Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 295(49): 16499-16509, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-32887797

RESUMO

Connexin (Cx) protein forms hemichannels and gap junctional channels, which play diverse and profound roles in human physiology and diseases. Gap junctions are arrays of intercellular channels formed by the docking of two hemichannels from adjacent cells. Each hexameric hemichannel contains the same or different Cx isoform. Although homomeric Cxs forms have been largely described functionally and structurally, the stoichiometry and arrangement of heteromeric Cx channels remain unknown. The latter, however, are widely expressed in human tissues and variation might have important implications on channel function. Investigating properties of heteromeric Cx channels is challenging considering the high number of potential subunit arrangements and stoichiometries, even when only combining two Cx isoforms. To tackle this problem, we engineered an HA tag onto Cx26 or Cx30 subunits and imaged hemichannels that were liganded by Fab-epitope antibody fragments via atomic force microscopy. For Cx26-HA/Cx30 or Cx30-HA/Cx26 heteromeric channels, the Fab-HA binding distribution was binomial with a maximum of three Fab-HA bound. Furthermore, imaged Cx26/Cx30-HA triple liganded by Fab-HA showed multiple arrangements that can be derived from the law of total probabilities. Atomic force microscopy imaging of ringlike structures of Cx26/Cx30-HA hemichannels confirmed these findings and also detected a polydisperse distribution of stoichiometries. Our results indicate a dominant subunit stoichiometry of 3Cx26:3Cx30 with the most abundant subunit arrangement of Cx26-Cx26-Cx30-Cx26-Cx30-Cx30. To our knowledge, this is the first time that the molecular architecture of heteromeric Cx channels has been revealed, thus providing the basis to explore the functional effect of these channels in biology.


Assuntos
Conexina 26/química , Conexina 30/química , Microscopia de Força Atômica , Sequência de Aminoácidos , Conexina 26/genética , Conexina 26/imunologia , Conexina 26/metabolismo , Conexina 30/genética , Conexina 30/imunologia , Conexina 30/metabolismo , Microscopia Crioeletrônica , Junções Comunicantes/metabolismo , Células HeLa , Histidina/genética , Histidina/imunologia , Histidina/metabolismo , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Oligopeptídeos/genética , Oligopeptídeos/imunologia , Oligopeptídeos/metabolismo , Multimerização Proteica
2.
EBioMedicine ; 57: 102825, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32553574

RESUMO

BACKGROUND: Numerous currently incurable human diseases have been causally linked to mutations in connexin (Cx) genes. In several instances, pathological mutations generate abnormally active Cx hemichannels, referred to also as "leaky" hemichannels. The goal of this study was to assay the in vivo efficacy of a potent antagonist antibody targeting Cx hemichannels. METHODS: We employed the antibody to treat Cx30A88V/A88V adult mutant mice, the only available animal model of Clouston syndrome, a rare orphan disease caused by Cx30 p.A88V leaky hemichannels. To gain mechanistic insight into antibody action, we also performed patch clamp recordings, Ca2+ imaging and ATP release assay in vitro. FINDINGS: Two weeks of antibody treatment sufficed to repress cell hyperproliferation in skin and reduce hypertrophic sebaceous glands (SGs) to wild type (wt) levels. These effects were obtained whether mutant mice were treated topically, by application of an antibody cream formulation, or systemically, by intraperitoneal antibody injection. Experiments with mouse primary keratinocytes and HaCaT cells revealed the antibody blocked Ca2+ influx and diminished ATP release through leaky Cx30 p.A88V hemichannels. INTERPRETATION: Our results show anti-Cx antibody treatment was effective in vivo and sufficient to counteract the effects of pathological connexin expression in Cx30A88V/A88V mice. In vitro experiments suggest antibodies gained control over leaky hemichannels and contributed to restoring epidermal homeostasis. Therefore, regulating cell physiology by antibodies targeting the extracellular domain of Cxs may enforce an entirely new therapeutic strategy. These findings support the further development of antibodies as drugs to address unmet medical needs for Cx-related diseases. FUND: Fondazione Telethon, GGP19148; University of Padova, SID/BIRD187130; Consiglio Nazionale delle Ricerche, DSB.AD008.370.003\TERABIO-IBCN; National Science Foundation of China, 31770776; Science and Technology Commission of Shanghai Municipality, 16DZ1910200.


Assuntos
Anticorpos/farmacologia , Conexina 30/genética , Conexinas/genética , Displasia Ectodérmica/genética , Trifosfato de Adenosina/genética , Animais , Proliferação de Células/efeitos dos fármacos , Conexina 30/antagonistas & inibidores , Conexina 30/imunologia , Conexinas/antagonistas & inibidores , Conexinas/imunologia , Modelos Animais de Doenças , Displasia Ectodérmica/tratamento farmacológico , Displasia Ectodérmica/imunologia , Epiderme/efeitos dos fármacos , Epiderme/crescimento & desenvolvimento , Epiderme/metabolismo , Junções Comunicantes/genética , Junções Comunicantes/imunologia , Junções Comunicantes/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Camundongos , Mutação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA