Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 518
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Eur J Neurosci ; 59(10): 2535-2548, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720367

RESUMO

The maturation of forebrain dopamine circuitry occurs over multiple developmental periods, extending from early postnatal life until adulthood, with the precise timing of maturation defined by the target region. We recently demonstrated in the adult mouse brain that axon terminals arising from midbrain dopamine neurons innervate the anterior corpus callosum and that oligodendrocyte lineage cells in this white matter tract express dopamine receptor transcripts. Whether corpus callosal dopamine circuitry undergoes maturational changes between early adolescence and adulthood is unknown but may be relevant to understanding the dramatic micro- and macro-anatomical changes that occur in the corpus callosum of multiple species during early adolescence, including in the degree of myelination. Using quantitative neuroanatomy, we show that dopamine innervation in the forceps minor, but not the rostral genu, of the corpus callosum, is greater during early adolescence (P21) compared to adulthood (>P90) in wild-type mice. We further demonstrate with RNAscope that, as in the adult, Drd1 and Drd2 transcripts are expressed at higher levels in oligodendrocyte precursor cells (OPCs) and decline as these cells differentiate into oligodendrocytes. In addition, the number of OPCs that express Drd1 transcripts during early adolescence is double the number of those expressing the transcript during early adulthood. These data further implicate dopamine in axon myelination and myelin regulation. Moreover, because developmental (activity-independent) myelination peaks during early adolescence, with experience-dependent (activity-dependent) myelination greatest during early adulthood, our data suggest that potential roles of dopamine on callosal myelination shift between early adolescence and adulthood, from a developmental role to an experience-dependent role.


Assuntos
Corpo Caloso , Camundongos Endogâmicos C57BL , Receptores de Dopamina D1 , Receptores de Dopamina D2 , Animais , Camundongos , Corpo Caloso/metabolismo , Corpo Caloso/crescimento & desenvolvimento , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/genética , Masculino , Neurônios Dopaminérgicos/metabolismo , Dopamina/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Feminino
2.
Hum Brain Mapp ; 45(9): e26693, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38924235

RESUMO

The corpus callosum (CC) is a large white matter fiber bundle in the brain and is involved in various cognitive, sensory, and motor processes. While implicated in various developmental and psychiatric disorders, much is yet to be uncovered about the normal development of this structure, especially in young children. Additionally, while sexual dimorphism has been reported in prior literature, observations have not necessarily been consistent. In this study, we use morphometric measures including surface tensor-based morphometry (TBM) to investigate local changes in the shape of the CC in children between the ages of 12 and 60 months, in intervals of 12 months. We also analyze sex differences in each of these age groups. We observed larger significant clusters in the earlier ages between 12 v 24 m and between 48 v 60 m and localized differences in the anterior region of the body of the CC. Sex differences were most pronounced in the 12 m group. This study adds to the growing literature of work aiming to understand the developing brain and emphasizes the utility of surface TBM as a useful tool for analyzing regional differences in neuroanatomical morphometry.


Assuntos
Corpo Caloso , Caracteres Sexuais , Humanos , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/crescimento & desenvolvimento , Corpo Caloso/anatomia & histologia , Masculino , Feminino , Lactente , Pré-Escolar , Imagem de Tensor de Difusão , Imageamento por Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos
3.
Semin Cell Dev Biol ; 118: 50-59, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33958283

RESUMO

The anterior commissure is the most ancient of the forebrain interhemispheric connections among all vertebrates. Indeed, it is the predominant pallial commissure in all non-eutherian vertebrates, universally subserving basic functions related to olfaction and survival. A key feature of the anterior commissure is its ability to convey connections from diverse brain areas, such as most of the neocortex in non-eutherian mammals, thereby mediating the bilateral integration of diverse functions. Shared developmental mechanisms between the anterior commissure and more evolutionarily recent commissures, such as the corpus callosum in eutherians, have led to the hypothesis that the former may have been a precursor for additional expansion of commissural circuits. However, differences between the formation of the anterior commissure and other telencephalic commissures suggest that independent developmental mechanisms underlie the emergence of these connections in extant species. Here, we review the developmental mechanisms and connectivity of the anterior commissure across evolutionarily distant species, and highlight its potential functional importance in humans, both in the course of normal neurodevelopment, and as a site of plastic axonal rerouting in the absence or damage of other connections.


Assuntos
Comissura Anterior/crescimento & desenvolvimento , Corpo Caloso/crescimento & desenvolvimento , Humanos
4.
Cereb Cortex ; 31(9): 4024-4037, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-33872347

RESUMO

Genetic, molecular, and physical forces together impact brain morphogenesis. The early impact of deficient midline crossing in agenesis of the Corpus Callosum (ACC) on prenatal human brain development and architecture is widely unknown. Here we analyze the changes of brain structure in 46 fetuses with ACC in vivo to identify their deviations from normal development. Cases of complete ACC show an increase in the thickness of the cerebral wall in the frontomedial regions and a reduction in the temporal, insular, medial occipital and lateral parietal regions, already present at midgestation. ACC is associated with a more symmetric configuration of the temporal lobes and increased frequency of atypical asymmetry patterns, indicating an early morphomechanic effect of callosal growth on human brain development affecting the thickness of the pallium along a ventro-dorsal gradient. Altered prenatal brain architecture in ACC emphasizes the importance of conformational forces introduced by emerging interhemispheric connectivity on the establishment of polygenically determined brain asymmetries.


Assuntos
Agenesia do Corpo Caloso/patologia , Encéfalo/embriologia , Feto/patologia , Lateralidade Funcional , Adulto , Agenesia do Corpo Caloso/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/patologia , Corpo Caloso/embriologia , Corpo Caloso/crescimento & desenvolvimento , Corpo Caloso/patologia , Feminino , Feto/diagnóstico por imagem , Idade Gestacional , Humanos , Imageamento por Ressonância Magnética , Gravidez , Diagnóstico Pré-Natal , Estudos Retrospectivos , Lobo Temporal/embriologia , Lobo Temporal/crescimento & desenvolvimento , Lobo Temporal/patologia
5.
Neuroimage ; 236: 118067, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33878377

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with unknown brain etiology. Our knowledge to date about structural brain development across the lifespan in ASD comes mainly from cross-sectional studies, thereby limiting our understanding of true age effects within individuals with the disorder that can only be gained through longitudinal research. The present study describes FreeSurfer-derived volumetric findings from a longitudinal dataset consisting of 607 T1-weighted magnetic resonance imaging (MRI) scans collected from 105 male individuals with ASD (349 MRIs) and 125 typically developing male controls (258 MRIs). Participants were six to forty-five years of age at their first scan, and were scanned up to 5 times over a period of 16 years (average inter-scan interval of 3.7 years). Atypical age-related volumetric trajectories in ASD included enlarged gray matter volume in early childhood that approached levels of the control group by late childhood, an age-related increase in ventricle volume resulting in enlarged ventricles by early adulthood and reduced corpus callosum age-related volumetric increase resulting in smaller corpus callosum volume in adulthood. Larger corpus callosum volume was related to a lower (better) ADOS score at the most recent study visit for the participants with ASD. These longitudinal findings expand our knowledge of volumetric brain-based abnormalities in males with ASD, and highlight the need to continue to examine brain structure across the lifespan and well into adulthood.


Assuntos
Transtorno do Espectro Autista , Ventrículos Cerebrais , Corpo Caloso , Substância Cinzenta , Desenvolvimento Humano , Adolescente , Adulto , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/patologia , Transtorno do Espectro Autista/fisiopatologia , Ventrículos Cerebrais/diagnóstico por imagem , Ventrículos Cerebrais/crescimento & desenvolvimento , Ventrículos Cerebrais/patologia , Criança , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/crescimento & desenvolvimento , Corpo Caloso/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/crescimento & desenvolvimento , Substância Cinzenta/patologia , Desenvolvimento Humano/fisiologia , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
PLoS Genet ; 14(7): e1007515, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30040823

RESUMO

SATB2 is associated with schizophrenia and is an important transcription factor regulating neocortical organization and circuitry. Rare mutations in SATB2 cause a syndrome that includes developmental delay, and mouse studies identify an important role for SATB2 in learning and memory. Interacting partners BCL11B and GATAD2A are also schizophrenia risk genes indicating that other genes interacting with or are regulated by SATB2 are making a contribution to schizophrenia and cognition. We used data from Satb2 mouse models to generate three gene-sets that contain genes either functionally related to SATB2 or targeted by SATB2 at different stages of development. Each was tested for enrichment using the largest available genome-wide association studies (GWAS) datasets for schizophrenia and educational attainment (EA) and enrichment analysis was also performed for schizophrenia and other neurodevelopmental disorders using data from rare variant sequencing studies. These SATB2 gene-sets were enriched for genes containing common variants associated with schizophrenia and EA, and were enriched for genes containing rare variants reported in studies of schizophrenia, autism and intellectual disability. In the developing cortex, genes targeted by SATB2 based on ChIP-seq data, and functionally affected when SATB2 is not expressed based on differential expression analysis using RNA-seq data, show strong enrichment for genes associated with EA. For genes expressed in the hippocampus or at the synapse, those targeted by SATB2 are more strongly enriched for genes associated EA than gene-sets not targeted by SATB2. This study demonstrates that single gene findings from GWAS can provide important insights to pathobiological processes. In this case we find evidence that genes influenced by SATB2 and involved in synaptic transmission, axon guidance and formation of the corpus callosum are contributing to schizophrenia and cognition.


Assuntos
Cognição , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Transtornos do Neurodesenvolvimento/genética , Esquizofrenia/genética , Fatores de Transcrição/metabolismo , Sucesso Acadêmico , Animais , Orientação de Axônios/genética , Corpo Caloso/crescimento & desenvolvimento , Corpo Caloso/metabolismo , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Feminino , Predisposição Genética para Doença , Genômica/métodos , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Humanos , Proteínas de Ligação à Região de Interação com a Matriz/genética , Camundongos , Mutação , Transtornos do Neurodesenvolvimento/patologia , Esquizofrenia/patologia , Transmissão Sináptica/genética , Fatores de Transcrição/genética
7.
Neuroimage ; 215: 116821, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32276067

RESUMO

The corpus callosum (CC) is the largest connective pathway in the human brain, linking cerebral hemispheres. There is longstanding debate in the scientific literature whether sex differences are evident in this structure, with many studies indicating the structure is larger in females. However, there are few data pertaining to this issue in infancy, during which time the most rapid developmental changes to the CC occur. In this study, we examined longitudinal brain imaging data collected from 104 infants at ages 6, 12, and 24 months. We identified sex differences in brain-size adjusted CC area and thickness characterized by a steeper rate of growth in males versus females from ages 6-24 months. In contrast to studies of older children and adults, CC size was larger for male compared to female infants. Based on diffusion tensor imaging data, we found that CC thickness is significantly associated with underlying microstructural organization. However, we observed no sex differences in the association between microstructure and thickness, suggesting that the role of factors such as axon density and/or myelination in determining CC size is generally equivalent between sexes. Finally, we found that CC length was negatively associated with nonverbal ability among females.


Assuntos
Desenvolvimento Infantil/fisiologia , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/crescimento & desenvolvimento , Imagem de Tensor de Difusão/métodos , Caracteres Sexuais , Pré-Escolar , Feminino , Humanos , Lactente , Estudos Longitudinais , Masculino , Imagem Multimodal/métodos
8.
Cereb Cortex ; 29(2): 586-597, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29300891

RESUMO

Contactin-associated protein-like 2 (Caspr2) is found at the nodes of Ranvier and has been associated with physiological properties of white matter conductivity. Genetic variation in CNTNAP2, the gene encoding Caspr2, has been linked to several neurodevelopmental conditions, yet pathophysiological effects of CNTNAP2 mutations on axonal physiology and brain myelination are unknown. Here, we have investigated mouse mutants for Cntnap2 and found profound deficiencies in the clustering of Kv1-family potassium channels in the juxtaparanodes of brain myelinated axons. These deficits are associated with a change in the waveform of axonal action potentials and increases in postsynaptic excitatory responses. We also observed that the normal process of myelination is delayed in Cntnap2 mutant mice. This later phenotype is a likely modulator of the developmental expressivity of the stereotyped motor behaviors that characterize Cntnap2 mutant mice. Altogether, our results reveal a mechanism linked to white matter conductivity through which mutation of CNTNAP2 may affect neurodevelopmental outcomes.


Assuntos
Axônios/metabolismo , Córtex Cerebral/metabolismo , Deficiências do Desenvolvimento/metabolismo , Proteínas de Membrana/deficiência , Fibras Nervosas Mielinizadas/metabolismo , Proteínas do Tecido Nervoso/deficiência , Transtorno de Movimento Estereotipado/metabolismo , Potenciais de Ação/fisiologia , Animais , Axônios/patologia , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/patologia , Corpo Caloso/crescimento & desenvolvimento , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fibras Nervosas Mielinizadas/patologia , Proteínas do Tecido Nervoso/genética , Transtorno de Movimento Estereotipado/genética , Transtorno de Movimento Estereotipado/patologia , Transmissão Sináptica/fisiologia
9.
Pediatr Radiol ; 50(4): 543-549, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31840188

RESUMO

BACKGROUND: In the medicolegal literature, focal concavities or notching of the corpus callosum has been thought to be associated with fetal alcohol spectrum disorders. Recent work suggests corpus callosum notching is a dynamic and normal anatomical feature, although it has not yet been defined in early life or infancy. OBJECTIVE: Our purpose was to characterize the dorsal contour of the corpus callosum during the first 2 years of life by defining the prevalence, onset and trajectory of notching on midsagittal T1-weighted images. MATERIALS AND METHODS: We reviewed retrospectively 1,157 consecutive patients between birth and 2 years of age. Corpus callosum morphology was evaluated and described. A notch was defined as a dorsal concavity of at least 1 mm in depth along the dorsal surface of the corpus callosum. Patient age as well as notch depth, location, number and presence of the pericallosal artery in the notch were noted. RESULTS: Two hundred thirty-three notches were identified in 549 patients: 36 anterior, 194 posterior and 3 patients with undulations. A statistically significant (R2=0.53, Beta=0.021, P=0.002) positive correlation between posterior notch prevalence and age in months was noted. A positive correlation between age and depth of the posterior notch was also statistically significant (r=0.32, n=179, P≤0.001). A trend for increased anterior notch prevalence with age was identified with significant correlation between visualized pericallosal artery indentation and anterior notching (r=0.20, n=138, P=0.016). Sub-analysis of the first month of life showed corpus callosum notching was not present. CONCLUSION: The presence of posterior notching increased significantly with age and was more frequent than that of anterior notching. Corpus callosum notching was absent in the first week of life, building on prior studies suggesting corpus callosum notching is acquired. This study provides baseline data on normative corpus callosum notching trajectories by age group during early life, a helpful correlate when associating corpus callosum morphology with disease.


Assuntos
Corpo Caloso/diagnóstico por imagem , Corpo Caloso/crescimento & desenvolvimento , Imageamento por Ressonância Magnética/métodos , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Estudos Retrospectivos
10.
J Formos Med Assoc ; 119(8): 1292-1298, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32331809

RESUMO

BACKGROUND/PURPOSE: Impaired growth of the corpus callosum (CC) and cerebellar vermis (CV) is associated with poorer neurodevelopmental outcomes in preterm infants. However, references on the postnatal growth rate of the CC and CV by sonography are limited. The aim of this study is to assess the normal linear growth of CC and CV using a serial cranial ultrasound. METHODS: We prospectively enrolled preterm infants with very low birth weight from September 2008 to December 2009 after excluding those with congenital anomalies or diseases affecting the brain parenchyma. Serial sonographic measurements of the CC and CV were performed according to the standard protocol. Scheduled comprehensive neurodevelopmental evaluations were performed till the corrected age of 2 years. We excluded those with significant brain damages or poor neurodevelopmental outcomes in the final analysis. The growth rate was estimated using the loess smoothing curve and linear regression analysis. RESULTS: Among the 86 enrolled neonates, 14 with significant brain damage and 8 with poor neurodevelopmental outcomes were excluded from the final analysis. The growth rate of the CC length was 1.72 (95% confidence interval [CI]: 1.24-2.20) and 0.57 (95% CI: 0.33-0.80) mm per week before and after the postmenstrual age of 30.5 weeks, respectively. The growth rate of the CV length was 0.78 (95% CI: 0.68-0.89) mm per week. CONCLUSION: We proposed reference values of the normal linear growth rate of the CC and CV lengths in very-low-birth-weight preterm infants using the serial cranial ultrasound.


Assuntos
Vermis Cerebelar , Corpo Caloso , Recém-Nascido Prematuro , Vermis Cerebelar/crescimento & desenvolvimento , Pré-Escolar , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/crescimento & desenvolvimento , Humanos , Lactente , Recém-Nascido , Recém-Nascido de muito Baixo Peso , Ultrassonografia
11.
Neuropediatrics ; 50(3): 146-151, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30875701

RESUMO

PURPOSE: To determine the prevalence of "restricted diffusion" within the splenium of the corpus callosum (SOCC) on 3 Tesla (T) and 1.5T imaging systems and to establish the contribution of myelin maturation to the presence of "restricted diffusion" within the SOCC. MATERIALS AND METHODS: The imaging database at our hospital was queried to build three cohorts of patients: (1) age < 4 months, with magnetic resonance imaging (MRI) scans done on a 3T system; (2) age < 4 months, with MRI scans done on a 1.5T system; and (3) age ≥ 4 months, with MRI scans done on a 3T system, for retrospective analysis. A total of 101 MRI scans were reviewed. RESULTS: "Restricted diffusion" within the SOCC was present in 26 of 29 (90%) patients from cohort 1, in 1 of 37 (3%) patients from cohort 2, and in 1 of 35 (3%) patients from cohort 3. There is a significant difference in the prevalence of "restricted diffusion" in the SOCC between the three cohorts of patients. CONCLUSIONS: "Restricted diffusion" within the SOCC may be a normal finding in infants less than 4 months of age, imaged on a 3T system. The presence of "restricted diffusion" within the splenium may serve as a potential marker of normal brain maturation.


Assuntos
Corpo Caloso/diagnóstico por imagem , Corpo Caloso/crescimento & desenvolvimento , Imagem de Difusão por Ressonância Magnética/métodos , Bainha de Mielina/patologia , Bainha de Mielina/fisiologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino
12.
Hippocampus ; 28(11): 838-845, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29978933

RESUMO

To investigate the effects of neonatal hippocampal lesions on the microstructural integrity of the corpus callosum (CC) in adulthood, macaque monkeys (n = 5) with neonatal bilateral neurotoxic hippocampal lesion (Neo-Hibo) and sham-operated controls (Neo-C, n = 5) were scanned using magnetic resonance diffusion tensor imaging (DTI) technique at 8-10 years old. CC was segmented into seven regionsgrouped into anterior CC (rostrum, genu, rostral body and anterior midbody) and posterior CC (posterior midbody, isthmus and splenium) for data analysis. Associated transcallosal fiber tracts were delineated using probabilistic tractography and evaluated with tract-based spatial statistics (TBSS). Neo-Hibo lesions resulted in significant increased diffusivity indices (mean, axial and radial diffusivity) in CC posterior segments. Also, significant decreased fractional anisotropy (FA) and increased diffusivity indices were seen in the associated transcallosal fiber tracts proximal to motor, posterior parietal and retrosplenial cortices. In Neo-Hibo animals, increased mean diffusivity (MD) in posterior midbody negatively correlated with reduction of CC surface areaand the magnitude of their memory impairments was significantly correlated with FA in transcallosal fiber tracts across splenium. Although no microstructural changes were observed in CC anterior segments, changes in FA values and diffusivity indices were observed in the white matter fibers of the ventromedial prefrontal cortex. Thus, Neo-H lesions resulted in enduring degradation in transcallosal fibers proximal to parietal and retrosplenial cortices, and hemispheric connections through posterior CC. The findings may provide complementary information for understanding the neural substrate of behavioral and cognitive deficits observed in patients with early insult to the hippocampus.


Assuntos
Corpo Caloso/diagnóstico por imagem , Corpo Caloso/crescimento & desenvolvimento , Imagem de Tensor de Difusão , Hipocampo/diagnóstico por imagem , Hipocampo/lesões , Animais , Animais Recém-Nascidos , Hipocampo/crescimento & desenvolvimento , Ácido Ibotênico , Macaca mulatta , Modelos Animais , Vias Neurais/diagnóstico por imagem , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/lesões
13.
Cereb Cortex ; 27(3): 1817-1830, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26874185

RESUMO

Callosal projection neurons (CPN) interconnect the neocortical hemispheres via the corpus callosum and are implicated in associative integration of multimodal information. CPN have undergone differential evolutionary elaboration, leading to increased diversity of cortical neurons-and more extensive and varied connections in neocortical gray and white matter-in primates compared with rodents. In mouse, distinct sets of genes are enriched in discrete subpopulations of CPN, indicating the molecular diversity of rodent CPN. Elements of rodent CPN functional and organizational diversity might thus be present in the further elaborated primate cortex. We address the hypothesis that genes controlling mouse CPN subtype diversity might reflect molecular patterns shared among mammals that arose prior to the divergence of rodents and primates. We find that, while early expression of the examined CPN-enriched genes, and postmigratory expression of these CPN-enriched genes in deep layers are highly conserved (e.g., Ptn, Nnmt, Cited2, Dkk3), in contrast, the examined genes expressed by superficial layer CPN show more variable levels of conservation (e.g., EphA3, Chn2). These results suggest that there has been evolutionarily differential retraction and elaboration of superficial layer CPN subpopulations between mouse and macaque, with independent derivation of novel populations in primates. Together, these data inform future studies regarding CPN subpopulations that are unique to primates and rodents, and indicate putative evolutionary relationships.


Assuntos
Córtex Cerebral/metabolismo , Corpo Caloso/metabolismo , Macaca fascicularis/metabolismo , Camundongos Endogâmicos C57BL/metabolismo , Neurônios/metabolismo , Animais , Evolução Biológica , Movimento Celular , Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Corpo Caloso/citologia , Corpo Caloso/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Hibridização In Situ , Macaca fascicularis/anatomia & histologia , Macaca fascicularis/crescimento & desenvolvimento , Camundongos Endogâmicos C57BL/anatomia & histologia , Camundongos Endogâmicos C57BL/crescimento & desenvolvimento , Neurônios/citologia , RNA Mensageiro/metabolismo
14.
J Neurophysiol ; 118(1): 140-148, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28381485

RESUMO

Transcallosal fibers facilitate interhemispheric networks involved in motor tasks. Despite their clinical relevance, interhemispheric motor control systems have not been completely defined in the developing brain. The objective of this study was to examine the developmental profile of transcallosal inhibition in healthy children and adolescents. Nineteen typically developing right-handed participants were recruited. Two transcranial magnetic stimulation (TMS) paradigms assessed transcallosal inhibition: ipsilateral silent periods (iSP) and paired-pulse interhemispheric inhibition (IHI). TMS was applied to the motor hotspot of the first dorsal interosseous muscle. Resting motor threshold (RMT), iSP latency, duration and suppression strength, and paired-pulse IHI were measured from both hemispheres. The Purdue Pegboard Test assessed unimanual motor function. Hemispheric differences were evident for RMT and iSP latency and suppression strength, where the left hemisphere had a lower RMT, prolonged latency, and greater suppression strength. iSP duration showed hemispheric symmetry. RMT and iSP latency decreased with age, whereas iSP suppression strength increased. Girls showed shorter iSP latency. Children typically displayed IHI, although hemispheric differences were observed. iSP suppression strength was uniquely associated with IHI within individuals. iSP duration correlated with motor performance. TMS can characterize transcallosal inhibition in normal children and adolescents with effects of age, directionality, sex, and motor performance. Establishing this developmental profile of interhemispheric interactions may advance understanding and therapeutic strategies for pediatric motor disorders such as cerebral palsy.NEW & NOTEWORTHY Here we demonstrate that transcranial magnetic stimulation can characterize transcallosal inhibition in normal children and adolescents with effects of age, directionality, handedness, and motor performance. Interestingly, we also demonstrated sex effects, possibly related to the differing developmental profiles of boys and girls. Establishing this developmental profile of interhemispheric interactions may advance understanding and therapeutic strategies for pediatric motor disorders such as cerebral palsy.


Assuntos
Corpo Caloso/crescimento & desenvolvimento , Córtex Motor/crescimento & desenvolvimento , Inibição Neural , Adolescente , Criança , Corpo Caloso/fisiologia , Feminino , Lateralidade Funcional , Humanos , Masculino , Córtex Motor/fisiologia , Tempo de Reação , Estimulação Magnética Transcraniana
15.
Neurobiol Dis ; 98: 137-148, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27940202

RESUMO

Oligodendrocyte and myelin deficits have been reported in mental/psychiatric diseases. The p21-activated kinase 3 (PAK3), a serine/threonine kinase, whose activity is stimulated by the binding of active Rac and Cdc42 GTPases is affected in these pathologies. Indeed, many mutations of Pak3 gene have been described in non-syndromic intellectual disability diseases. Pak3 is expressed mainly in the brain where its role has been investigated in neurons but not in glial cells. Here, we showed that PAK3 is highly expressed in oligodendrocyte precursors (OPCs) and its expression decreases in mature oligodendrocytes. In the developing white matter of the Pak3 knockout mice, we found defects of oligodendrocyte differentiation in the corpus callosum and to a lesser extent in the anterior commissure, which were compensated at the adult stage. In vitro experiments in OPC cultures, derived from Pak3 knockout and wild type brains, support a developmental and cell-autonomous role for PAK3 in regulating OPC differentiation into mature oligodendrocytes. Moreover, we did not detect any obvious alterations of the proliferation or migration of Pak3 null OPCs compared to wild type. Overall, our data highlight PAK3 as a new regulator of OPC differentiation.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Neurais/metabolismo , Oligodendroglia/metabolismo , Quinases Ativadas por p21/metabolismo , Animais , Comissura Anterior/citologia , Comissura Anterior/crescimento & desenvolvimento , Comissura Anterior/metabolismo , Movimento Celular/fisiologia , Células Cultivadas , Corpo Caloso/citologia , Corpo Caloso/crescimento & desenvolvimento , Corpo Caloso/metabolismo , Masculino , Camundongos Knockout , Células-Tronco Neurais/citologia , Oligodendroglia/citologia , Substância Branca/citologia , Substância Branca/crescimento & desenvolvimento , Substância Branca/metabolismo , Quinases Ativadas por p21/genética
16.
Dev Neurosci ; 39(1-4): 97-106, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28013305

RESUMO

The size and shape of the corpus callosum and its major components (genu, body, and splenium) were measured by magnetic resonance imaging (MRI) in 118 normocephalic individuals aged from 1 postnatal week to 18.7 years. Genu, body, splenial, and total corpus callosal areas increased by 40-100% during the first year of life (p < 0.05). The genu expanded to a greater extent than the splenium during the first 6 years, while the splenium expanded to a greater extent between 7 and 18 years. The age-related difference in the maximal expansion of these structures indicated an anterior to posterior wave of corpus callosal enlargement during maturation, probably the consequence of differential axonal myelination. No sex differences existed during these two developmental phases for the genu, splenial, or total corpus callosal areas with or without scaling to the cerebral hemispheric volume. During infancy (0-24 months), however, the mean female splenial ratio (length/height) of 0.79 was greater than the male ratio of 0.65 (p = 0.024). The cerebral hemispheric length/height ratio was also greater in females, indicating that during infancy the female brain (and its component the corpus callosal splenium) is relatively longer than the male brain. This sex difference was confined to the splenium and disappeared with increasing age.


Assuntos
Corpo Caloso/crescimento & desenvolvimento , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino
17.
J Neurosci Res ; 95(3): 876-884, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27465433

RESUMO

Using fiber tracking we investigated the early interhemispheric to cortical development by segmenting the corpus callosum (CC) in five substructures, genu, rostrum, body, isthmus, and splenium, and to examine gender differences in healthy, term neonates. Twenty neonates (11 boys aged 39 ± 2 days, nine girls aged 39 ± 1 days) were scanned in natural sleep with diffusion tensor imging and 35 gradient directions. Fiber tracking was performed using the FACT algorithm. The CC was segments in five substructures on midsagittal imaging. The fiber axial and radial diffusion were measured along with apparent diffusion coefficient and fractional anisotropy. Volume measures were performed for each of these substructures using high-resolution isotropic 3D T1-weighted images. Radial and mean diffusivity in all measured interhemispheric connections were significantly higher in male newborn infants than in female. Second, a gender-dependent regional difference of the measured interhemispheric connections exists. There was no volume difference between boys and girls in any of the five studied sudsubstructures. In addition there was no association between macrostructural and microstructural differences either in boys or girls. The cytoarchitecture and the integrity of the interhemispheric fibers is more developed in female infants in all subdivisions of the CC, except for the isthmus. This might result from a larger axonal diameter, highly packed fibers, or more well-developed myelin sheath. © 2016 Wiley Periodicals, Inc.


Assuntos
Mapeamento Encefálico , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/crescimento & desenvolvimento , Fibras Nervosas Mielinizadas/fisiologia , Anisotropia , Imagem de Tensor de Difusão , Feminino , Cabeça/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Lactente , Recém-Nascido , Masculino , Bainha de Mielina/fisiologia
18.
J Anat ; 230(2): 197-202, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27761896

RESUMO

Transitory cavities associated with the ventricular system represent probably one of the most unique features in the developing mammalian brain. In rodents, the cavities exist transiently in the developing brain and do not appear to be associated with any pathological events. Among the various cavities, the pyramidal-shaped cavum septum pellucidum (CSP) located beneath the corpus callosum and between the lateral ventricles is most well defined. In addition to the CSP are the bilateral subependymal cysts that are consistently associated with the third and fourth ventricles as well as the aqueduct. The cavities/cysts contain a large number of amoeboid microglia expressing surface receptors and hydrolytic enzymes common to tissue macrophages. The significance of these cavities in the developing brain remains a conjecture. Firstly, the cavity walls are free of an apparent epithelial lining; hence, it is speculated that the cavities that appear to communicate with the widened neighboring interstitial tissue spaces may have resulted from physical traction due to the rapid growth of the perinatal brain. Secondly, the cavities contain prominent clusters of amoeboid microglia that may be involved in clearing the debris of degenerating axons and cells resulting from the early brain tissue remodeling. With the increase in brain tissue compactness following the beginning of myelination in the second postnatal week, all cavities are obliterated; concomitantly, the number of amoeboid microglia in them diminishes and all this might signal further maturation of the brain.


Assuntos
Encéfalo/crescimento & desenvolvimento , Ventrículos Cerebrais/crescimento & desenvolvimento , Cistos , Animais , Encéfalo/ultraestrutura , Ventrículos Cerebrais/ultraestrutura , Corpo Caloso/crescimento & desenvolvimento , Corpo Caloso/ultraestrutura , Cistos/ultraestrutura , Humanos
19.
Dev Med Child Neurol ; 59(10): 1042-1048, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28815625

RESUMO

AIM: The objective of this study was to investigate the involvement of the motor fibres of the corpus callosum after unilateral neonatal arterial ischemic stroke (NAIS) of the middle cerebral artery territory and the relationship to both ipsilesional and contralesional hand function. METHOD: Using high-resolution structural magnetic resonance imaging (MRI), functional MRI, and magnetic resonance diffusion-tractography, we compared the midsagittal area of the motor part of the corpus callosum (defined by the fibres connecting the precentral gyri) between 33 7-year-old children after unilateral NAIS and 31 typically developing 7-year-old children. Hand motor performance was assessed by the box and blocks test. RESULTS: Children after NAIS showed on average significantly smaller motor corpus callosum area compared to typically developing children (p<0.001, without differences of the non-motor corpus callosum area). In addition, there was a significant positive association between the motor part of the corpus callosum and both contralesional (Pr(>|t|)=0.034) and ipsilesional hand motor performance (Pr(>|t|)=0.006) after controlling for lesion volume and sex. In a post-hoc analysis the additional contribution of corticospinal tract damage was evaluated. INTERPRETATION: Compared to typically developing children, children after NAIS exhibited a smaller motor part of their corpus callosum associated with reduced contralesional but also ipsilesional manual dexterity. These results indicate that the affection of transcallosal motor fibres in unilateral NAIS might be of functional relevance and an important part of the involved structural network that should be elucidated in further studies.


Assuntos
Isquemia Encefálica/fisiopatologia , Corpo Caloso/fisiopatologia , Mãos/fisiopatologia , Atividade Motora/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Isquemia Encefálica/diagnóstico por imagem , Criança , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/crescimento & desenvolvimento , Imagem de Tensor de Difusão , Feminino , Lateralidade Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiopatologia , Tamanho do Órgão , Tratos Piramidais/diagnóstico por imagem , Tratos Piramidais/fisiopatologia , Acidente Vascular Cerebral/diagnóstico por imagem
20.
Dev Med Child Neurol ; 59(4): 433-440, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27976377

RESUMO

AIM: To characterize corpus callosum development in neonates born very preterm from early in life to term-equivalent age and its relationship with neurodevelopmental outcome at 18 months corrected age. METHOD: In a prospective cohort of 193 neonates born preterm, 24 to 32 weeks' gestation, we used magnetic resonance imaging and diffusion tensor imaging acquired early in life (n=193) and at term-equivalent age (n=159) to measure corpus callosum development: mid-sagittal area (including corpus callosum subdivisions) and length, and fractional anisotropy from the genu and splenium. We examined the association of (1) intraventricular haemorrhage (IVH) and white matter injury (WMI) severity, and (2) neurodevelopmental outcome at 18 months corrected age with corpus callosum development. RESULTS: Severe WMI and severe IVH were strongly associated with reduced corpus callosum area (both p<0.001) and WMI with lower fractional anisotropy (p=0.002). Mild WMI predicted smaller corpus callosum area only posteriorly; mild IVH predicted smaller area throughout. Adverse motor outcome was associated with smaller corpus callosum size in the posterior subdivision (p=0.003). Abnormal cognitive outcomes were associated with lower corpus callosum fractional anisotropy (p=0.008). INTERPRETATION: In newborn infants born very preterm, brain injury is associated with changes in simple metrics of corpus callosum development. In this population, the development of the corpus callosum, as reflected by size and microstructure, is associated with neurodevelopmental outcomes at 18 months corrected age.


Assuntos
Lesões Encefálicas/diagnóstico por imagem , Transtornos Cognitivos/diagnóstico por imagem , Corpo Caloso , Deficiências do Desenvolvimento/diagnóstico por imagem , Imagem de Tensor de Difusão , Lactente Extremamente Prematuro , Estudos de Coortes , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/crescimento & desenvolvimento , Corpo Caloso/patologia , Feminino , Idade Gestacional , Humanos , Processamento de Imagem Assistida por Computador , Lactente , Lactente Extremamente Prematuro/fisiologia , Hemorragias Intracranianas/diagnóstico por imagem , Masculino , Atividade Motora/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA