Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 19(3)2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-29534516

RESUMO

Although a plethora of signaling pathways are known to drive the activation of hepatic stellate cells in liver fibrosis, the involvement of connexin-based communication in this process remains elusive. Connexin43 expression is enhanced in activated hepatic stellate cells and constitutes the molecular building stone of hemichannels and gap junctions. While gap junctions support intercellular communication, and hence the maintenance of liver homeostasis, hemichannels provide a circuit for extracellular communication and are typically opened by pathological stimuli, such as oxidative stress and inflammation. The present study was set up to investigate the effects of inhibition of connexin43-based hemichannels and gap junctions on liver fibrosis in mice. Liver fibrosis was induced by administration of thioacetamide to Balb/c mice for eight weeks. Thereafter, mice were treated for two weeks with TAT-Gap19, a specific connexin43 hemichannel inhibitor, or carbenoxolone, a general hemichannel and gap junction inhibitor. Subsequently, histopathological analysis was performed and markers of hepatic damage and functionality, oxidative stress, hepatic stellate cell activation and inflammation were evaluated. Connexin43 hemichannel specificity of TAT-Gap19 was confirmed in vitro by fluorescence recovery after photobleaching analysis and the measurement of extracellular release of adenosine-5'-triphosphate. Upon administration to animals, both TAT-Gap19 and carbenoxolone lowered the degree of liver fibrosis accompanied by superoxide dismutase overactivation and reduced production of inflammatory proteins, respectively. These results support a role of connexin-based signaling in the resolution of liver fibrosis, and simultaneously demonstrate the therapeutic potential of TAT-Gap19 and carbenoxolone in the treatment of this type of chronic liver disease.


Assuntos
Carbenoxolona/uso terapêutico , Conexina 43/antagonistas & inibidores , Cirrose Hepática/tratamento farmacológico , Fragmentos de Peptídeos/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Carbenoxolona/administração & dosagem , Carbenoxolona/farmacologia , Células Cultivadas , Conexina 43/administração & dosagem , Conexina 43/farmacologia , Conexina 43/uso terapêutico , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/etiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/farmacologia , Superóxido Dismutase/metabolismo , Tioacetamida/toxicidade
2.
Exp Brain Res ; 235(10): 3033-3048, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28725925

RESUMO

Systemic administration of a Connexin43 mimetic peptide, Peptide5, has been shown to reduce secondary tissue damage and improve functional recovery after spinal cord injury (SCI). This study investigated safety measures and potential off-target effects of Peptide5 systemic administration. Rats were subjected to a mild contusion SCI using the New York University impactor. One cohort was injected intraperitoneally with a single dose of fluorescently labelled Peptide5 and euthanised at 2 or 4 h post-injury for peptide distribution analysis. A second cohort received intraperitoneal injections of Peptide5 or a scrambled peptide and was culled at 8 or 24 h post-injury for the analysis of connexin proteins and systemic cytokine profile. We found that Peptide5 did not cross the blood-spinal cord barrier in control animals, but reached the lesion area in the spinal cord-injured animals without entering non-injured tissue. There was no evidence that the systemic administration of Peptide5 modulates Connexin43 protein expression or hemichannel closure in the heart and lung tissue of SCI animals. The expression levels of other major connexin proteins including Connexin30 in astrocytes, Connexin36 in neurons and Connexin47 in oligodendrocytes were also unaltered by systemic delivery of Peptide5 in either the injured or non-injured spinal cords. In addition, systemic delivery of Peptide5 had no significant effect on the plasma levels of cytokines, chemokines or growth factors. These data indicate that the systemic delivery of Peptide5 is unlikely to cause any off-target or adverse effects and may thus be a safe treatment option for traumatic SCI.


Assuntos
Materiais Biomiméticos/farmacologia , Conexina 43/farmacologia , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Materiais Biomiméticos/administração & dosagem , Materiais Biomiméticos/efeitos adversos , Materiais Biomiméticos/farmacocinética , Conexina 43/administração & dosagem , Conexina 43/efeitos adversos , Conexina 43/farmacocinética , Modelos Animais de Doenças , Feminino , Ratos , Ratos Sprague-Dawley
3.
Wound Repair Regen ; 23(2): 203-12, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25703647

RESUMO

Nonhealing neuropathic foot ulcers remain a significant problem in individuals with diabetes. The gap-junctional protein connexin43 (Cx43) has roles in dermal wound healing and targeting Cx43 signalling accelerates wound reepithelialization. In a prospective, randomized, multicenter clinical trial we evaluated the efficacy and safety of a peptide mimetic of the C-terminus of Cx43, alpha connexin carboxy-terminal (ACT1), in accelerating the healing of chronic diabetic foot ulcers (DFUs) when incorporated into standard of care (SOC) protocols. Adults with DFUs of at least four weeks duration were randomized to receive SOC with or without topical application of ACT1. Primary outcome was mean percent ulcer reepithelialization and safety variables included incidence of treatment related adverse events (AEs) and detection of ACT1 immunogenicity. ACT1 treatment was associated with a significantly greater reduction in mean percent ulcer area from baseline to 12 weeks (72.1% vs. 57.1%; p = 0.03). Analysis of incidence and median time-to-complete-ulcer closure revealed that ACT1 treatment was associated with a greater percentage of participants that reached 100% ulcer reepitheliazation and a reduced median time-to-complete-ulcer closure. No AEs reported were treatment related, and ACT1 was not immunogenic. Treatment protocols that incorporate ACT1 may present a therapeutic strategy that safely augments the reepithelialization of chronic DFUs.


Assuntos
Anti-Infecciosos/administração & dosagem , Conexina 43/administração & dosagem , Conexina 43/farmacologia , Pé Diabético/tratamento farmacológico , Infecção da Ferida Cirúrgica/tratamento farmacológico , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/administração & dosagem , Cicatrização/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal , Administração Tópica , Anti-Infecciosos/farmacologia , Pé Diabético/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Peptídeos , Estudos Prospectivos , Infecção da Ferida Cirúrgica/patologia , Resultado do Tratamento , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/farmacologia
4.
Invest Ophthalmol Vis Sci ; 59(8): 3682-3693, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-30029255

RESUMO

Purpose: To evaluate the long-term effect on inflammation and inflammasome activation of intravitreally delivered connexin43 mimetic peptide (Cx43MP) in saline or incorporated within nanoparticles (NPs) for the treatment of the light-damaged rat eye. Methods: Light-induced damage to the retina was created by exposure of adult albino Sprague-Dawley rats to intense light for 24 hours. A single dose of Cx43MP, Cx43MP-NPs, or saline was injected intravitreally at 2 hours after onset of light damage. Fluorescein isothiocyanate (FITC)-labelled Cx43MP-NPs were intravitreally injected to confirm delivery into the retina. Electroretinogram (ERG) recordings were performed at 24 hours, 1 week, and 2 weeks post cessation of light damage. The retinal and choroidal layers were analyzed in vivo using optical coherence tomography (OCT) and immunohistochemistry was performed on harvested tissues using glial fibrillary acidic protein (GFAP), leukocyte common antigen (CD45), and Cx43 antibodies. Results: FITC was visualized 30 minutes after injection in the ganglion cell layer and in the choroid. Cx43MP and Cx43MP-NP treatments improved a-wave and b-wave function of the ERG compared with saline-injected eyes at 1 week and 2 weeks post treatment, and prevented photoreceptor loss by 2 weeks post treatment. Inflammation was also reduced and this was in parallel with downregulation of Cx43 expression. Conclusions: The slow release of Cx43MP incorporated into NPs is more effective at treating retinal injury than a single dose of native Cx43MP in solution by reducing inflammation and maintaining both retinal structure and function. This NP preparation has clinical relevance as it reduces possible ocular complications associated with repeated intravitreal injections.


Assuntos
Doenças da Coroide/tratamento farmacológico , Corioide/patologia , Conexina 43/administração & dosagem , Nanopartículas , Retina/patologia , Doenças Retinianas/tratamento farmacológico , Tomografia de Coerência Óptica/métodos , Animais , Corioide/metabolismo , Doenças da Coroide/patologia , Conexina 43/farmacocinética , Modelos Animais de Doenças , Eletrorretinografia , Feminino , Imuno-Histoquímica , Injeções Intravítreas , Masculino , Ratos , Ratos Sprague-Dawley , Retina/metabolismo , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia
5.
Exp Neurol ; 300: 1-12, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29055716

RESUMO

Connexin43 (Cx43) hemichannels in spinal cord astrocytes are implicated in the maintenance of neuropathic pain following peripheral nerve injury. Peptide5 is a Cx43 mimetic peptide that blocks hemichannels. In this study, we investigated the effects of spinal delivery of Peptide5 on mechanical pain hypersensitivity in two mouse models of neuropathic pain, peripheral nerve injury and chemotherapy-induced peripheral neuropathy (CIPN). We demonstrated that 10days following a chronic constriction injury (CCI) of the sciatic nerve, Cx43 expression, co-localised predominantly with astrocytes, was increased in the ipsilateral L3-L5 lumbar spinal cord. An intrathecal injection of Peptide5 into nerve-injured mice, on day 10 when pain was well-established, caused significant improvement in mechanical pain hypersensitivity 8h after injection. Peptide5 treatment resulted in significantly reduced Cx43, and microglial and astrocyte activity in the dorsal horn of the spinal cord, as compared to control saline-treated CCI mice. Further in vitro investigations on primary astrocyte cultures showed that 1h pre-treatment with Peptide5 significantly reduced adenosine triphosphate (ATP) release in response to extracellular calcium depletion. Since ATP is a known activator of the NOD-like receptor protein 3 (NLRP3) inflammasome complex, a key mediator of neuroinflammation, we examined the effects of Peptide5 treatment on NLRP3 inflammasome expression. We found that NLRP3, its adaptor apoptosis-associated spec-like protein (ASC) and caspase-1 protein were increased in the ipsilateral spinal cord of CCI mice and reduced to naïve levels following Peptide5 treatment. In the models of oxaliplatin- and paclitaxel-induced peripheral neuropathy, treatment with Peptide5 had no effect on mechanical pain hypersensitivity. Interestingly, in these CIPN models, although spinal Cx43 expression was significantly increased at day 13 following chemotherapy, NLRP3 expression was not altered. These results suggest that the analgesic effect of Peptide5 is specifically achieved by reducing NLRP3 expression. Together, our findings demonstrate that blocking Cx43 hemichannels with Peptide5 after nerve injury attenuates mechanical pain hypersensitivity by specifically targeting the NLRP3 inflammasome in the spinal cord.


Assuntos
Materiais Biomiméticos/administração & dosagem , Conexina 43/administração & dosagem , Hiperalgesia/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Neuralgia/tratamento farmacológico , Fragmentos de Peptídeos/administração & dosagem , Animais , Hiperalgesia/metabolismo , Inflamassomos/antagonistas & inibidores , Inflamassomos/metabolismo , Injeções Espinhais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neuralgia/metabolismo , Resultado do Tratamento
6.
Sci Rep ; 8(1): 7145, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29739982

RESUMO

Ventricular tachycardia (VT) is the most common and potentially lethal complication following myocardial infarction (MI). Biological correction of the conduction inhomogeneity that underlies re-entry could be a major advance in infarction therapy. As minimal increases in conduction of infarcted tissue markedly influence VT susceptibility, we reasoned that enhanced propagation of the electrical signal between non-excitable cells within a resolving infarct might comprise a simple means to decrease post-infarction arrhythmia risk. We therefore tested lentivirus-mediated delivery of the gap-junction protein Connexin 43 (Cx43) into acute myocardial lesions. Cx43 was expressed in (myo)fibroblasts and CD45+ cells within the scar and provided prominent and long lasting arrhythmia protection in vivo. Optical mapping of Cx43 injected hearts revealed enhanced conduction velocity within the scar, indicating Cx43-mediated electrical coupling between myocytes and (myo)fibroblasts. Thus, Cx43 gene therapy, by direct in vivo transduction of non-cardiomyocytes, comprises a simple and clinically applicable biological therapy that markedly reduces post-infarction VT.


Assuntos
Arritmias Cardíacas/genética , Cicatriz/genética , Conexina 43/genética , Terapia Genética , Infarto do Miocárdio/genética , Animais , Arritmias Cardíacas/complicações , Arritmias Cardíacas/patologia , Arritmias Cardíacas/terapia , Cicatriz/patologia , Cicatriz/terapia , Conexina 43/administração & dosagem , Modelos Animais de Doenças , Fibroblastos/metabolismo , Vetores Genéticos/uso terapêutico , Células HEK293 , Humanos , Lentivirus/genética , Camundongos , Células Musculares/metabolismo , Células Musculares/patologia , Mioblastos/metabolismo , Mioblastos/patologia , Infarto do Miocárdio/complicações , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Taquicardia Ventricular/complicações , Taquicardia Ventricular/genética , Taquicardia Ventricular/patologia , Taquicardia Ventricular/terapia
7.
Int J Oncol ; 30(6): 1427-39, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17487363

RESUMO

Dysregulation of connexin expression is believed to have a role in carcinogenesis, because levels of connexin are reduced in various tumors. We examined the role of connexin 43 (Cx43) alone and combined with a histone deactylase (HDAC) inhibitor in tumor growth inhibition. The transfection of Cx43 plasmid DNA (pCMV-Cx43) into human nasopharyngeal cancer KB cells using folate-linked nanoparticles induced inhibition of cell growth. Cx43 induced a tumor suppressive effect via a gap junctional intercellular communication-independent mechanism. The transfection of pCMV- Cx43 along with an HDAC inhibitor, 4-phenylbutyrate (4-PB), enhanced Cx43 expression greatly in vitro, and inhibited significantly the tumor growth of KB cells and xenografts compared with that of pCMV-Cx43 alone. 4-PB induced increased expression of genes of DNA damage checkpoints and of apoptosis via the down-regulation of anti-apoptotic bcl-2 mRNA expression and up-regulation of the activity of the apoptosis-associated enzyme caspase-3/7. Thus, the amplified Cx43 expression by an antitumor agent, an HDAC inhibitor, may have great potential as a growth inhibitor for nasopharyngeal tumors.


Assuntos
Conexina 43/administração & dosagem , Inibidores Enzimáticos/administração & dosagem , Expressão Gênica/efeitos dos fármacos , Técnicas de Transferência de Genes , Neoplasias Nasofaríngeas/terapia , Fenilbutiratos/administração & dosagem , Antineoplásicos/administração & dosagem , Apoptose/fisiologia , Western Blotting , Caspase 3/metabolismo , Caspase 7/metabolismo , Proliferação de Células/efeitos dos fármacos , Conexina 43/genética , Terapia Genética/métodos , Inibidores de Histona Desacetilases , Humanos , Microscopia Confocal , Nanopartículas/uso terapêutico , Análise de Sequência com Séries de Oligonucleotídeos , Plasmídeos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Neurotrauma ; 34(3): 707-719, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27629792

RESUMO

Blocking of Connexin43 hemichannels, the main gap junction protein located on astrocytes in the central nervous system, has been shown to reduce neural injury in a number of models. We demonstrated previously that local administration of a Connexin43 mimetic peptide, Peptide5, reduces secondary tissue damage after spinal cord injury (SCI). Here, we investigated whether acute systemic delivery of Peptide5 is also protective in a model of SCI. Rats were subjected to a mild spinal cord contusion using the Multicentre Animal Spinal Cord Injury Study impactor and were injected intraperitoneally with Peptide5 or a scrambled peptide immediately and at 2 h and 4 h post-injury. Rats were tested for locomotor recovery and pain hypersensitivity and euthanized at 8 h, 24 h, two weeks, or six weeks post-injury. Compared with control rats, Peptide5 treated rats showed significant improvement in hindlimb locomotor function between three and six weeks post-injury and reductions in at-level mechanical allodynia at weeks one and six post-injury. Immunohistochemistry showed that Peptide5 treatment led to a reduction in total Connexin43 and increased phosphorylated Connexin43 at 8 h compared with scrambled peptide. At two and six weeks, lesion size, the astrocytic and the activated macrophage, and/or microglial response were all decreased in the Peptide5 animals. In addition, neuronal cell numbers were higher in the Peptide5 animals compared with the scrambled peptide treated rats at two and six weeks. These results show for the first time that systemic administration of Peptide5 to block the pathological opening of Connexin43 hemichannels is a feasible treatment strategy in this setting, ameliorating the secondary SCI.


Assuntos
Materiais Biomiméticos/administração & dosagem , Conexina 43/administração & dosagem , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/tratamento farmacológico , Fatores Etários , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Vias de Administração de Medicamentos , Feminino , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/patologia
9.
Drug Deliv Transl Res ; 6(6): 763-770, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27371395

RESUMO

This study aimed to develop and evaluate an ex vivo eye model for intravitreal drug sampling and tissue distribution of connexin43 mimetic peptide (Cx43MP) following intravitreal injection using the microdialysis technique and LC-MS/MS. An LC-MS/MS method was developed, validated, and applied for quantification of Cx43MP in ocular tissues. Microdialysis probes were calibrated for in vitro recovery studies. Bovine eyes were fixed in a customized eye holder and after intravitreal injection of Cx43MP, microdialysis probes were implanted in the vitreous body. Vitreous samples were collected at particular time intervals over 24 h. Moreover, 24 and 48 h after intravitreal injection ocular tissues were collected, processed, and analyzed for Cx43MP concentrations using LC-MS/MS. The LC-MS/MS method showed good linearity (r 2 = 0.9991). The mean percent recovery for lower (LQC), medium (MQC), and higher quality control (HQC) (0.244, 3.906, and 125 µg/mL) was found to be 83.83, 84.92, and 94.52, respectively, with accuracy ranges between 96 and 99 % and limits of detection (LOD) and quantification (LOQ) of 0.122 and 0.412 µg/mL. The in vitro recovery of the probes was found to be over 80 %. As per microdialysis sample analysis, the Cx43MP concentration was found to increase slowly in the vitreous body up to 16 h and thereafter declined. After 48 h, the Cx43MP concentration was higher in vitreous, cornea, and retina compared to lens, iris, and aqueous humor. This ex vivo model may therefore be a useful tool to investigate intravitreal kinetics and ocular disposition of therapeutic molecules after intravitreal injection.


Assuntos
Conexina 43/farmacocinética , Olho/metabolismo , Peptídeos/farmacocinética , Animais , Bovinos , Cromatografia Líquida de Alta Pressão , Conexina 43/administração & dosagem , Técnicas In Vitro , Injeções Intravítreas , Microdiálise , Peptídeos/administração & dosagem , Espectrometria de Massas em Tandem , Distribuição Tecidual
10.
Invest Ophthalmol Vis Sci ; 57(10): 3961-73, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27490318

RESUMO

PURPOSE: Drugs that regulate connexin43 (Cx43) gap junction channels can reduce the spread of injury and improve functional outcomes after nervous system trauma. In the eye, Cx43 expression increases in the choroid following light damage. The aim of this study was to investigate whether Cx43 hemichannel block could preserve retinal function postinjury. METHODS: Light damage was induced by exposure of adult albino Sprague-Dawley rats to 2700 Lux light for 24 hours. Intravitreal injections of a Cx43 mimetic peptide hemichannel blocker, Peptide5, or sham were administered 2 hours after the onset and at the end of the light damage period. Retinal function was assessed by electroretinogram and inflammatory responses in the choroid and retina were assessed using immunohistochemistry (ionized calcium binding adaptor molecule 1 [Iba-1], leukocyte common antigen [CD45], glial fibrillary acidic protein [GFAP]). RESULTS: Light-damaged rat eyes had (1) reduced neuronal responses in both the rod and cone pathways and (2) marked inflammatory responses in the choroid and retina. Peptide5 significantly preserved function of photoreceptoral and postphotoreceptoral neurons in these animals. This was evident 24 hours after injury and 2 weeks later, as shown by improved mixed a-wave and mixed b-wave amplitudes, isolated rod PII and PIII amplitudes, and cone PII responses when compared with sham-treated controls. Retinal thinning and inflammation were also significantly reduced in Peptide5-treated eyes when compared with sham-treated controls. CONCLUSIONS: Blocking Cx43 hemichannels after light damage can significantly improve functional outcomes of neurons in both the rod and cone photo-transduction pathways in the light-damaged animal model, likely by reducing choroid inflammation and suppressing the glial-mediated inflammatory response. These data may have relevance for the treatment of conditions such as diabetic retinopathy and age-related macular degeneration.


Assuntos
Conexina 43/administração & dosagem , Eletrorretinografia/efeitos dos fármacos , Inflamação/tratamento farmacológico , Degeneração Macular/tratamento farmacológico , Retina/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Materiais Biomiméticos/administração & dosagem , Proteínas de Ligação ao Cálcio/metabolismo , Conexina 43/biossíntese , Modelos Animais de Doenças , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Inflamação/metabolismo , Injeções Intravítreas , Antígenos Comuns de Leucócito/metabolismo , Luz/efeitos adversos , Degeneração Macular/metabolismo , Degeneração Macular/fisiopatologia , Masculino , Proteínas dos Microfilamentos/metabolismo , Ratos , Ratos Sprague-Dawley , Retina/metabolismo , Retina/fisiopatologia
11.
Neurosci Res ; 75(3): 256-67, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23403365

RESUMO

Connexin43 (Cx43) is a gap junction protein up-regulated after spinal cord injury and is involved in the on-going spread of secondary tissue damage. To test whether a connexin43 mimetic peptide (Peptide5) reduces inflammation and tissue damage and improves function in an in vivo model of spinal cord injury, rats were subjected to a 10g, 12.5mm weight drop injury at the vertebral level T10 using a MASCIS impactor. Vehicle or connexin43 mimetic peptide was delivered directly to the lesion via intrathecal catheter and osmotic mini-pump for up to 24h after injury. Treatment with Peptide5 led to significant improvements in hindlimb function as assessed using the Basso-Beattie-Bresnahan scale. Peptide5 caused a reduction in Cx43 protein, increased Cx43 phosphorylation and decreased levels of TNF-α and IL-1ß as assessed by Western blotting. Immunohistochemistry of tissue sections 5 weeks after injury showed reductions in astrocytosis and activated microglia as well as an increase in motor neuron survival. These results show that administration of a connexin mimetic peptide reduces secondary tissue damage after spinal cord injury by reducing gliosis and cytokine release and indicate the clinical potential for mimetic peptides in the treatment of spinal cord patients.


Assuntos
Conexina 43/farmacologia , Fármacos Neuroprotetores/farmacologia , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Conexina 43/administração & dosagem , Bombas de Infusão , Injeções Espinhais , Masculino , Fármacos Neuroprotetores/administração & dosagem , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/etiologia , Traumatismos da Medula Espinal/fisiopatologia , Vértebras Torácicas/lesões
12.
J Am Coll Cardiol ; 60(12): 1103-10, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22883636

RESUMO

OBJECTIVES: The aim of this study was to evaluate the links between connexin43 (Cx43) expression, myocardial conduction velocity, and ventricular tachycardia in a model of healed myocardial infarction. BACKGROUND: Post-infarction ventricular arrhythmias frequently cause sudden death. Impaired myocardial conduction has previously been linked to ventricular arrhythmias. Altered connexin expression is a potential source of conduction slowing identified in healed scar border tissues. The functional effect of increasing border-zone Cx43 has not been previously evaluated. METHODS: Twenty-five Yorkshire pigs underwent anterior infarction by transient left anterior descending coronary artery occlusion, followed by weekly testing for arrhythmia inducibility. Twenty animals with reproducibly inducible sustained monomorphic ventricular tachycardia were randomized 2:1:1 to receive AdCx43, Adßgal, or no gene transfer. One week later, animals underwent follow-up electrophysiologic study and tissue assessment for several functional and molecular measures. RESULTS: Animals receiving AdCx43 had less electrogram fractionation and faster conduction velocity in the anterior-septal border zone. Only 40% of AdCx43 animals remained inducible for ventricular tachycardia, while 100% of controls were inducible after gene transfer. AdCx43 animals had 2-fold higher Cx43 protein levels in the anterior-septal infarct border, with similar percents of phosphorylated and intercalated disk-localized Cx43 compared with controls. CONCLUSIONS: These data mechanistically link Cx43 expression to slow conduction and arrhythmia susceptibility in the healed scar border zone. Targeted manipulation of Cx43 levels improved conduction velocity and reduced ventricular tachycardia susceptibility. Cx43 gene transfer represents a novel treatment strategy for post-infarction arrhythmias.


Assuntos
Conexina 43/genética , Técnicas de Transferência de Genes , Infarto do Miocárdio/genética , Infarto do Miocárdio/terapia , Taquicardia Ventricular/genética , Taquicardia Ventricular/terapia , Animais , Conexina 43/administração & dosagem , Suscetibilidade a Doenças/metabolismo , Suscetibilidade a Doenças/fisiopatologia , Suscetibilidade a Doenças/terapia , Terapia Genética/métodos , Sistema de Condução Cardíaco/metabolismo , Sistema de Condução Cardíaco/fisiopatologia , Infarto do Miocárdio/complicações , Distribuição Aleatória , Suínos , Taquicardia Ventricular/etiologia
13.
Plast Reconstr Surg ; 123(5): 1440-1451, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19407614

RESUMO

BACKGROUND: The implantation of a biomedical device elicits a wound-healing response that progresses through the three phases of wound healing: inflammation, cellular proliferation, and matrix remodeling. This response culminates in a fibrous collagen encapsulation of the implant. Subsequent contraction of this "scar-like" tissue can lead to physical disfigurement, implant extrusion, or impairment of implant function, necessitating surgical revision or removal. ACT1 is a synthetic peptide derived from the carboxyl-terminal sequence of the cellular gap junction protein connexin43. This novel peptide has recently been shown to modulate cutaneous wound healing, reduce scarring, and promote regenerative repair of the skin following injury. In this study, the authors investigated the ability of the ACT1 peptide to modulate the wound-healing response to biomedical device implantation. METHODS: Silicone disks coated with either vehicle control or ACT1 peptide were implanted submuscularly into male Sprague-Dawley rats. Capsulectomies were performed on days 1, 2, 3, 14, and 28. The implant capsules and surrounding tissue were analyzed histologically and biochemically. RESULTS: ACT1 modulated the wound-healing response to silicone implants by attenuating neutrophil infiltration, increasing vascularity of the capsule tissue, reducing type I collagen deposition around the implant, and reducing the continued presence of contractile myofibroblasts. CONCLUSION: ACT1 may provide an enabling technology for modulating the wound-healing response to implants, promoting integration of implanted materials and tissue-engineered devices in the human body.


Assuntos
Materiais Biocompatíveis/efeitos adversos , Implantes de Mama/efeitos adversos , Conexina 43/administração & dosagem , Fatores Imunológicos/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Silicones/efeitos adversos , Cicatrização/efeitos dos fármacos , Animais , Conexinas , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA