RESUMO
Visualization of protein dynamics is a crucial step in understanding cellular processes. Chromobodies, fluorescently labelled single-domain antibodies, have emerged as versatile probes for live cell imaging of endogenous proteins. However, how these chromobodies behave in vivo and how accurately they monitor tissue changes remain poorly explored. Here, we generated an endothelial-specific ß-catenin chromobody-derived probe and analyzed its expression pattern during cardiovascular development in zebrafish. Using high-resolution confocal imaging, we show that the chromobody signal correlates with the localization of ß-catenin in the nucleus and at cell-cell junctions, and thereby can be used to assess endothelial maturation. Loss of Cadherin 5 strongly affects the localization of the chromobody at the cell membrane, confirming the cadherin-based adherens junction role of ß-catenin. Furthermore, using a genetic model to block blood flow, we observed that cell junctions are compromised in most endothelial cells but not in the endocardium, highlighting the heterogeneous response of the endothelium to the lack of blood flow. Overall, our data further expand the use of chromobodies for in vivo applications and illustrate their potential to monitor tissue morphogenesis at high resolution.
Assuntos
Células Endoteliais , Endotélio Vascular , Corantes Fluorescentes , Morfogênese , Proteínas de Peixe-Zebra , Peixe-Zebra , beta Catenina , Animais , Junções Aderentes/metabolismo , Antígenos CD , beta Catenina/metabolismo , Caderinas/metabolismo , Caderinas/genética , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Endotélio Vascular/metabolismo , Endotélio Vascular/citologia , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/farmacologia , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologiaRESUMO
Currently used drugs for glioblastoma (GBM) treatments are ineffective, primarily due to the significant challenges posed by strong drug resistance, poor blood-brain barrier (BBB) permeability, and the lack of tumor specificity. Here, we report two cationic fluorescent anticancer agents (TriPEX-ClO4 and TriPEX-PF6) capable of BBB penetration for efficient GBM therapy via paraptosis and ferroptosis induction. These aggregation-induced emission (AIE)-active agents specifically target mitochondria, effectively triggering ATF4/JNK/Alix-regulated paraptosis and GPX4-mediated ferroptosis. Specifically, they rapidly induce substantial mitochondria-derived vacuolation, accompanied by reactive oxygen species generation, decreased mitochondrial membrane potential, and intracellular Ca2+ overload, thereby disrupting metabolisms and inducing nonapoptotic cell death. In vivo imaging revealed that TriPEX-ClO4 and TriPEX-PF6 successfully traversed the BBB to target orthotopic glioma and initiated effective synergistic therapy postintravenous injection. Our AIE drugs emerged as the pioneering paraptosis inducers against drug-resistant GBM, significantly extending survival up to 40 days compared to Temozolomide (20 days) in drug-resistant GBM-bearing mice. These compelling results open up new venues for the development of fluorescent anticancer drugs and innovative treatments for brain diseases.
Assuntos
Antineoplásicos , Barreira Hematoencefálica , Ferroptose , Corantes Fluorescentes , Glioblastoma , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Glioblastoma/metabolismo , Ferroptose/efeitos dos fármacos , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Animais , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Camundongos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , ParaptoseRESUMO
In this study, super-resolution structured illumination microscope (SIM) was used to analyze molecular mechanism of endocytic acidification inhibitors in the SARS-CoV-2 pandemic, such as Chloroquine (CQ), Hydroxychloroquine (HCQ) and Bafilomycin A1 (BafA1). We fluorescently labeled the SARS-CoV-2 RBD and its receptor ACE2 protein with small molecule dyes. Utilizing SIM imaging, the real-time impact of inhibitors (BafA1, CQ, HCQ, Dynasore) on the RBD-ACE2 endocytotic process was dynamically tracked in living cells. Initially, the protein activity of RBD and ACE2 was ensured after being labeled. And then our findings revealed that these inhibitors could inhibit the internalization and degradation of RBD-ACE2 to varying degrees. Among them, 100â nM BafA1 exhibited the most satisfactory endocytotic inhibition (~63.9 %) and protein degradation inhibition (~97.7 %). And it could inhibit the fusion between endocytic vesicles in the living cells. Additionally, Dynasore, a widely recognized dynein inhibitor, also demonstrated cell acidification inhibition effects. Together, these inhibitors collectively hinder SARS-CoV-2 infection by inhibiting both the viral internalization and RNA release. The comprehensive evaluation of pharmacological mechanisms through super-resolution fluorescence imaging has laid a crucial theoretical foundation for the development of potential drugs to treat COVID-19.
Assuntos
Enzima de Conversão de Angiotensina 2 , Tratamento Farmacológico da COVID-19 , Cloroquina , Endossomos , Hidrazonas , Hidroxicloroquina , Macrolídeos , SARS-CoV-2 , SARS-CoV-2/efeitos dos fármacos , Endossomos/metabolismo , Endossomos/efeitos dos fármacos , Humanos , Cloroquina/farmacologia , Cloroquina/química , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Macrolídeos/farmacologia , Macrolídeos/química , Hidroxicloroquina/farmacologia , Hidroxicloroquina/química , Hidrazonas/farmacologia , Hidrazonas/química , Endocitose/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , COVID-19/virologia , COVID-19/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Concentração de Íons de Hidrogênio , Internalização do Vírus/efeitos dos fármacos , Chlorocebus aethiopsRESUMO
We describe important progress in the synthesis and development of gas-responsive water-soluble conjugated polymers (WSCPs) with potential as multifunctional fluorescent materials for biomedical imaging and probes. A water-soluble WSCP (I-PT) composed of a hydrophobic fluorescent polythiophene backbone and a hydrophilic imidazole side chain was successfully prepared through a facile and efficient two-step synthetic route. Owing to the repulsive force between the hydrophilic and hydrophobic segments and the highly sensitive carbon dioxide (CO2)- and nitrogen (N2)-responsive imidazole groups in its structure, I-PT can spontaneously self-assemble into spherical-like nanoparticles in an aqueous environment, and thus exhibits unique light absorption and fluorescence properties as well as rapid responsiveness to CO2 and N2. In addition, its structure, optical absorption/fluorescence behavior, and surface potential can be quickly turned on and off through alternating cycles of CO2 and N2 bubbling and exhibit controllable cyclic switching stability, thereby allowing effective manipulation of its hierarchical structure and chemical-physical characteristics. More importantly, a series of in vitro cell experiments confirmed that, compared to the significant cytotoxicity of pristine and N2-treated I-PT nanoparticles, CO2-treated I-PT nanoparticles exhibit extremely low cytotoxicity in normal and cancer cells and undergo greatly accelerated cellular uptake, resulting in a significant increase in the intensity and stability of their fluorescence signal in the intracellular environment. Overall, this newly discovered CO2/N2-responsive system provides new insights to effectively enhance the biocompatibility, cellular internalization, and intracellular fluorescence characteristics of WSCPs and holds great potential for biomedical imaging/sensing applications.
Assuntos
Corantes Fluorescentes , Nanopartículas , Corantes Fluorescentes/farmacologia , Corantes Fluorescentes/química , Dióxido de Carbono/química , Água/química , Polímeros/farmacologia , Polímeros/química , Imidazóis , Nanopartículas/químicaRESUMO
Potent antioxidants, like 3-hydroxy flavones, attracted considerable attention due to their excited state intramolecular proton transfer (ESIPT)-based fluorescence behaviour. This article is an interesting demonstration of a series of synthetic 3-hydroxy flavone analogues having high antioxidant activity as molecular rotor-like viscosity probes. Among these flavone analogues, 4'-N,N-dimethylamino-3-hydroxy flavone (3) is the most potent one, showing the twisted intramolecular charge transfer (TICT)-dependent fluoroprobing activity toward the blood viscosity changes associated with diabetes and free fatty acids (FFA)-induced nuclear viscosity changes of MIN6 cells. The TICT dynamics of (3), which instigates its viscosity probing activity, was comprehended with the help of DFT-based computational studies. Abnormal cellular viscosity changes are the pathological traits for various diseases, and non-toxic flavone-based viscosity probes can be useful for diagnosing such pathological conditions.
Assuntos
Antioxidantes , Teoria da Densidade Funcional , Flavonas , Flavonas/química , Flavonas/farmacologia , Viscosidade , Antioxidantes/química , Antioxidantes/farmacologia , Diabetes Mellitus/tratamento farmacológico , Animais , Prótons , Camundongos , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Corantes Fluorescentes/síntese química , Ácidos Graxos não Esterificados/química , Ácidos Graxos não Esterificados/metabolismo , HumanosRESUMO
Voltage imaging of cardiac electrophysiology with voltage-sensitive dyes has long been a powerful complement to traditional methods like patch-clamp electrophysiology. Chemically synthesized voltage sensitive fluorophores offer flexibility for imaging in sensitive samples like human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs), since they do not require genetic transformation of the sample. One serious concern for any fluorescent voltage indicator, whether chemically synthesized or genetically encoded, is phototoxicity. We have been exploring self-healing fluorophores that use triplet state quenchers (TSQs) as a means to reduce the already low phototoxicity of VoltageFluor dyes developed in our lab. We previously showed that conjugation of the TSQ cyclooctatetraene (COT) to a fluorescein based VoltageFluor dye substantially reduced phototoxicity. Here, we show that this approach can be applied to far-red Silicon rhodamine dyes. COT-conjugated Si-rhodamines show improved photostability and reduced phototoxicity in hiPSC-CMs compared to the unmodified dye. This enables imaging of hiPSC-CMs for up to 30 min with continuous illumination. We show that this effect is mediated by a combination of reduced singlet oxygen production and lower loading in the cellular membrane. We discuss future applications and avenues of improvement for TSQ-stabilized VoltageFluor dyes.
Assuntos
Corantes Fluorescentes , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Rodaminas , Miócitos Cardíacos/efeitos dos fármacos , Humanos , Rodaminas/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacologia , Células-Tronco Pluripotentes Induzidas/citologia , Silício/química , Estrutura MolecularRESUMO
Nitrobenzoxadiazole (NBD)-incorporated naphthalene diimide derivatives were designed and synthesized as candidates of antitumor agents with cytotoxicity against human pancreatic cancer cell MIA PaCa-2. Among these, compounds 1NND and 3NND exhibited fluorescent "turn-off" property toward human telomeric G-quadruplex (G4), which allows the direct measurement of dissociation constant (Kd) of ligands against G4 by fluorescence titration method. Notably, the compound 1NND not only exhibited great cytotoxic activity against MIA PaCa-2 with a half maximal inhibitory concentration (IC50) of 77.9 nM, but also exhibited high affinity against G4 with Kd of 1.72 µM. Furthermore, the target binding properties were investigated by circular dichroism (CD) spectra and further studied by molecular docking methods.
Assuntos
Antineoplásicos , Desenho de Fármacos , Quadruplex G , Imidas , Naftalenos , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacologia , Quadruplex G/efeitos dos fármacos , Imidas/química , Imidas/farmacologia , Imidas/síntese química , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular , Naftalenos/química , Naftalenos/farmacologia , Naftalenos/síntese química , Relação Estrutura-AtividadeRESUMO
Our understanding of sterol transport proteins (STPs) has increased exponentially in the last decades with advances in the cellular and structural biology of these important proteins. However, small molecule probes have only recently been developed for a few selected STPs. Here we describe the synthesis and evaluation of potential proteolysis-targeting chimeras (PROTACs) based on inhibitors of the STP Aster-A. Based on the reported Aster-A inhibitor autogramin-2, ten PROTACs were synthesized. Pomalidomide-based PROTACs functioned as fluorescent probes due to the intrinsic fluorescent properties of the aminophthalimide core, which in some cases was significantly enhanced upon Aster-A binding. Most PROTACs maintained excellent binary affinity to Aster-A, and one compound, NGF3, showed promising Aster-A degradation in cells. The tools developed here lay the foundation for optimizing Aster-A fluorescent probes and degraders and studying its activity and function in vitro and in cells.
Assuntos
Proteínas de Transporte , Corantes Fluorescentes , Corantes Fluorescentes/farmacologia , Esteróis , ProteóliseRESUMO
Photothermal therapy (PTT) has attracted extensive attention in cancer treatment. Heptamethine cyanine dyes with near-infrared (NIR) absorption performance have been investigated for PTT. However, they are often accompanied by poor photostability, suboptimal photothermal conversion and limited therapeutic efficacy. The photophysical properties of fluorescent organic salts can be tuned through counterion pairing. However, whether the counterion can influence the photostability and photothermal properties of heptamethine cyanine salts has not been clarified. In this work, we investigated the effects of eleven counter anions on the physical and photothermal properties of NIR-II heptamethine cyanine salts with the same heptamethine cyanine cation. The anions have great impacts on the physiochemical properties of dyes in solution including aggregation, photostability and photothermal conversion efficiency. The physical tuning enables the control over the cytotoxicity and phototoxicity of the dyes. The selected salts have been demonstrated to significantly suppress 4T1 breast tumor growth with low toxicity. The findings that the counterion has great effects on the photothermal properties of cationic NIR-II heptamethine cyanine dyes will provide a reference for the preparation of improved photothermal agents through counterion pairing with possible translation to humans.
Assuntos
Carbocianinas , Terapia Fototérmica , Sais , Humanos , Sais/farmacologia , Corantes/química , Ânions , Corantes Fluorescentes/farmacologia , Corantes Fluorescentes/químicaRESUMO
Melanoma, a highly metastatic malignant tumour, necessitated early detection and intervention. This study focuses on a hemicyanine fluorescent probe activated by near-infrared (NIR) light for bioimaging and targeted mitochondrial action in melanoma cells. IR-418, our newly designed hemicyanine-based NIR fluorescent probe, demonstrated effective targeting of melanoma cell mitochondria for NIR imaging. In vitro and in vivo experiments revealed IR-418's inhibition of melanoma growth through the promotion of mitochondrial apoptosis (Bax/Bcl-2/Cleaved Caspase pathway). Moreover, IR-418 inhibited melanoma metastasis by inhibiting mitochondrial fission through the ERK/DRP1 pathway. Notably, IR-418 mitigated abnormal ATL and ASL elevations caused by tumours without inflicting significant organ damage, indicating its high biocompatibility. In conclusion, IR-418, a novel hemicyanine-based NIR fluorescent probe targeting the mitochondria, exhibits significant fluorescence imaging capability, anti-melanoma proliferation, anti-melanoma lung metastasis activities and high biosafety. Therefore, it has significant potential in the early diagnosis and treatment of melanoma.
Assuntos
Carbocianinas , Corantes Fluorescentes , Melanoma , Humanos , Corantes Fluorescentes/farmacologia , Melanoma/diagnóstico por imagem , Melanoma/tratamento farmacológico , Dinâmica Mitocondrial , ApoptoseRESUMO
Depression is a debilitating mental illness that poses a serious threat to human health. Nitric Oxide (NO), as an important gasotransmitter, is closely associated with the pathogenesis of depressive disorders. Effective monitoring of NO fluctuation is beneficial for the diagnosis of depression and therapy assessment of antidepressants. Currently, there is a lack of effective methods for rapidly and sensitively identifying NO and elucidating its relationship with depression diseases. Herein, we developed a NIR dye TJ730-based fluorescent probe TJ730-Golgi-NO incorporating benzenesulfonamide as a Golgi-targeted moiety and the thiosemicarbazide group for NO detection. The probe exhibited turn-on fluorescence ability and a large Stokes shift of 158 nm, which shows high sensitivity, selectivity, and rapid response (<1 min) for NO detection. TJ730-Golgi-NO could detect exogenous and endogenous NO in cells stimulated by Glu and LPS, and target Golgi apparatus. Moreover, we disclose a significant increase of NO in the depression model and a weak fluorescence evidenced in the fluoxetine-treated depression mice. This study provides a competent tool for studying the function of NO and helping improve the effective treatment of depression diseases.
Assuntos
Depressão , Corantes Fluorescentes , Complexo de Golgi , Óxido Nítrico , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacologia , Animais , Óxido Nítrico/metabolismo , Óxido Nítrico/análise , Camundongos , Complexo de Golgi/metabolismo , Depressão/tratamento farmacológico , Estrutura Molecular , Humanos , Modelos Animais de Doenças , Masculino , Relação Estrutura-Atividade , Raios Infravermelhos , Relação Dose-Resposta a Droga , Imagem Óptica , Células RAW 264.7RESUMO
As one of the most widely distributed reactive oxygen species in vivo, hydrogen peroxide plays divergent and important roles in cell growth, differentiation and aging. When the level of hydrogen peroxide in the body is abnormal, it will lead to genome mutation and induce irreversible oxidative modification of proteins, lipids and polysaccharides, resulting in cell death or even disease. Therefore, it is significant to develop a sensitive and specific probe for real-time detection of hydrogen peroxide in vivo. In this study, the response mechanism between hydrogen peroxide and probe QH was investigated by means of HRMS and the probe showed good optical properties and high selectivity to hydrogen peroxide. Note that the evaluating of probe biocompatibility resulted from cytotoxicity test, behavioral test, hepatotoxicity test, cardiotoxicity test, blood vessel toxicity test, immunotoxicity test and neurotoxicity test using cell and transgenic zebrafish models with more than 20 toxic indices. Furthermore, the detection performance of the probe for hydrogen peroxide was evaluated by multiple biological models and the probe was proved to be much essential for the monitoring of hydrogen peroxide in vivo.
Assuntos
Corantes Fluorescentes , Peróxido de Hidrogênio , Peixe-Zebra , Animais , Peróxido de Hidrogênio/análise , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacologia , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Imagem Óptica , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Relação Dose-Resposta a Droga , Camundongos , Sobrevivência Celular/efeitos dos fármacosRESUMO
Excessive peroxynitrite (ONOO-) is closely related to the occurrence and progression of inflammation. Therefore, the development of an efficacious ONOO- activatable probe holds great potential for the early diagnosis of pathological inflammation, and the direct evaluation of the therapeutic efficacy of active protectants. In this work, a new ONOO--activated fluorescent probe (SZP) which greatly improved the specificity and sensitivity (LOD = 8.03 nM) with large Stokes shift (150 nm) through introducing two reaction triggers (diphenyl phosphinate moiety, CC unsaturated bond) was rationally designed for rapid detecting ONOO- (within 2 min). The excellent properties of probe SZP enable it to realize the fluorescence-guided diagnosis of inflammation. More importantly, probe SZP has also been utilized to assess the anti-inflammatory efficacy of traditional Chinese medicines (TCMs) active ingredients for the remediation of inflammation by monitoring ONOO- fluctuation for the first time.
Assuntos
Corantes Fluorescentes , Inflamação , Ácido Peroxinitroso , Ácido Peroxinitroso/análise , Ácido Peroxinitroso/antagonistas & inibidores , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacologia , Inflamação/tratamento farmacológico , Animais , Estrutura Molecular , Camundongos , Humanos , Células RAW 264.7 , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/uso terapêutico , Imagem Óptica , Relação Dose-Resposta a Droga , Relação Estrutura-Atividade , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/síntese química , MasculinoRESUMO
As a consequence of somatosensory nervous system injury or disease, neuropathic pain is commonly associated with chemotherapies, known as chemotherapy-induced peripheral neuropathy (CIPN). However, the mechanisms underlying CIPN-induced proteome aggregation in neuronal cells remain elusive due to limited detection tools. Herein, we present series sensors for fluorescence imaging (AggStain) and proteomics analysis (AggLink) to visualize and capture aggregated proteome in CIPN neuronal cell model. The environment-sensitive AggStain imaging sensor selectively binds and detects protein aggregation with 12.3 fold fluorescence enhancement. Further, the covalent AggLink proteomic sensor captures cellular aggregated proteins and profiles their composition via LC-MS/MS analysis. This integrative sensor platform reveals the presence of proteome aggregation in CIPN cell model and highlights its potential for broader applications in assessing proteome stability under various cellular stress conditions.
Assuntos
Antineoplásicos , Doenças do Sistema Nervoso Periférico , Proteoma , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/metabolismo , Humanos , Proteoma/análise , Proteoma/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Estrutura Molecular , Agregados Proteicos/efeitos dos fármacos , Imagem Óptica , Relação Dose-Resposta a Droga , Proteômica , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologiaRESUMO
c-MYC is one of the most important oncogenes, which is overexpressed in many cancers, and is highly related to development, metastasis, and drug resistance of cancers. The G4 structure in the promoter of c-MYC oncogene contributes a lot to the gene transcriptional mechanism. Small-molecule ligands binding to the c-MYC G4 appear to be a new class of anticancer agents. However, selective ligands for the c-MYC G4 over other G4s have been rarely reported. In this study, we reported a novel fluorescent ligand by migrating the benzene group on a carbazole-benzothiazolium scaffold, which was demonstrated to exhibit considerable specificity to the c-MYC G4, which was distinguished from other small-molecule ligands. The further cellular experiments suggested that this ligand may indeed target the promoter G4 and cause apparent transcriptional inhibition of the c-MYC oncogene instead of other G4-mediated oncogenes, which thereby resulted in cancer cell growth inhibition. Collectively, this study provided a good example for developing specific c-MYC G4 ligands, which may further develop into an effective anticancer agent that inhibit the c-MYC expression.
Assuntos
Antineoplásicos , Benzotiazóis , Carbazóis , Proliferação de Células , Corantes Fluorescentes , Quadruplex G , Proteínas Proto-Oncogênicas c-myc , Carbazóis/química , Carbazóis/farmacologia , Quadruplex G/efeitos dos fármacos , Humanos , Ligantes , Benzotiazóis/química , Benzotiazóis/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/genética , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacologia , Estrutura Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Relação Dose-Resposta a Droga , Benzeno/química , Benzeno/farmacologia , Linhagem Celular TumoralRESUMO
In the past 5 years, aggregation-induced emission luminogens (AIEgens) with emission in the second near-infrared (NIR-II) optical window have aroused great interest in bioimaging and disease phototheranostics, benefiting from the merits of deep penetration depth, reduced light scatting, high spatial resolution, and minimal photodamage. To construct NIR-II AIEgens, thiophene derivatives are frequently adopted as π-bridge by virtue of their electron-rich feature and good modifiability. Herein, we summarize the recent progress of NIR-II AIEgens by employing thiophene derivatives as π-bridge mainly compassing unsubstituted thiophene, alkyl thiophene, 3,4-ethylenedioxythiophene, and benzo[c]thiophene, with a discussion on their structure-property relationships and biomedical applications. Finally, a brief conclusion and perspective on this fascinating area are offered.
Assuntos
Corantes Fluorescentes , Imagem Óptica , Corantes Fluorescentes/farmacologiaRESUMO
Short-chain fatty acids, such as butyrate, play pivotal roles in various physiological processes within the human body. Recent advances in understanding cell death pathways, specifically ferroptosis, have unveiled unique opportunities for therapeutic development. Ferroptosis is linked to iron accumulation and oxidative stress, whereas butyrate has emerged as a cellular protector against oxidative stress, potentially inhibiting ferroptosis. Hydrogen peroxide (H2 O2 ) is a key player in oxidative stress, and its monitoring has gained significance in disease mechanisms. We present an innovative fluorescent probe, HOP, capable of dynamically tracking intracellular H2 O2 levels, enabling spatial and temporal visualization. The probe exhibits high accuracy (limit of detection = 0.14 µM) and sensitivity, paving the way for disease diagnosis and treatment innovations. Importantly, HOP displayed minimal toxicity, making it suitable for cellular applications. Cellular imaging experiments demonstrated its ability to penetrate cells and monitor intracellular H2 O2 levels accurately. The HOP probe confirmed H2 O2 as a critical marker in ferroptosis. Our innovative HOP provides a powerful tool for tracking intracellular H2 O2 levels and offers insights into the modulation of ferroptosis, potentially opening new avenues for disease research and therapeutic interventions.
Assuntos
Ferroptose , Peróxido de Hidrogênio , Humanos , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Corantes Fluorescentes/farmacologia , Ácido Butírico/farmacologia , Estresse OxidativoRESUMO
Near-infrared (NIR) fluorescent probes with aggregation-induced emission (AIE) properties are of great significance in cell imaging and cancer therapy. However, the complexity of its synthesis, poor photostabilities, and expensive raw materials still pose some obstacles to their practical application. This study reported an AIE luminescent material with red emission and its application in in vitro imaging and photodynamic therapy (PDT) study. This material has the characteristics of simple synthesis, large Stokes shift, good photostabilities, and excellent lipid droplets-specific testing ability. Interestingly, this red-emitting material can effectively produce reactive oxygen species (ROS) under white light irradiation, further achieving PDT-mediated killing of cancer cells. In conclusion, this study demonstrates a simple approach to synthesize NIR AIE probes with both imaging and therapeutic effects, providing an ideal architecture for constructing long-wavelength emission AIE materials.
Assuntos
Corantes Fluorescentes , Raios Infravermelhos , Gotículas Lipídicas , Fotoquimioterapia , Espécies Reativas de Oxigênio , Humanos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacologia , Gotículas Lipídicas/química , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Sobrevivência Celular/efeitos dos fármacos , Imagem Óptica , Estrutura Molecular , Células HeLaRESUMO
A versatile and efficient chemo selective synthesis of 4-aryl-3-formyl-2H-chromenes (AFC) was undertaken using Pd-catalyzed cross-coupling conditions. The key oxidative transmetalation was successfully applied to a significant range of substitutions on the chromene moiety and aryl ring in Ar(BOH)3, accommodating both electron-rich and electron-deficient groups. These π-extended scaffolds exhibited green-yellow fluorescence with a large Stokes shift and high quantum yield. Measurement of photophysical properties revealed that the compound with methoxy substitution in the chromene ring, 3t, caused a significant bathochromic shift. The AFCs obtained from this method can be transformed into biologically active 4-aryl-3-iminoantipyrine-2H-chromenes (AAC) through functionalization of the formyl chromenes. The AFCs and AACs with methoxy substitutions (3t and 4e) were docked against AChE inhibition, and compound 4e had the lowest binding energy of -11.20â kcal/mol. DFT calculations performed on representative compounds revealed that compound 4e is more reactive than 3t, which is in accordance with the docking studies.
Assuntos
Benzopiranos , Inibidores da Colinesterase , Teoria da Densidade Funcional , Paládio , Paládio/química , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Benzopiranos/química , Benzopiranos/síntese química , Benzopiranos/farmacologia , Catálise , Acetilcolinesterase/metabolismo , Estrutura Molecular , Simulação de Acoplamento Molecular , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacologia , Relação Estrutura-AtividadeRESUMO
Biomacromolecular probes have been extensively employed in the detection of metal ions for their prominent biocompatibility, water solubility, high selectivity, and easy modification of fluorescent groups. In this study, a fluorescent probe FP was constructed. The probe FP exhibited high specificity recognition for Cu2+. With the combination of Cu2+, the probe was subjected to fluorescence quenching. The research suggested that the probe FP carried out the highly sensitive detection of Cu2+ with detection limits of 1.7 nM. The fluorescence quenching of fluorescamine was induced by Cu2+ perhaps due to the PET (photoinduced electron transfer) mechanism. The FP-Cu2+ complex shows weak fluorescence, which is likely due to the PET quenching effect from Cu2+ to fluorescamine fluorophore. Moreover, the probe FP can be employed for imaging Cu2+ in living cells. The new fluorescent probe developed in this study shows the advantages of good biocompatibility and low cytotoxicity. It can be adopted for the targeted detection of Cu2+ in cells, and it has promising applications in the mechanism research and diagnosis of Cu2+-associated diseases.