Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.579
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 756: 110001, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636692

RESUMO

The use of insecticides presents a risk to the environment because they can accumulate in the water, soil, air, and organisms, endangering human and animal health. It is therefore essential to investigate the effects of different groups of insecticides on individual biomacromolecules such as DNA. We studied fipronil, which belongs to the group of phenylpyrazole insecticides. The interaction of fipronil with calf thymus DNA was investigated using spectroscopic methods (absorption and fluorescence spectroscopy) complemented with infrared spectroscopy and viscosity measurement. Fluorescence emission spectroscopy showed the formation of a fipronil/DNA complex with a combined static and dynamic type of quenching. The binding constant was 4.15 × 103 L/mol. Viscosity changes were recorded to confirm/disconfirm the intercalation mode of interaction. A slight change in DNA viscosity in the presence of fipronil was observed. The phenylpyrazole insecticide does not cause significant conformational changes in DNA structure or increase of its chain length. We hypothesize that fipronil is incorporated into the minor groove of the DNA macromolecule via hydrogen interactions as indicated by FT-IR and CD measurements.


Assuntos
DNA , Inseticidas , Pirazóis , Pirazóis/química , Inseticidas/química , DNA/química , Animais , Viscosidade , Conformação de Ácido Nucleico/efeitos dos fármacos , Bovinos , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34853172

RESUMO

CRISPR-Cas12a, an RNA-guided DNA targeting endonuclease, has been widely used for genome editing and nucleic acid detection. As part of the essential processes for both of these applications, the two strands of double-stranded DNA are sequentially cleaved by a single catalytic site of Cas12a, but the mechanistic details that govern the generation of complete breaks in double-stranded DNA remain to be elucidated. Here, using single-molecule fluorescence resonance energy transfer assay, we identified two conformational intermediates that form consecutively following the initial cleavage of the nontarget strand. Specifically, these two intermediates are the result of further unwinding of the target DNA in the protospacer-adjacent motif (PAM)-distal region and the subsequent binding of the target strand to the catalytic site. Notably, the PAM-distal DNA unwound conformation was stabilized by Mg2+ ions, thereby significantly promoting the binding and cleavage of the target strand. These findings enabled us to propose a Mg2+-dependent kinetic model for the mechanism whereby Cas12a achieves cleavage of the target DNA, highlighting the presence of conformational rearrangements for the complete cleavage of the double-stranded DNA target.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Estruturas R-Loop/genética , Sistemas CRISPR-Cas/fisiologia , DNA/química , Clivagem do DNA/efeitos dos fármacos , Desoxirribonuclease I/metabolismo , Edição de Genes , Magnésio/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico/efeitos dos fármacos , RNA Guia de Cinetoplastídeos/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
3.
Biochem Biophys Res Commun ; 668: 35-41, 2023 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-37235917

RESUMO

The recent outbreak of COVID-19 has created a serious health crisis with fatFal infectious viral diseases, such as Severe Acute Respiratory Syndrome (SARS). The nsp13, a helicase of coronaviruses is an essential element for viral replication that unwinds secondary structures of DNA and RNA, and is thus considered a major therapeutic target for treatment. The replication of coronaviruses and other retroviruses occurs in the cytoplasm of infected cells, in association with viral replication organelles, called virus-induced cytosolic double-membrane vesicles (DMVs). In addition, an increase in cytosolic Ca2+ concentration accelerates viral replication. However, the molecular mechanism of nsp13 in the presence of Ca2+ is not well understood. In this study, we applied biochemical methods and single-molecule techniques to demonstrate how nsp13 achieves its unwinding activity while performing ATP hydrolysis in the presence of Ca2+. Our study found that nsp13 could efficiently unwind double stranded (ds) DNA under physiological concentration of Ca2+ of cytosolic DMVs. These findings provide new insights into the properties of nsp13 in the range of calcium in cytosolic DMVs.


Assuntos
Cálcio , DNA , Conformação de Ácido Nucleico , RNA Helicases , Imagem Individual de Molécula , Proteínas não Estruturais Virais , Cálcio/metabolismo , Cálcio/farmacologia , DNA/química , DNA/efeitos dos fármacos , DNA/metabolismo , Magnésio/metabolismo , Magnésio/farmacologia , Conformação de Ácido Nucleico/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Replicação Viral , Citosol/metabolismo , Hidrólise/efeitos dos fármacos , RNA Helicases/efeitos dos fármacos , RNA Helicases/metabolismo , Proteínas não Estruturais Virais/efeitos dos fármacos , Proteínas não Estruturais Virais/metabolismo , Transferência Ressonante de Energia de Fluorescência , Eletroforese em Gel de Poliacrilamida , Relação Dose-Resposta a Droga , Transcrição Gênica
4.
Mol Cell ; 59(3): 437-48, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26166703

RESUMO

Transcription termination for genes encoding polyadenylated mRNAs requires a functional poly(A) signal (PAS) in the nascent pre-mRNA. Often called PAS-dependent termination, or PADT, it is widely assumed that the PAS requirement reflects an obligatory poly(A) site cleavage requirement for termination. Cleavage is thought to provide entry for a 5'-to-3' exonuclease that targets RNA polymerase II via the nascent transcript-i.e., the torpedo model. To assess the role of cleavage in PADT, we developed a PADT assay using HeLa nuclear extract. Here we examine the basal mechanism of PADT and show that cleavage at the poly(A) site is not required for PADT. Isolated elongation complexes undergo termination in a PAS-dependent manner when incubated in buffer, in the absence of extract, nucleotides, or cleavage at the poly(A) site. Thus, PADT-proficient complexes undergo a conformational change that triggers termination. PADT is inhibited by α-amanitin, which presumably blocks the required conformational change.


Assuntos
Poli A/metabolismo , RNA Mensageiro/química , Terminação da Transcrição Genética , Alfa-Amanitina/farmacologia , Células HeLa , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico/efeitos dos fármacos , RNA Mensageiro/genética , Terminação da Transcrição Genética/efeitos dos fármacos
5.
Nucleic Acids Res ; 49(16): 9444-9458, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34387688

RESUMO

The ribonucleoprotein (RNP) form of archaeal RNase P comprises one catalytic RNA and five protein cofactors. To catalyze Mg2+-dependent cleavage of the 5' leader from pre-tRNAs, the catalytic (C) and specificity (S) domains of the RNase P RNA (RPR) cooperate to recognize different parts of the pre-tRNA. While ∼250-500 mM Mg2+ renders the archaeal RPR active without RNase P proteins (RPPs), addition of all RPPs lowers the Mg2+ requirement to ∼10-20 mM and improves the rate and fidelity of cleavage. To understand the Mg2+- and RPP-dependent structural changes that increase activity, we used pre-tRNA cleavage and ensemble FRET assays to characterize inter-domain interactions in Pyrococcus furiosus (Pfu) RPR, either alone or with RPPs ± pre-tRNA. Following splint ligation to doubly label the RPR (Cy3-RPRC domain and Cy5-RPRS domain), we used native mass spectrometry to verify the final product. We found that FRET correlates closely with activity, the Pfu RPR and RNase P holoenzyme (RPR + 5 RPPs) traverse different Mg2+-dependent paths to converge on similar functional states, and binding of the pre-tRNA by the holoenzyme influences Mg2+ cooperativity. Our findings highlight how Mg2+ and proteins in multi-subunit RNPs together favor RNA conformations in a dynamic ensemble for functional gains.


Assuntos
Archaea/enzimologia , Magnésio/metabolismo , RNA Arqueal/genética , Ribonuclease P/genética , Conformação de Ácido Nucleico/efeitos dos fármacos , Pyrococcus furiosus/enzimologia , Pyrococcus furiosus/genética , Precursores de RNA/genética , RNA Arqueal/ultraestrutura , RNA Catalítico , Ribonuclease P/ultraestrutura
6.
Nucleic Acids Res ; 49(16): 9574-9593, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34403481

RESUMO

Sequence variation in a widespread, recurrent, structured RNA 3D motif, the Sarcin/Ricin (S/R), was studied to address three related questions: First, how do the stabilities of structured RNA 3D motifs, composed of non-Watson-Crick (non-WC) basepairs, compare to WC-paired helices of similar length and sequence? Second, what are the effects on the stabilities of such motifs of isosteric and non-isosteric base substitutions in the non-WC pairs? And third, is there selection for particular base combinations in non-WC basepairs, depending on the temperature regime to which an organism adapts? A survey of large and small subunit rRNAs from organisms adapted to different temperatures revealed the presence of systematic sequence variations at many non-WC paired sites of S/R motifs. UV melting analysis and enzymatic digestion assays of oligonucleotides containing the motif suggest that more stable motifs tend to be more rigid. We further found that the base substitutions at non-Watson-Crick pairing sites can significantly affect the thermodynamic stabilities of S/R motifs and these effects are highly context specific indicating the importance of base-stacking and base-phosphate interactions on motif stability. This study highlights the significance of non-canonical base pairs and their contributions to modulating the stability and flexibility of RNA molecules.


Assuntos
Motivos de Nucleotídeos/genética , RNA Ribossômico/ultraestrutura , RNA/ultraestrutura , Pareamento de Bases/genética , Cristalografia por Raios X , Ligação de Hidrogênio/efeitos dos fármacos , Conformação de Ácido Nucleico/efeitos dos fármacos , RNA/efeitos dos fármacos , RNA/genética , RNA Ribossômico/efeitos dos fármacos , RNA Ribossômico/genética , Ricina/farmacologia
7.
Nucleic Acids Res ; 49(16): 9526-9538, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-33836081

RESUMO

The use of a small molecule compound to reduce toxic repeat RNA transcripts or their translated aberrant proteins to target repeat-expanded RNA/DNA with a G4C2 motif is a promising strategy to treat C9orf72-linked disorders. In this study, the crystal structures of DNA and RNA-DNA hybrid duplexes with the -GGGCCG- region as a G4C2 repeat motif were solved. Unusual groove widening and sharper bending of the G4C2 DNA duplex A-DNA conformation with B-form characteristics inside was observed. The G4C2 RNA-DNA hybrid duplex adopts a more typical rigid A form structure. Detailed structural analysis revealed that the G4C2 repeat motif of the DNA duplex exhibits a hydration shell and greater flexibility and serves as a 'hot-spot' for binding of the anthracene-based nickel complex, NiII(Chro)2 (Chro = Chromomycin A3). In addition to the original GGCC recognition site, NiII(Chro)2 has extended specificity and binds the flanked G:C base pairs of the GGCC core, resulting in minor groove contraction and straightening of the DNA backbone. We have also shown that Chro-metal complexes inhibit neuronal toxicity and suppresses locomotor deficits in a Drosophila model of C9orf72-associated ALS. The approach represents a new direction for drug discovery against ALS and FTD diseases by targeting G4C2 repeat motif DNA.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Proteína C9orf72/genética , DNA Forma A/ultraestrutura , Demência Frontotemporal/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Antracenos/química , Antracenos/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , DNA/efeitos dos fármacos , DNA/ultraestrutura , DNA Forma A/efeitos dos fármacos , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Humanos , Conformação de Ácido Nucleico/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia
8.
Nucleic Acids Res ; 49(14): 7856-7869, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34289065

RESUMO

The MYCN gene encodes the transcription factor N-Myc, a driver of neuroblastoma (NB). Targeting G-quadruplexes (G4s) with small molecules is attractive strategy to control the expression of undruggable proteins such as N-Myc. However, selective binders to G4s are challenging to identify due to the structural similarity of many G4s. Here, we report the discovery of a small molecule ligand (4) that targets the noncanonical, hairpin containing G4 structure found in the MYCN gene using small molecule microarrays (SMMs). Unlike many G4 binders, the compound was found to bind to a pocket at the base of the hairpin region of the MYCN G4. This compound stabilizes the G4 and has affinity of 3.5 ± 1.6 µM. Moreover, an improved analog, MY-8, suppressed levels of both MYCN and MYCNOS (a lncRNA embedded within the MYCN gene) in NBEB neuroblastoma cells. This work indicates that the approach of targeting complex, hybrid G4 structures that exist throughout the human genome may be an applicable strategy to achieve selectivity for targeting disease-relevant genes including protein coding (MYCN) as well as non-coding (MYCNOS) gene products.


Assuntos
DNA/química , Quadruplex G , Proteína Proto-Oncogênica N-Myc/genética , Conformação de Ácido Nucleico/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Sequência de Bases , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Dicroísmo Circular , DNA/genética , DNA/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Ligantes , Estrutura Molecular , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Oligonucleotídeos/química , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Relação Estrutura-Atividade
9.
Proc Natl Acad Sci U S A ; 117(18): 9832-9839, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32317383

RESUMO

G-quadruplex, assembled from a square array of guanine (G) molecules, is an important structure with crucial biological roles in vivo but also a versatile template for ordered functional materials. Although the understanding of G-quadruplex structures is the focus of numerous studies, little is known regarding the control of G-quartet stacking modes and the spontaneous orientation of G-quadruplex fibrils. Here, the effects of different metal ions and their concentrations on stacking modes of G-quartets are elucidated. Monovalent cations (typically K+) facilitate the formation of G-quadruplex hydrogels with both heteropolar and homopolar stacking modes, showing weak mechanical strength. In contrast, divalent metal ions (Ca2+, Sr2+, and Ba2+) at given concentrations can control G-quartet stacking modes and increase the mechanical rigidity of the resulting hydrogels through ionic bridge effects between divalent ions and borate. We show that for Ca2+ and Ba2+ at suitable concentrations, the assembly of G-quadruplexes results in the establishment of a mesoscopic chirality of the fibrils with a regular left-handed twist. Finally, we report the discovery of nematic tactoids self-assembled from G-quadruplex fibrils characterized by homeotropic fibril alignment with respect to the interface. We use the Frank-Oseen elastic energy and the Rapini-Papoular anisotropic surface energy to rationalize two different configurations of the tactoids. These results deepen our understanding of G-quadruplex structures and G-quadruplex fibrils, paving the way for their use in self-assembly and biomaterials.


Assuntos
DNA/química , Quadruplex G , Guanina/química , Hidrogéis/química , Anisotropia , Cátions Bivalentes/química , Cátions Monovalentes/química , DNA/ultraestrutura , Metabolismo Energético/efeitos dos fármacos , Líquidos Iônicos/química , Íons/química , Metais/química , Conformação de Ácido Nucleico/efeitos dos fármacos , Propriedades de Superfície
10.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37373258

RESUMO

Mitochondrial RNA editing in trypanosomes represents an attractive target for developing safer and more efficient drugs for treating infections with trypanosomes because this RNA editing pathway is not found in humans. Other workers have targeted several enzymes in this editing system, but not the RNA. Here, we target a universal domain of the RNA editing substrate, which is the U-helix formed between the oligo-U tail of the guide RNA and the target mRNA. We selected a part of the U-helix that is rich in G-U wobble base pairs as the target site for the virtual screening of 262,000 compounds. After chemoinformatic filtering of the top 5000 leads, we subjected 50 representative complexes to 50 nanoseconds of molecular dynamics simulations. We identified 15 compounds that retained stable interactions in the deep groove of the U-helix. The microscale thermophoresis binding experiments on these five compounds show low-micromolar to nanomolar binding affinities. The UV melting studies show an increase in the melting temperatures of the U-helix upon binding by each compound. These five compounds can serve as leads for drug development and as research tools to probe the role of the RNA structure in trypanosomal RNA editing.


Assuntos
Edição de RNA , Bibliotecas de Moléculas Pequenas , Tripanossomicidas , Trypanosoma , Trypanosoma/efeitos dos fármacos , Edição de RNA/efeitos dos fármacos , RNA de Protozoário/química , RNA Mitocondrial/química , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Conformação de Ácido Nucleico/efeitos dos fármacos , Simulação de Dinâmica Molecular , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
11.
Cell Mol Life Sci ; 78(5): 1861-1871, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33052435

RESUMO

As a naturally occurring class of gene regulators, microRNAs (miRNAs) have attracted much attention as promising targets for therapeutic development. However, RNAs including miRNAs have long been considered undruggable, and most efforts have been devoted to using synthetic oligonucleotides to regulate miRNAs. Encouragingly, recent findings have revealed that miRNAs can also be drugged with small molecules that directly target miRNAs. In this review paper, we give a summary of recently emerged small-molecule inhibitors (SMIs) and small-molecule degraders (SMDs) for miRNAs. SMIs are small molecules that directly bind to miRNAs to inhibit their biogenesis, and SMDs are bifunctional small molecules that upon binding to miRNAs induce miRNA degradation. Strategies for discovering SMIs and developing SMDs were summarized. Applications of SMIs and SMDs in miRNA inhibition and cancer therapy were also introduced. Overall, SMIs and SMDs introduced here have high potency and specificity in miRNA inhibition. We envision that these small molecules will pave the way for developing novel therapeutics toward miRNAs that were previously considered undruggable.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , MicroRNAs/genética , Bibliotecas de Moléculas Pequenas/isolamento & purificação , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Humanos , MicroRNAs/química , Estrutura Molecular , Conformação de Ácido Nucleico/efeitos dos fármacos , Estabilidade de RNA/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química
12.
Nucleic Acids Res ; 48(11): 6108-6119, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32392345

RESUMO

Protamine proteins dramatically condense DNA in sperm to almost crystalline packing levels. Here, we measure the first step in the in vitro pathway, the folding of DNA into a single loop. Current models for DNA loop formation are one-step, all-or-nothing models with a looped state and an unlooped state. However, when we use a Tethered Particle Motion (TPM) assay to measure the dynamic, real-time looping of DNA by protamine, we observe the presence of multiple folded states that are long-lived (∼100 s) and reversible. In addition, we measure folding on DNA molecules that are too short to form loops. This suggests that protamine is using a multi-step process to loop the DNA rather than a one-step process. To visualize the DNA structures, we used an Atomic Force Microscopy (AFM) assay. We see that some folded DNA molecules are loops with a ∼10-nm radius and some of the folded molecules are partial loops-c-shapes or s-shapes-that have a radius of curvature of ∼10 nm. Further analysis of these structures suggest that protamine is bending the DNA to achieve this curvature rather than increasing the flexibility of the DNA. We therefore conclude that protamine loops DNA in multiple steps, bending it into a loop.


Assuntos
DNA/química , DNA/efeitos dos fármacos , Conformação de Ácido Nucleico/efeitos dos fármacos , Protaminas/química , Protaminas/farmacologia , DNA/ultraestrutura , Microscopia de Força Atômica , Maleabilidade
13.
Nucleic Acids Res ; 48(15): 8591-8600, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32644133

RESUMO

In nature, allostery is the principal approach for regulating cellular processes and pathways. Inspired by nature, structure-switching aptamer-based nanodevices are widely used in artificial biotechnologies. However, the canonical aptamer structures in the nanodevices usually adopt a duplex form, which limits the flexibility and controllability. Here, a new regulating strategy based on a clamp-like triplex aptamer structure (CLTAS) was proposed for switching DNA polymerase activity via conformational changes. It was demonstrated that the polymerase activity could be regulated by either adjusting structure parameters or dynamic reactions including strand displacement or enzymatic digestion. Compared with the duplex aptamer structure, the CLTAS possesses programmability, excellent affinity and high discrimination efficiency. The CLTAS was successfully applied to distinguish single-base mismatches. The strategy expands the application scope of triplex structures and shows potential in biosensing and programmable nanomachines.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , Técnicas Biossensoriais , DNA Polimerase Dirigida por DNA/genética , Taq Polimerase/genética , Aptâmeros de Nucleotídeos/genética , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/farmacologia , Humanos , Nanoestruturas/química , Conformação de Ácido Nucleico/efeitos dos fármacos , Inibidores da Síntese de Ácido Nucleico/farmacologia , Taq Polimerase/antagonistas & inibidores , Taq Polimerase/química
14.
Nucleic Acids Res ; 48(12): 6654-6671, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32501506

RESUMO

DNA double-stranded breaks (DSBs) trigger human genome instability, therefore identifying what factors contribute to DSB induction is critical for our understanding of human disease etiology. Using an unbiased, genome-wide approach, we found that genomic regions with the ability to form highly stable DNA secondary structures are enriched for endogenous DSBs in human cells. Human genomic regions predicted to form non-B-form DNA induced gross chromosomal rearrangements in yeast and displayed high indel frequency in human genomes. The extent of instability in both analyses is in concordance with the structure forming ability of these regions. We also observed an enrichment of DNA secondary structure-prone sites overlapping transcription start sites (TSSs) and CCCTC-binding factor (CTCF) binding sites, and uncovered an increase in DSBs at highly stable DNA secondary structure regions, in response to etoposide, an inhibitor of topoisomerase II (TOP2) re-ligation activity. Importantly, we found that TOP2 deficiency in both yeast and human leads to a significant reduction in DSBs at structure-prone loci, and that sites of TOP2 cleavage have a greater ability to form highly stable DNA secondary structures. This study reveals a direct role for TOP2 in generating secondary structure-mediated DNA fragility, advancing our understanding of mechanisms underlying human genome instability.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , DNA Topoisomerases Tipo II/ultraestrutura , Conformação de Ácido Nucleico/efeitos dos fármacos , Sítios de Ligação/genética , Fator de Ligação a CCCTC/genética , DNA/genética , DNA/ultraestrutura , Reparo do DNA/genética , DNA Topoisomerases Tipo II/genética , Etoposídeo/farmacologia , Genoma Humano/genética , Instabilidade Genômica/genética , Humanos , Sítio de Iniciação de Transcrição/efeitos dos fármacos
15.
Nucleic Acids Res ; 48(4): 2107-2125, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31832686

RESUMO

Ribosomal protein S1 plays important roles in the translation initiation step of many Escherichia coli mRNAs, particularly those with weak Shine-Dalgarno sequences or structured 5' UTRs, in addition to a variety of cellular processes beyond the ribosome. In all cases, the RNA-binding activity of S1 is a central feature of its function. While sequence determinants of S1 affinity and many elements of the interactions of S1 with simple secondary structures are known, mechanistic details of the protein's interactions with RNAs of more complex secondary and tertiary structure are less understood. Here, we investigate the interaction of S1 with the well-characterized H-type pseudoknot of a class-I translational preQ1 riboswitch as a highly structured RNA model whose conformation and structural dynamics can be tuned by the addition of ligands of varying binding affinity, particularly preQ1, guanine, and 2,6-diaminopurine. Combining biochemical and single molecule fluorescence approaches, we show that S1 preferentially interacts with the less folded form of the pseudoknot and promotes a dynamic, partially unfolded conformation. The ability of S1 to unfold the RNA is inversely correlated with the structural stability of the pseudoknot. These mechanistic insights delineate the scope and limitations of S1-chaperoned unfolding of structured RNAs.


Assuntos
Conformação de Ácido Nucleico/efeitos dos fármacos , RNA/química , Proteínas Ribossômicas/genética , Riboswitch/genética , 2-Aminopurina/análogos & derivados , 2-Aminopurina/farmacologia , Sítios de Ligação/genética , Escherichia coli/química , Escherichia coli/genética , Guanina/farmacologia , Ligantes , Pirimidinonas/farmacologia , Pirróis/farmacologia , RNA/efeitos dos fármacos , RNA/genética , Dobramento de RNA/efeitos dos fármacos , Proteínas Ribossômicas/química , Ribossomos/química , Ribossomos/genética , Riboswitch/efeitos dos fármacos , Imagem Individual de Molécula
16.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163272

RESUMO

Polypod-like structured nucleic acids (polypodnas), which are nanostructured DNAs, are useful for delivering cytosine-phosphate guanine oligodeoxynucleotides (CpG ODNs) to antigen-presenting cells (APCs) expressing Toll-like receptor 9 (TLR9) for immune stimulation. Lipid modification is another approach to deliver ODNs to lymph nodes, where TLR9-positive APCs are abundant, by binding to serum albumin. The combination of these two methods can be useful for delivering CpG ODNs to lymph nodes in vivo. In the present study, CpG1668, a phosphodiester-type CpG ODN, was modified with stearic acid (SA) to obtain SA-CpG1668. Tripodna, a polypodna with three pods, was selected as the nanostructured DNA. Tripodnas loaded with CpG1668 or SA-CpG1668 were obtained in high yields. SA-CpG1668/tripodna bound more efficiently to plasma proteins than CpG1668/tripodna and was more efficiently taken up by macrophage-like RAW264.7 cells than CpG1668/tripodna, whereas the levels of tumor necrosis factor-α released from the cells were comparable between the two. After subcutaneous injection into mice, SA-CpG1668/tripodna induced significantly higher interleukin (IL)-12 p40 production in the draining lymph nodes than SA-CpG1668 or CpG1668/tripodna, with reduced IL-6 levels in plasma. These results indicate that the combination of SA modification and nanostructurization is a useful approach for the targeted delivery of CpG ODNs to lymph nodes.


Assuntos
Células Apresentadoras de Antígenos/metabolismo , Nanoestruturas/química , Oligodesoxirribonucleotídeos/farmacologia , Adjuvantes Imunológicos/farmacologia , Animais , Células Apresentadoras de Antígenos/efeitos dos fármacos , DNA/imunologia , Sistemas de Liberação de Medicamentos/métodos , Feminino , Imunização/métodos , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Linfonodos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nanoestruturas/uso terapêutico , Conformação de Ácido Nucleico/efeitos dos fármacos , Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/metabolismo , Estudo de Prova de Conceito , Células RAW 264.7 , Ácidos Esteáricos/química
17.
Int J Mol Sci ; 23(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35054915

RESUMO

The choice of effective biocides used for routine hospital practice should consider the role of disinfectants in the maintenance and development of local resistome and how they might affect antibiotic resistance gene transfer within the hospital microbial population. Currently, there is little understanding of how different biocides contribute to eDNA release that may contribute to gene transfer and subsequent environmental retention. Here, we investigated how different biocides affect the release of eDNA from mature biofilms of two opportunistic model strains Pseudomonas aeruginosa ATCC 27853 (PA) and Staphylococcus aureus ATCC 25923 (SA) and contribute to the hospital resistome in the form of surface and water contaminants and dust particles. The effect of four groups of biocides, alcohols, hydrogen peroxide, quaternary ammonium compounds, and the polymeric biocide polyhexamethylene guanidine hydrochloride (PHMG-Cl), was evaluated using PA and SA biofilms. Most biocides, except for PHMG-Cl and 70% ethanol, caused substantial eDNA release, and PHMG-Cl was found to block biofilm development when used at concentrations of 0.5% and 0.1%. This might be associated with the formation of DNA-PHMG-Cl complexes as PHMG-Cl is predicted to bind to AT base pairs by molecular docking assays. PHMG-Cl was found to bind high-molecular DNA and plasmid DNA and continued to inactivate DNA on surfaces even after 4 weeks. PHMG-Cl also effectively inactivated biofilm-associated antibiotic resistance gene eDNA released by a pan-drug-resistant Klebsiella strain, which demonstrates the potential of a polymeric biocide as a new surface-active agent to combat the spread of antibiotic resistance in hospital settings.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , DNA Bacteriano/efeitos dos fármacos , Desinfetantes/farmacologia , Guanidinas/farmacologia , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , DNA Bacteriano/química , Desinfetantes/química , Guanidinas/síntese química , Guanidinas/química , Conformação de Ácido Nucleico/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Relação Estrutura-Atividade
18.
Biochemistry ; 60(24): 1919-1925, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34097400

RESUMO

Pseudoisocytosine (J), a neutral analogue of protonated cytosine, is currently the gold standard modified nucleobase in peptide nucleic acids (PNAs) for the formation of J·G-C triplets that are stable at physiological pH. This study shows that triple-helical recognition of RNA and DNA is significantly improved by using 2-aminopyridine (M) instead of J. The positively charged M forms 3-fold stronger M+·G-C triplets than J with uncompromised sequence selectivity. Replacement of six Js with Ms in a PNA 9-mer increased its binding affinity by ∼2 orders of magnitude. M-modified PNAs prefer binding double-stranded RNA over DNA and disfavor off-target binding to single-stranded nucleic acids. Taken together, the results show that M is a promising modified nucleobase that significantly improves triplex-forming PNAs and may provide breakthrough developments for therapeutic and biotechnology applications.


Assuntos
Aminopiridinas/química , Conformação de Ácido Nucleico/efeitos dos fármacos , Ácidos Nucleicos Peptídicos/metabolismo , Aminopiridinas/metabolismo , Citosina/análogos & derivados , Citosina/química , DNA/química , DNA/metabolismo , RNA de Cadeia Dupla
19.
Biochemistry ; 60(37): 2781-2794, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34472844

RESUMO

RNA is highly negatively charged and often acquires complex structures that require the presence of divalent cations. Subtle changes in conformation resulting from changes in sequence can affect the way ions associate with RNA. Riboswitches are RNA molecules that are involved in the control of gene expression in bacteria and are excellent systems for testing the effects of sequence variations on the conformation of RNA because they contain a highly conserved binding pocket but present sequence variability among different organisms. In this work, we have compared the aptamer domain of a proposed M-box riboswitch from Mycobacterium tuberculosis with the aptamer domain of a validated M-box riboswitch from Bacillus subtilis. We have in vitro transcribed and purified wild-type (WT) M-box riboswitches from M. tuberculosis and B. subtilis as well as a variety of mutated aptamers in which regions from one riboswitch have been replaced with regions from the other riboswitch. We have used ultraviolet unfolding experiments and circular dichroism to characterize the interactions of WT and related M-box riboswitches with divalent cations. Our results show that M-box from M. tuberculosis associates with Mg2+ and Sr2+ in a similar fashion while M-box from B. subtilis discriminates between these two ions and appears to associate better with Mg2+. Our overall results show that M-box from M. tuberculosis interacts differently with cations than M-box from B. subtilis and suggest conformational differences between these two riboswitches.


Assuntos
Cátions Bivalentes/metabolismo , Conformação de Ácido Nucleico/efeitos dos fármacos , Riboswitch/genética , Aptâmeros de Nucleotídeos/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Sítios de Ligação/genética , Cátions Bivalentes/química , Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/genética , Ligantes , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , RNA Bacteriano/química , Riboswitch/fisiologia , Transcrição Gênica/genética
20.
J Biol Chem ; 295(9): 2568-2569, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111719

RESUMO

Riboswitches alter gene expression in response to ligand binding, coupling sensing and regulatory functions to help bacteria respond to their environment. The structural determinants of ligand binding in the prequeuosine (7-aminomethyl-7-deazaguanine, preQ1) bacterial riboswitches have been studied, but the functional consequences of structural perturbations are less known. A new article combining biophysical and cell-based readouts of 15 mutants of the preQ1-II riboswitch from Lactobacillus rhamnosus demonstrates that ligand binding does not ensure successful gene regulation, providing new insights into these shapeshifting sequences.


Assuntos
Bactérias/genética , Lacticaseibacillus rhamnosus/genética , Riboswitch/genética , Bactérias/efeitos dos fármacos , Fenômenos Biofísicos/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Lacticaseibacillus rhamnosus/efeitos dos fármacos , Ligantes , Mutação/genética , Conformação de Ácido Nucleico/efeitos dos fármacos , Pirimidinonas/farmacologia , Pirróis/farmacologia , Riboswitch/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA