Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 474
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Appl Microbiol ; 135(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38802124

RESUMO

AIMS: Anthracnose caused by Colletotrichum species is one of the most devastating diseases of fruits and crops. We isolated and identified an antifungal compound from the mushroom Coprinus comatus and investigated its inhibitory potential against anthracnose disease-causing fungi with the goal of discovering natural products that can suppress anthracnose-caused plant disease. METHODS AND RESULTS: The culture filtrate of C. comatus was subjected to a bioassay-guided isolation of antifungal compounds. The active compound was identified as orsellinaldehyde (2,4-dihydroxy-6-methylbenzaldehyde) based on mass spectroscopy and nuclear magnetic resonance analyses. Orsellinaldehyde displayed broad-spectrum inhibitory activity against different plant pathogenic fungi. Among the tested Colletotrichum species, it exhibited the lowest IC50 values on conidial germination and germ tube elongation of Colletotrichum orbiculare. The compound also showed remarkable inhibitory activity against Colletotrichum gloeosporiodes. The staining of Colletotrichum conidia with fluorescein diacetate and propidium iodide demonstrated that the compound is fungicidal. The postharvest in-vivo detached fruit assay indicated that orsellinaldehyde suppressed anthracnose lesion symptoms on mango and cucumber fruits caused by C. gloeosporioides and C. orbiculare, respectively. CONCLUSIONS: Orsellinaldehyde was identified as a potent antifungal compound from the culture filtrate of C. comatus. The inhibitory and fungicidal activities of orsellinaldehyde against different Colletotrichum species indicate its potential as a fungicide for protecting various fruits against anthracnose disease-causing fungi.


Assuntos
Colletotrichum , Coprinus , Doenças das Plantas , Colletotrichum/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Benzaldeídos/farmacologia , Antifúngicos/farmacologia , Fungicidas Industriais/farmacologia , Esporos Fúngicos/efeitos dos fármacos
2.
Prep Biochem Biotechnol ; 54(6): 830-837, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38147976

RESUMO

Coprinus comatus is an edible and medicinal fungus. In this study, the antioxidant activity of the fermentation product of C. comatus was investigated through optimization of fermentation process. The results indicated that the fermentation product of C. comatus had obvious scavenging ability for 2,2'-Azino-bis(3-ethylbenzothiazoline)-6-sulphonic acid (ABTS) free radical. The EC50 of the n-butanol extract from the fermentation product on ABTS·+ was 0.65 ± 0.02 mg/mL. On this basis, the liquid fermentation conditions of C. comatus were optimized through single factor and response surface optimization experiments according to the scavenging ability of ABTS·+ to improve the antioxidant capacity of the fermentation product. The results showed that when the 14% of C. comatus was fermented in a culture medium with a C/N ratio of 48:1 for 6 days, the ABTS·+ scavenging ability was the strongest, and the EC50 of n-butanol extract was 0.57 ± 0.01 mg/mL, which was 12.31% higher than the initial activity. This study laid the foundation for the development of C. comatus.


Assuntos
Antioxidantes , Benzotiazóis , Coprinus , Fermentação , Ácidos Sulfônicos , Coprinus/metabolismo , Coprinus/química , Antioxidantes/química , Ácidos Sulfônicos/metabolismo , Benzotiazóis/metabolismo , Benzotiazóis/química , Meios de Cultura/química , Sequestradores de Radicais Livres/química
3.
J Environ Sci Health B ; 57(4): 243-251, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35240938

RESUMO

Edible medicinal wild-growing fungi Coprinus comatus, Flammulina velutipes, and Armillaria ostoyae were analyzed with regard to the contents of 21 elements in their fruiting bodies. The samples were collected from selected sites in South Bohemia, the Czech Republic. C. comatus concentrated Ag, Cd, Cu, Se, and Rb with bioconcentration factors of 12, 2.5, 2.3, 1.8, and 1.1, respectively. High contents (all values expressed in mg kg-1 dry matter) of Al (260), Ca (480), Cu (61), Fe (340), Mg (1400), and Zn (86) were determined for this species. F. velutipes was characterized with markedly high contents of Ca (360), Fe (110), Mg (1200), Mn (26), and Zn (98), respectively. A considerably high content of Ag (5.6) was revealed for A. ostoyae. High contents of Ca (150), Cu (28), Fe (190), Mg (1100), Mn (30), and Zn (40) were determined in fruiting bodies of this species as well. The data concerning the detrimental elements in fruiting bodies of studied fungi indicate no considerably negative effect on human health if they are consumed as a delicacy or used in alternative medicine.


Assuntos
Agaricales , Flammulina , Oligoelementos , Armillaria , Coprinus , Carpóforos , Humanos
4.
Pharm Biol ; 60(1): 1126-1136, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35675226

RESUMO

CONTEXT: Edible mushrooms have a long history of use in traditional Chinese or Japanese medicine. Coprinus comatus (O.F. Müll.) Pers. (Agaricaceae) contains antioxidant and antidiabetic agents. OBJECTIVE: To identify the benefits of ethanol extracts of the C. comatus fruit body in streptozotocin-induced hyperglycaemic rats by evaluating their blood glucose, glycosylated haemoglobin (HbA1c), insulin, glucagon-like peptide-1 (GLP-1), dipeptidyl peptidase-4 (DPP-4), and glutathione (GSH) levels, with and without extract administration. MATERIALS AND METHODS: Wistar rats were either left untreated or were administered 45 mg/kg body weight (BW) streptozotocin; 45 mg/kg BW metformin; or 250, 500, or 750 mg/kg BW extract for 14 days. The blood glucose, GLP-1, DPP-4, GSH, insulin, and HbA1c levels were determined. Data were analysed using analysis of variance and Duncan's multiple range tests. RESULTS: Preliminary data showed that administration of C. comatus ethanol extract dose of 250, 500, and 750 mg orally has no toxicity effects after 24 h administration. The ethanolic extract of fruiting body of C. comatus considerably reduced the rat's fasting blood glucose levels 26.69%, and DPP-4 6.97% at dose of 750 mg. The extract reduced HbA1c 4-4.30%, increased GLP-1 71.09%, GSH 11.19% at dose of 500 mg, and increased insulin levels 13.83%. Extracts contain bioactive compounds such as flavonoid, alkaloid, terpenoids, vitamins C and E, rutin, and saponin. CONCLUSIONS: The C. comatus extract can be used as herbal medicine that reduces diabetic symptoms. Further investigation on C. comatus extracts should be conducted with gas chromatography-mass spectrometry to characterise the bioactive compounds.


Assuntos
Antioxidantes , Coprinus , Diabetes Mellitus Experimental , Hipoglicemiantes , Animais , Antioxidantes/química , Glicemia , Coprinus/química , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Etanol , Peptídeo 1 Semelhante ao Glucagon , Hemoglobinas Glicadas/análise , Hipoglicemiantes/química , Insulina , Ratos , Ratos Wistar , Estreptozocina
5.
Ecotoxicol Environ Saf ; 211: 111929, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33472107

RESUMO

Large amounts of cadmium (Cd) have been discharged into soil with the rapid development of industry. In this study, we revealed the impacts of Coprinus comatus (C. comatus) and Pleurotus cornucopiae (P. cornucopiae) on soil and the tolerance responses of macrofungi in the presence of Cd by the analysis of soil biochemical properties and macrofungi growth indexes. Results showed that with the cultivation of C. comatus and P. cornucopiae, the HOAc-extractable Cd in soil individually reduced by 9.53% and 11.35%, the activities of soil urease, acid phosphatase, dehydrogenase, and Fluorescein diacetate (FDA) hydrolysis increased by 18.11-101.45%, 8.39-18.24%, 9.37-55.50% and 28.94-41.92%, respectively. Meanwhile, different soil bacterial communities were observed with various macrofungi cultivations. Also, Cd accumulation significantly enhanced the macrofungi antioxidant enzyme activities, which increased by 24.10-45.43%, 30.11-61.53% and 7.03-26.81% for catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) activities in the macrofungi, respectively. Moreover, the enhanced macrofungi endophytic bacterial diversities with Cd existence was firstly observed in the present experiment. These findings revealed the possible Cd resistance mechanisms in macrofungi, suggesting C. comatus and P. cornucopiae were promising ameliorators for Cd contaminated soil.


Assuntos
Adaptação Fisiológica , Biodegradação Ambiental , Cádmio/toxicidade , Coprinus/fisiologia , Pleurotus/fisiologia , Poluentes do Solo/toxicidade , Antioxidantes/análise , Bactérias , Cádmio/análise , Catalase , Solo/química , Poluentes do Solo/análise
6.
Proc Natl Acad Sci U S A ; 114(34): 8980-8985, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28784797

RESUMO

Glycans possess significant chemical diversity; glycan binding proteins (GBPs) recognize specific glycans to translate their structures to functions in various physiological and pathological processes. Therefore, the discovery and characterization of novel GBPs and characterization of glycan-GBP interactions are significant to provide potential targets for therapeutic intervention of many diseases. Here, we report the biochemical, functional, and structural characterization of a 130-amino-acid protein, Y3, from the mushroom Coprinus comatus Biochemical studies of recombinant Y3 from a yeast expression system demonstrated the protein is a unique GBP. Additionally, we show that Y3 exhibits selective and potent cytotoxicity toward human T-cell leukemia Jurkat cells compared with a panel of cancer cell lines via inducing caspase-dependent apoptosis. Screening of a glycan array demonstrated GalNAcß1-4(Fucα1-3)GlcNAc (LDNF) as a specific Y3-binding ligand. To provide a structural basis for function, the crystal structure was solved to a resolution of 1.2 Å, revealing a single-domain αßα-sandwich motif. Two monomers were dimerized to form a large 10-stranded, antiparallel ß-sheet flanked by α-helices on each side, representing a unique oligomerization mode among GBPs. A large glycan binding pocket extends into the dimeric interface, and docking of LDNF identified key residues for glycan interactions. Disruption of residues predicted to be involved in LDNF/Y3 interactions resulted in the significant loss of binding to Jurkat T-cells and severely impaired their cytotoxicity. Collectively, these results demonstrate Y3 to be a GBP with selective cytotoxicity toward human T-cell leukemia cells and indicate its potential use in cancer diagnosis and treatment.


Assuntos
Agaricales/metabolismo , Coprinus/metabolismo , Proteínas Fúngicas/metabolismo , Polissacarídeos/metabolismo , Sequência de Aminoácidos , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Proteínas Fúngicas/química , Proteínas Fúngicas/farmacologia , Células HEK293 , Humanos , Células Jurkat , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Homologia de Sequência de Aminoácidos
7.
Phytother Res ; 34(11): 2932-2944, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32462723

RESUMO

Mushrooms have been used for centuries not only as food but also in traditional medicine as a source of components with pro-health activity. One of them is Coprinus comatus (O.F.Müll.) Pers. also called shaggy mane, chicken drumstick mushroom, or lawyer's wig. In Asian countries, C. comatus (CC) is approved as edible mushroom and often cultivated for consumption, whereas in many other countries, although it is widespread, it is unrecognized and not used. In this review, for the first time, we discussed about the composition related to functional properties as well as the potential risks associated with consumption of CC by reviewing scientific literature. The information has been collected in order to get to know this species thoroughly. Various studies show many of the physiological activities, such as antioxidant, anticancer, antiandrogenic, hepatoprotective, acetylcholinesterase inhibitory, antiinflammatory, antidiabetic, antiobesity, antibacterial, antifungal, antinematode, and antiviral. Besides positive physiological properties, CC has also negative features, for example, skin reactions in patients with dermatitis and atopic predisposition, risk of confusion with poisonous mushrooms, quick autolysis after collection, and contamination of toxic elements.


Assuntos
Agaricales/química , Coprinus/química , Humanos
8.
Pestic Biochem Physiol ; 168: 104474, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32711757

RESUMO

The antiviral protein Y3 produced by the edible mushroom Coprinus comatus disrupts the tobacco mosaic virus (TMV) and inhibits the multiplication of TMV in Nicotiana tabacum; however, the detailed mechanism of its activity remains unclear. In this study, Y3 was demonstrated to interact with TMV coat protein (TMV-CP) in vitro as well as in tobacco plants by using a yeast two-hybrid system and bimolecular fluorescence complementation (BiFC). To explore the interaction site between Y3 and TMV-CP, the phenylalanine (Phe) at the 43rd and arginine (Arg) at the 55th amino acid of Y3 were individually converted to cysteine (Cys) and serine (Ser), named Y3T1 and Y3T2, respectively, and were then used in BiFC assays. Based on the information obtained about disulfide bonds in the protein structure, the two mutations were predicted to change the protein's disulfide bonds. The results showed Y3T1 lost the ability to interact with TMV-CP, suggesting that a specific Phe of Y3 is critical for the interaction between Y3 and CP in plants. Furthermore, a prokaryotic expression system was used to test the antiviral activities of protein Y3 (PY3) and two other mutated proteins (P-Y3T1, P-Y3T2). The results showed that recombinant protein P-Y3 had a slightly lower inhibitory effect against TMV than Y3 extracted directly from mushrooms; further, P-Y3T1 decreased antiviral activity in the tobacco plant significantly compared with P-Y3, suggesting that the anti-TMV effect of Y3 was directly related to the Y3-CP interaction. In contrast, P-Y3T2 was able to still interact with TMV-CP in the tobacco plant, and it increased the ability of the plant to resist TMV compared with PY3, indicating that PY3-T2 could be a candidate peptide for plant protection against TMV and that Y3 may have other inhibitory mechanisms against TMV in addition to its interaction with TMV-CP.


Assuntos
Coprinus , Vírus do Mosaico do Tabaco , Doenças das Plantas , Proteínas Recombinantes , Nicotiana/virologia
9.
Molecules ; 25(13)2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630357

RESUMO

The current management practice of digestate from biogas plants involves its use for land application as a fertilizer. Nevertheless, the inadequate handling of digestate may cause environmental risks due to losses of ammonia, methane and nitrous oxide. Therefore, the key goals of digestate management are to maximize its value by developing new digestate products, reducing its dependency on soil application and the consequent air pollution. The high nitrogen and lignin content in solid digestate make it a suitable substrate for edible and medicinal mushroom cultivation. To this aim, the mycelial growth rate and degradation capacity of the lignocellulosic component from corn silage digestate, undigested wheat straw and their mixture were investigated on Cyclocybe aegerita, Coprinus comatus, Morchella importuna, Pleurotus cornucopiae and Pleurotus ostreatus. The structural modification of the substrates was performed by using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. Preliminary in vitro results demonstrated the ability of P. ostreatus, P. cornucopiae and M. importuna to grow and decay hemicellulose and lignin of digestate. Cultivation trials were carried out on C. aegerita, P. cornucopiae and P. ostreatus. Pleurotus ostreatus showed the highest biological efficiency and fruiting body production in the presence of the digestate; moreover, P. ostreatus and P. cornucopiae were able to degrade the lignin. These results provide attractive perspectives both for more sustainable digestate management and for the improvement of mushroom cultivation efficiency.


Assuntos
Agaricales/crescimento & desenvolvimento , Ascomicetos/crescimento & desenvolvimento , Coprinus/crescimento & desenvolvimento , Pleurotus/crescimento & desenvolvimento , Zea mays/metabolismo , Agaricales/metabolismo , Ascomicetos/metabolismo , Coprinus/metabolismo , Lignina/metabolismo , Pleurotus/metabolismo , Polissacarídeos/metabolismo , Silagem/análise , Zea mays/química
10.
Org Biomol Chem ; 17(2): 234-239, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30556075

RESUMO

Use of the ku70-deficient strain of Coprinopsis cinerea enabled confirmation within the native context of the central role the sesquiterpene synthase Cop6 plays in lagopodin biosynthesis. Furthermore, yeast in vivo bioconversion and in vitro assays of two cytochrome P450 monooxygenases Cox1 and Cox2 allowed elucidation of the network of oxidation steps that build structural complexity onto the α-cuprenene framework during the biosynthesis of lagopodins. Three new compounds were identified as intermediates formed by the redox enzymes.


Assuntos
Coprinus/enzimologia , Coprinus/metabolismo , Sesquiterpenos/metabolismo , Vias Biossintéticas , Coprinus/química , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas Fúngicas/metabolismo , Ligases/metabolismo , Oxirredução , Quinonas/química , Quinonas/metabolismo , Sesquiterpenos/química
11.
Pak J Pharm Sci ; 32(5): 1919-1925, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31813853

RESUMO

Inflammation is an aggregate of different pathologic responses in body that leads to life threatening conditions if not combated at early stages. A variety of chemical medications from low quality to high quality are available in market for treatment of inflammation. However the side effects posed by these medications cannot be ignored. Here in our study we have shown for the first time, the anti-inflammatory effects of SBF compound that is obtained from wild mushroom species that are Acremonium sp. HKI 0230 and Coprinus echinosporus. We employed Nitric oxide determination, cell viability assay, RT-PCR and western blot analysis to check the anti-inflammatory effects of SBF. The antioxidant activity of this compound has been studied in detail in past, but our results have shown that SBF potently suppressed the Nitric oxide production (NO) without any cytotoxicity to the model cell line; RAW 264.7 cells. It also inhibited the production of major proinflammatory mediators and cytokines i.e. iNOS, COX-2, IL-1ß, IL-6 and TNF-α. SBF elicited its anti-inflammatory effects via the canonical NF-κB and MAPK pathway. Taken together, our results have shown that SBF exhibits excellent anti-inflammatory activity in vitro and further experimentations may warrant its application as a commercial herbal remedy for inflammation related anomalies.


Assuntos
Acremonium/química , Anti-Inflamatórios/farmacologia , Benzofuranos/farmacologia , Coprinus/química , Inflamação/tratamento farmacológico , Compostos de Espiro/farmacologia , Animais , Linhagem Celular , Citocinas/metabolismo , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
12.
Microb Pathog ; 125: 431-437, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30316005

RESUMO

The inflammatory cellular model of RAW264.7 cells induced by lipopolysaccharide (LPS) has always been used to investigate the effect of anti-inflammatory agents in vitro. In the present study, the anti-inflammatory activity of total flavones extracted from the fermentation broth of the co-culture of Coprinus comatus and Morchella esculenta (MCF-F), and its potential molecular mechanism in LPS-challenged RAW264.7 macrophage cells were investigated. The data revealed that MCF-F exhibited anti-inflammatory activity in LPS-stimulated RAW264.7 cells. At the same time, MCF-F was less cytotoxic under a concentration of 16 µg/ml in RAW264.7 cells. The anti-inflammatory activity of MCF-F was detected using the Griess method and ELISA assay, and the results well-corroborated with the observed decrease in expression in pro-inflammatory mediators, including nitric oxide, tumor necrosis factor-α and inteleukin-1ß (IL-1ß). In addition, the expression of inducible NO synthase (iNOS) and cyclooxygenase2 (COX-2) were confirmed by RT-PCR and western blot, and it was found that both mRNA and protein levels were downregulated after MCF-F treatment. The data also revealed that MCF-F downregulated the phosphorylation of JNK, ERK and P38 MAPK. Collectively, these results lead to the conclusion that MCF-F exerts an anti-inflammatory effect against LPS-challenged RAW264.7 cells via the MAPK pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Ascomicetos/metabolismo , Coprinus/metabolismo , Meios de Cultura/química , Flavonas/farmacologia , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Animais , Anti-Inflamatórios/isolamento & purificação , Ascomicetos/crescimento & desenvolvimento , Técnicas de Cocultura , Coprinus/crescimento & desenvolvimento , Fermentação , Flavonas/isolamento & purificação , Camundongos , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
13.
J Environ Manage ; 206: 633-641, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29132086

RESUMO

To develop an efficient and environmental-friendly approach to detoxicate nickel (Ni) and fluoranthene co-contaminated soil, the combined application of Coprinus comatus (C. comatus) with Serratia sp. FFC5 and/or Enterobacter sp. E2 was investigated. The pot experiment tested the influences of bacterial inoculation on the growth of C. comatus, content of Ni in C. comatus, Ni speciation in soil, fluoranthene dissipation, soil enzymatic activities, bacterial population and community structure. With the inoculation of bacteria, the fresh weights of C. comatus, concentration of Ni in C. comatus and the dissipation rates of fluoranthene were increased by 17.73-29.38%, 68.97-204.97% and 34.84-60.90%, respectively. Notably, results illustrated that the co-inoculation of FFC5 and E2 showed better effect in biomass enhancement, Ni accumulation and fluoranthene dissipation than solitary inoculation. Simultaneously, higher soil enzymatic and microbiological activities suggested that the integrated detoxication method of bacteria and C. comatus could improve soil quality. Therefore, we can infer that bacterial inoculation strengthened detoxication effect of C. comatus in Ni-fluoranthene co-contaminated soil, indicating that the combined application of C. comatus and bacteria can be an efficient alternative for detoxicating Ni and fluoranthene co-contaminated soil.


Assuntos
Biodegradação Ambiental , Coprinus , Fluorenos/isolamento & purificação , Níquel/isolamento & purificação , Poluentes do Solo/isolamento & purificação , Bactérias , Solo , Microbiologia do Solo
14.
Fungal Genet Biol ; 102: 49-62, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27475110

RESUMO

Biofilm formation on fungal hyphae and production of antifungal molecules are strategies of bacteria in their competition with fungi for nutrients. Since these strategies are often coordinated and under control of quorum sensing by the bacteria, interference with this bacterial communication system can be used as a counter-strategy by the fungi in this competition. Hydrolysis of N-acyl-homoserine lactones (HSL), a quorum sensing molecule used by Gram-negative bacteria, by fungal cultures has been demonstrated. However, the enzymes that are responsible for this activity, have not been identified. In this study, we identified and characterized two paralogous HSL hydrolyzing enzymes from the coprophilous fungus Coprinopsis cinerea. The C. cinerea HSL lactonases belong to the metallo-ß-lactamase family and show sequence homology to and a similar biochemical activity as the well characterized lactonase AiiA from Bacillus thuringiensis. We show that the fungal lactonases, similar to the bacterial enzymes, are kept intracellularly and act as a sink for the bacterial quorum sensing signals both in C. cinerea and in Saccharomyces cerevisiae expressing C. cinerea lactonases, due to the ability of these signal molecules to diffuse over the fungal cell wall and plasma membrane. The two isogenes coding for the C. cinerea HSL lactonases are arranged in the genome as a tandem repeat and expressed preferentially in vegetative mycelium. The occurrence of orthologous genes in genomes of other basidiomycetes appears to correlate with a saprotrophic lifestyle.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Coprinus/enzimologia , Coprinus/metabolismo , Bactérias Gram-Negativas/metabolismo , Percepção de Quorum , Hidrolases de Éster Carboxílico/genética , Coprinus/classificação , Coprinus/genética , Bactérias Gram-Negativas/genética , Hidrólise , Filogenia , Homologia de Sequência do Ácido Nucleico
15.
Fungal Genet Biol ; 109: 7-15, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29030267

RESUMO

Peroxisomes are well-known organelles that are present in most eukaryotic organisms. Mutant phenotypes caused by the malfunction of peroxisomes have been shown in many fungi. However, these have never been investigated in Agaricomycetes, which include white-rot fungi that degrade wood lignin in nature almost exclusively and play an important role in the global carbon cycle. Based on the results of a forward genetics study to identify mutations causing defects in the ligninolytic activity of the white-rot Agaricomycete Pleurotus ostreatus, we report phenotypes of pex1 disruptants in P. ostreatus, which are defective in two major features of white-rot Agaricomycetes: lignin biodegradation and mushroom formation. Pex1 disruption was also shown to cause defects in the hyphal growth of P. ostreatus on certain sawdust and minimum media. We also demonstrated that pex1 is essential for fruiting initiation in the non-wood decaying Agaricomycete Coprinopsis cinerea. However, unlike P. ostreatus, significant defects in hyphal growth on the aforementioned agar medium were not observed in C. cinerea. This result, together with previous C. cinerea genetic studies, suggests that the regulation mechanisms for the utilization of carbon sources are altered during the evolution of Agaricomycetes or Agaricales.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Carbono/metabolismo , Coprinus/metabolismo , Proteínas Fúngicas/metabolismo , Lignina/metabolismo , Peroxissomos/metabolismo , Pleurotus/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Evolução Biológica , Biotransformação , Coprinus/genética , Coprinus/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Genes Fúngicos , Mutagênese , Peroxissomos/genética , Pleurotus/genética , Pleurotus/crescimento & desenvolvimento
16.
Environ Microbiol ; 18(11): 4254-4264, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27696655

RESUMO

Pathogens embedded in biofilms are involved in many infections and are very difficult to treat with antibiotics because of higher resistance compared with planktonic cells. Therefore, new approaches for their control are urgently needed. One way to search for biofilm dispersing compounds is to look at defense strategies of organisms exposed to wet environments, which makes them prone to biofilm infections. It is reasonable to assume that mushrooms have developed mechanisms to control biofilms on their sporocarps (fruiting bodies). A preliminary screening for biofilms on sporocarps revealed several species with few or no bacteria on their sporocarps. From the edible mushroom Coprinus comatus where no bacteria on the sporocarp could be detected (3R,4S)-2-methylene-3,4-dihydroxypentanoic acid 1,4-lactone, named coprinuslactone, was isolated. Coprinuslactone interfered with quorum-sensing and dispersed biofilms of Pseudomonas aeruginosa, where it also reduced the formation of the pathogenicity factors pyocyanin and rhamnolipid B. Coprinuslactone also damaged Staphylococcus aureus cells in biofilms at subtoxic concentrations. Furthermore, it inhibited UDP-N-acetylglucosamine enolpyruvyl transferase (MurA), essential for bacterial cell wall synthesis. These two modes of action ensure the inhibition of a broad spectrum of pathogens on the fruiting body but may also be useful for future clinical applications.


Assuntos
Alquil e Aril Transferases/genética , Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Coprinus/química , Lactonas/farmacologia , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Verduras/microbiologia , Alquil e Aril Transferases/metabolismo , Proteínas de Bactérias/metabolismo , Coprinus/metabolismo , Carpóforos/química , Carpóforos/metabolismo , Glicolipídeos/metabolismo , Lactonas/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , Staphylococcus aureus/enzimologia , Staphylococcus aureus/fisiologia , Verduras/química , Verduras/metabolismo
17.
BMC Biotechnol ; 15: 17, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25887229

RESUMO

BACKGROUND: As the strongest antagonist of the platelet activating factor, ginkgolide B (GB) possesses anti-ischemic, anti-oxidant and anti-convulsant properties, and it is used for the treatment of thrombosis in clinical practice. Till now, GB is usually obtained from extraction of Ginkgo biloba leaves through column chromatography with an extremely low yield and high cost, which can not meet clinical requirement. Therefore, it is urgent to find a new method to prepare GB. RESULTS: In the current study, we studied the ability and mechanism to transform multi-component ginkgolide into GB by Coprinus comatus in order to enhance the GB yield. Except for ginkgolide A (GA) and GB, all the other ginkgolides in the extract were transformed by the strain. In the case of culture medium containing 20 g/L glucose, the transformation product was identified as 12% GA and 88% GB by high performance liquid chromatography-Mass spectrometry (HPLC-MS), two stage mass spectrometry (MS/MS) and nuclear magnetic resonance (NMR). Partial GA was also transformed into GB according to the yield (76%) and the content of GA in the raw ginkgolide (28.5%). Glucose was the key factor to transform ginkgolides. When glucose concentration in medium was higher than 40 g/L, all ginkgolides were transformed into the GB. Proteomic analysis showed that C. comatus transformed ginkgolide into GB by producing 5 aldo/keto reductases and catalases, and enhancing the metabolism of glucose, including Embden-Meyerhof pathway (EMP), hexose monophophate pathway (HMP) and tricarboxylic acid (TCA). CONCLUSIONS: C. comatus could transform ginkgolides into GB when the medium contained 40 g/L glucose. When the strain transformed ginkgolides, the glucose metabolism was enhanced and the strain synthesized more aldo/keto reductases and catalases. Our current study laid the groundwork for industrial production of GB.


Assuntos
Coprinus/metabolismo , Ginkgo biloba/química , Ginkgolídeos/química , Ginkgolídeos/metabolismo , Lactonas/química , Lactonas/metabolismo , Extratos Vegetais/metabolismo , Biotransformação , Cromatografia Líquida de Alta Pressão , Coprinus/química , Coprinus/enzimologia , Eletroforese em Gel Bidimensional , Extratos Vegetais/química , Proteômica
18.
J AOAC Int ; 98(1): 124-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25857889

RESUMO

The biodegradation of fluorene by immobilized Coprinus plicatilis was studied in pinewood and foam glass bead-packed reactors. The reactors were operated in a sequencing batch system. Removal efficiency increased over time and elevated influent fluorene concentration (85 mg/L) was removed 100% in 24-30 h batch cycles. Increased laccase activity was detected with the introduction of the compounds, and optimum activity corresponded to optimum removal periods. Significantly higher laccase activity (16.7-19 U/L) was detected in the glass bead-packed reactor compared to the pinewood-packed reactor (0.2-5 U/L). The presence of Mn2+ ions in the wood material possibly caused elevated manganese peroxidase activity (0.3-5.8 U/L) compared to low to negligible activity in the glass bead reactor. Reactor performances are discussed in relation to sequencing batch operation and nutrient requirements necessary to induce and sustain fungal enzyme activity in inert-like organic material packed systems. Biodegradation metabolites were detected in samples via GC/MS.


Assuntos
Reatores Biológicos , Coprinus/metabolismo , Fluorenos/metabolismo , Biodegradação Ambiental , Células Imobilizadas , Fluorenos/química
19.
J AOAC Int ; 98(2): 445-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25905752

RESUMO

Reactive dyes are important chemical pollutants from textile industries. Treatment of effluents from dye-based industries poses a major problem, and biotreatment with white rot fungi seems to be a viable option. The biological treatment of synthetic dyes at a low cost and in the shortest possible time is used especially in dye and textile industries and leads to pollution in the wastewater dumped into the environment by these industries. For this study, decolorization of the recalcitrant dye Remazol Brilliant Blue R by immobilized Pleurotus ostreatus and Coprinus plicatilis was investigated. This dye was removed 100% (dye concentration: 10.0 mg/L) by both immobilized organisms. Extracellular ligninolytic enzyme activities were also measured during the decolorization. There was an attempt to identify metabolites with FTIR spectrometry and GC/MS at the end of the decolorization. These results indicated that the samples did not include any detectable metabolite.


Assuntos
Antraquinonas/metabolismo , Coprinus/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Pleurotus/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Fatores de Tempo
20.
J Sci Food Agric ; 95(2): 344-50, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24799300

RESUMO

BACKGROUND: Food is a potential source of immunomodulating compounds that may be used to steer immune responses towards a desired status such as reducing inflammatory disorders. However, to identify and characterize such bioactive compounds, biologically relevant and standardized assays are required. Macrophages play an important role in immunomodulation and are suited for developing cell-based assays. An assay was developed based on macrophages, in a homogeneous differentiation state, using the human monocytic cell line THP-1 previously used to assess immunomodulatory properties of low-molecular-weight allergens, hormones, dietary supplements and therapeutic drugs. RESULTS: Zymosan and mushroom polysaccharide extracts lead to a heterogeneous differentiation state of THP-1 monocytes, and these cells secrete low levels of cytokines upon stimulation. Differentiation into macrophages using a low concentration of phorbol 12-myristate 13-acetate improved responsiveness. Elevated levels of cytokines were secreted by cells in a homogenous differentiation state. In addition, it was determined that the assay performs best when using cells at a concentration of (2.5-5) × 10(5) cells mL(-1). CONCLUSION: An assay was developed suitable to distinguish the immunomodulatory properties of food compounds in a reproducible manner. It was evaluated using eight mushroom species by measuring the secretion of relevant cytokines TNF-α, IL-1ß, IL-6 and IL-10.


Assuntos
Agaricus/química , Coprinus/química , Citocinas/metabolismo , Fatores Imunológicos/farmacologia , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Polissacarídeos/farmacologia , Agaricales/química , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Fatores Imunológicos/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Zimosan/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA