dokdonella and appeared most closely related to Dokdonella koreensis DS-123(T) (96.4 % sequence similarity), Dokdonella fugitiva A3(T) (96.1 %), Dokdonella soli KIS28-6(T) (95.7 %) and Dokdonella ginsengisoli Gsoil 191(T) (95.7 %). On the basis of the phenotypic, chemotaxonomic and phylogenetic data, strain LM2-5(T) was considered to represent a novel species of the genus Dokdonella, for which the name Dokdonella immobilis is proposed. The type strain is LM2-5(T) ( = CGMCC 1.7659(T)  = JCM 15763(T)).


Assuntos
Filogenia , Esgotos/microbiologia , Compostos de Tritil/metabolismo , Eliminação de Resíduos Líquidos , Xanthomonadaceae/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Corantes/metabolismo , DNA Bacteriano/genética , Ácidos Graxos/análise , Dados de Sequência Molecular , Quinonas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Xanthomonadaceae/genética , Xanthomonadaceae/isolamento & purificação , Xanthomonadaceae/metabolismo
17.
Appl Microbiol Biotechnol ; 97(13): 6051-5, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23008002

RESUMO

The biological treatment of triphenylmethane dyes is an important issue. Most microbes have limited practical application because they cannot completely detoxicate these dyes. In this study, the extractive biodecolorization of triphenylmethane dyes by Aeromonas hydrophila DN322p was carried out by introducing the cloud point system. The cloud point system is composed of a mixture of nonionic surfactants (20 g/L) Brij 30 and Tergitol TMN-3 in equal proportions. After the decolorization of crystal violet, a higher wet cell weight was obtained in the cloud point system than that of the control system. Based on the results of thin-layer chromatography, the residual crystal violet and its decolorized product, leuco crystal violet, preferred to partition into the coacervate phase. Therefore, the detoxification of the dilute phase was achieved, which indicated that the dilute phase could be discharged without causing dye pollution. The extractive biodecolorization of three other triphenylmethane dyes was also examined in this system. The decolorization of malachite green and brilliant green was similar to that of crystal violet. Only ethyl violet achieved a poor decolorization rate because DN322p decolorized it via adsorption but did not convert it into its leuco form. This study provides potential application of biological treatment in triphenylmethane dye wastewater.


Assuntos
Aeromonas hydrophila/metabolismo , Corantes/metabolismo , Compostos de Tritil/metabolismo , Biotransformação
18.
Appl Microbiol Biotechnol ; 97(4): 1799-806, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22573270

RESUMO

Triphenylmethane dyes are extensively utilized in textile industries, medicinal products, biological stains, and food processing industries, etc. They are generally considered as xenobiotic compounds, which are very recalcitrant to biodegradation. The widespread persistence of such compounds has generated concerns with regard to remediation of them because of their potential carcinogenicity, teratogenicity, and mutagenicity. In this study, we present a system of phytoremediation by Arabidopsis plants developed on the basis of overexpression of triphenylmethane reductase (TMR) from the Citrobacter sp. The morphology and growth of TMR transgenic Arabidopsis plants showed significantly enhanced tolerances to crystal violet (CV) and malachite green (MG). Further, HPLC and HPLC-MS analyses of samples before and after dye decolorization in culture media revealed that TMR transgenic plants exhibited strikingly higher capabilities of removing CV from their media and high efficiencies of converting CV to non-toxic leucocrystal violet (LCV). This work indicates that microbial degradative gene may be transgenically exploited in plants for bioremediation of triphenylmethane dyes in the environment.


Assuntos
Arabidopsis/metabolismo , Corantes/metabolismo , Recuperação e Remediação Ambiental/métodos , Oxirredutases/genética , Plantas Geneticamente Modificadas/metabolismo , Compostos de Tritil/metabolismo , Arabidopsis/genética , Biodegradação Ambiental , Expressão Gênica , Violeta Genciana/metabolismo , Oxirredutases/metabolismo , Plantas Geneticamente Modificadas/genética
19.
Microbiology (Reading) ; 158(Pt 8): 2060-2072, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22653947

RESUMO

The application of toxic triphenylmethane dyes such as crystal violet (CV) in various industrial processes leads to large amounts of dye-contaminated sludges that need to be detoxified. Specific bacteria residing in wastewater treatment plants (WWTPs) are able to degrade triphenylmethane dyes. The objective of this work was to gain insights into the genetic background of bacterial strains capable of CV degradation. Three bacterial strains isolated from a municipal WWTP harboured IncP-1ß plasmids mediating resistance to and decolorization of CV. These isolates were assigned to the genera Comamonas and Delftia. The CV-resistance plasmid pKV29 from Delftia sp. KV29 was completely sequenced. In addition, nucleotide sequences of the accessory regions involved in conferring CV resistance were determined for plasmids pKV11 and pKV36 from the other two isolates. Plasmid pKV29 contains typical IncP-1ß backbone modules that are highly similar to those of previously sequenced IncP-1ß plasmids that confer antibiotic resistance, degradative capabilities or mercury resistance. The accessory regions located between the conjugative transfer (tra) and mating pair formation modules (trb) of all three plasmids analysed share common modules and include a triphenylmethane reductase gene, tmr, that is responsible for decolorization of CV. Moreover, these accessory regions encode other enzymes that are dispensable for CV degradation and hence are involved in so-far-unknown metabolic pathways. Analysis of plasmid-mediated degradation of CV in Escherichia coli by ultra-high-performance liquid chromatography-electrospray ionization-quadrupole-time-of-flight MS revealed that leuco crystal violet was the first degradation product. Michler's ketone and 4-dimethylaminobenzaldehyde appeared as secondary degradation metabolites. Enzymes encoded in the E. coli chromosome seem to be responsible for cleavage of leuco crystal violet. Plasmid-mediated degradation of triphenylmethane dyes such as CV is an option for the biotechnological treatment of sludges contaminated with these dyes.


Assuntos
Comamonas/metabolismo , Delftia/metabolismo , Violeta Genciana/metabolismo , Plasmídeos/genética , Compostos de Tritil/metabolismo , Águas Residuárias/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Comamonas/classificação , Comamonas/genética , Comamonas/isolamento & purificação , Delftia/classificação , Delftia/genética , Delftia/isolamento & purificação , Dados de Sequência Molecular , Oxirredutases/genética , Oxirredutases/metabolismo , Plasmídeos/metabolismo , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/instrumentação
20.
ScientificWorldJournal ; 2012: 512454, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22623907

RESUMO

A new consortium of four bacterial isolates (Agrobacterium radiobacter; Bacillus spp.; Sphingomonas paucimobilis, and Aeromonas hydrophila)-(CM-4) was used to degrade and to decolorize triphenylmethane dyes. All bacteria were isolated from activated sludge extracted from a wastewater treatment station of a dyeing industry plant. Individual bacterial isolates exhibited a remarkable color-removal capability against crystal violet (50 mg/L) and malachite green (50 mg/L) dyes within 24 h. Interestingly, the microbial consortium CM-4 shows a high decolorizing percentage for crystal violet and malachite green, respectively, 91% and 99% within 2 h. The rate of chemical oxygen demand (COD) removal increases after 24 h, reaching 61.5% and 84.2% for crystal violet and malachite green, respectively. UV-Visible absorption spectra, FTIR analysis and the inspection of bacterial cells growth indicated that color removal by the CM-4 was due to biodegradation. Evaluation of mutagenicity by using Salmonella typhimurium test strains, TA98 and TA100 studies revealed that the degradation of crystal violet and malachite green by CM-4 did not lead to mutagenic products. Altogether, these results demonstrated the usefulness of the bacterial consortium in the treatment of the textile dyes.


Assuntos
Biodegradação Ambiental , Corantes/metabolismo , Compostos de Tritil/metabolismo , Aeromonas hydrophila/metabolismo , Agrobacterium/metabolismo , Bacillus/metabolismo , Violeta Genciana/metabolismo , Concentração de Íons de Hidrogênio , Resíduos Industriais , Testes de Mutagenicidade , Corantes de Rosanilina/metabolismo , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Sphingomonas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA