Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(4): 2133-2139, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31932418

RESUMO

Long-lasting, consolidated memories require not only positive biological processes that facilitate long-term memories (LTM) but also the suppression of inhibitory processes that prevent them. The mushroom body neurons (MBn) in Drosophila melanogaster store protein synthesis-dependent LTM (PSD-LTM) as well as protein synthesis-independent, anesthesia-resistant memory (ARM). The formation of ARM inhibits PSD-LTM but the underlying molecular processes that mediate this interaction remain unknown. Here, we demonstrate that the Ras→Raf→rho kinase (ROCK) pathway in MBn suppresses ARM consolidation, allowing the formation of PSD-LTM. Our initial results revealed that the effects of Ras on memory are due to postacquisition processes. Ras knockdown enhanced memory expression but had no effect on acquisition. Additionally, increasing Ras activity optogenetically after, but not before, acquisition impaired memory performance. The elevated memory produced by Ras knockdown is a result of increased ARM. While Ras knockdown enhanced the consolidation of ARM, it eliminated PSD-LTM. We found that these effects are mediated by the downstream kinase Raf. Similar to Ras, knockdown of Raf enhanced ARM consolidation and impaired PSD-LTM. Surprisingly, knockdown of the canonical downstream extracellular signal-regulated kinase did not reproduce the phenotypes observed with Ras and Raf knockdown. Rather, Ras/Raf inhibition of ROCK was found to be responsible for suppressing ARM. Constitutively active ROCK enhanced ARM and impaired PSD-LTM, while decreasing ROCK activity rescued the enhanced ARM produced by Ras knockdown. We conclude that MBn Ras/Raf inhibition of ROCK suppresses the consolidation of ARM, which permits the formation of PSD-LTM.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Consolidação da Memória , Proteínas ras/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Memória , Corpos Pedunculados/enzimologia , Neurônios/enzimologia , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas ras/genética
2.
PLoS Genet ; 11(11): e1005611, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26536237

RESUMO

Though evidence is mounting that a major function of sleep is to maintain brain plasticity and consolidate memory, little is known about the molecular pathways by which learning and sleep processes intercept. Anaplastic lymphoma kinase (Alk), the gene encoding a tyrosine receptor kinase whose inadvertent activation is the cause of many cancers, is implicated in synapse formation and cognitive functions. In particular, Alk genetically interacts with Neurofibromatosis 1 (Nf1) to regulate growth and associative learning in flies. We show that Alk mutants have increased sleep. Using a targeted RNAi screen we localized the negative effects of Alk on sleep to the mushroom body, a structure important for both sleep and memory. We also report that mutations in Nf1 produce a sexually dimorphic short sleep phenotype, and suppress the long sleep phenotype of Alk. Thus Alk and Nf1 interact in both learning and sleep regulation, highlighting a common pathway in these two processes.


Assuntos
Drosophila/fisiologia , Corpos Pedunculados/enzimologia , Receptores Proteína Tirosina Quinases/metabolismo , Sono/fisiologia , Quinase do Linfoma Anaplásico , Animais , Receptores Proteína Tirosina Quinases/genética
3.
Nature ; 454(7205): 771-5, 2008 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-18594510

RESUMO

Homoiotherms, for example mammals, regulate their body temperature with physiological responses such as a change of metabolic rate and sweating. In contrast, the body temperature of poikilotherms, for example Drosophila, is the result of heat exchange with the surrounding environment as a result of the large ratio of surface area to volume of their bodies. Accordingly, these animals must instinctively move to places with an environmental temperature as close as possible to their genetically determined desired temperature. The temperature that Drosophila instinctively prefers has a function equivalent to the 'set point' temperature in mammals. Although various temperature-gated TRP channels have been discovered, molecular and cellular components in Drosophila brain responsible for determining the desired temperature remain unknown. We identified these components by performing a large-scale genetic screen of temperature preference behaviour (TPB) in Drosophila. In parallel, we mapped areas of the Drosophila brain controlling TPB by targeted inactivation of neurons with tetanus toxin and a potassium channel (Kir2.1) driven with various brain-specific GAL4s. Here we show that mushroom bodies (MBs) and the cyclic AMP-cAMP-dependent protein kinase A (cAMP-PKA) pathway are essential for controlling TPB. Furthermore, targeted expression of cAMP-PKA pathway components in only the MB was sufficient to rescue abnormal TPB of the corresponding mutants. Preferred temperatures were affected by the level of cAMP and PKA activity in the MBs in various PKA pathway mutants.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Drosophila melanogaster/fisiologia , Corpos Pedunculados/metabolismo , Transdução de Sinais , Temperatura , Animais , Temperatura Corporal/genética , Temperatura Corporal/fisiologia , Regulação da Temperatura Corporal/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Drosophila melanogaster/genética , Atividade Motora/genética , Atividade Motora/fisiologia , Corpos Pedunculados/enzimologia
4.
Arch Environ Contam Toxicol ; 64(3): 456-66, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23224048

RESUMO

Fipronil is a neurotoxic insecticide that inhibits the gamma-aminobutyric acid receptor and can affect gustative perception, olfactory learning, and motor activity of the honeybee Apis mellifera. This study determined the lethal dose (LD50) and the lethal concentration (LC50) for Africanized honeybee and evaluated the toxicity of a sublethal dose of fipronil on neuron metabolic activity by way of histochemical analysis using cytochrome oxidase detection in brains from worker bees of different ages. In addition, the present study investigated the recovery mechanism by discontinuing the oral exposure to fipronil. The results showed that mushroom bodies of aged Africanized honeybees are affected by fipronil, which causes changes in metabolism by increasing the respiratory activity of mitochondria. In antennal lobes, the sublethal dose of fipronil did not cause an increase in metabolic activity. The recovery experiments showed that discontinued exposure to a diet contaminated with fipronil did not lead to recovery of neural activity. Our results show that even at very low concentrations, fipronil is harmful to honeybees and can induce several types of injuries to honeybee physiology.


Assuntos
Abelhas/efeitos dos fármacos , Encéfalo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Poluentes Ambientais/toxicidade , Neurônios , Pirazóis/toxicidade , Envelhecimento/metabolismo , Animais , Abelhas/enzimologia , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Dose Letal Mediana , Corpos Pedunculados/efeitos dos fármacos , Corpos Pedunculados/enzimologia , Corpos Pedunculados/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Neurônios/metabolismo , Testes de Toxicidade Aguda
5.
J Neurosci ; 30(46): 15573-7, 2010 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-21084612

RESUMO

Age-related memory impairment (AMI) is a critical and debilitating phenotype of brain aging, but its underlying molecular mechanisms are largely unknown. In Drosophila, AMI is highly correlated with PKA activity in the mushroom bodies, neural centers essential for forming associative olfactory memories. Heterozygous mutations in DC0 (DC0/+), which encodes the major catalytic subunit of PKA (PKAc), significantly suppress AMI, while overexpression of a DC0 transgene (DC0(+)) impairs memory and occludes AMI. PKA activity does not increase upon aging, and it is not clear whether AMI is caused by continual PKA activity throughout aging or by an acute increase in PKA signaling at old ages. Likewise, it is not clear whether AMI can be ameliorated by acute interventions at old ages or whether continuous intervention throughout aging is necessary. We show here that an acute increase in PKA activity at old ages is sufficient to restore normal AMI in DC0/+ flies. Conversely, acute expression of a PKA inhibitory peptide at old ages is sufficient to reverse AMI in a wild-type background. These results indicate that AMI in Drosophila is caused by an age-dependent change in PKA-dependent signaling that can be reversed by acute interventions at old ages.


Assuntos
Envelhecimento/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/metabolismo , Transtornos da Memória/enzimologia , Envelhecimento/genética , Animais , Animais Geneticamente Modificados , Aprendizagem da Esquiva/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/genética , Drosophila , Proteínas de Drosophila/genética , Ativação Enzimática/fisiologia , Transtornos da Memória/genética , Corpos Pedunculados/enzimologia , Fatores de Tempo
6.
Proc Natl Acad Sci U S A ; 105(52): 20976-81, 2008 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-19075226

RESUMO

Increasing activity of the cAMP/protein kinase A (PKA) pathway has often been proposed as an approach to improve memory in various organisms. However, here we demonstrate that single-point mutations, which decrease PKA activity, dramatically improve aversive olfactory memory in Drosophila. These mutations do not affect formation of early memory phases or of protein synthesis-dependent long-term memory but do cause a significant increase in a specific consolidated form of memory, anesthesia-resistant memory. Significantly, heterozygotes of null mutations in PKA are sufficient to cause this memory increase. Expressing a PKA transgene in the mushroom bodies, brain structures critical for memory formation in Drosophila, reduces memory back to wild-type levels. These results indicate that although PKA is critical for formation of several memory phases, it also functions to inhibit at least one memory phase.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Memória/fisiologia , Corpos Pedunculados/enzimologia , Animais , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Expressão Gênica , Corpos Pedunculados/citologia , Mutação , Transgenes/fisiologia
7.
Proc Natl Acad Sci U S A ; 105(38): 14674-9, 2008 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-18794519

RESUMO

Memory formation involves multiple molecular mechanisms, the nature and components of which are essential to understand these processes. Drosophila is a powerful model to identify genes important for the formation and storage of consolidated memories because the molecular mechanisms and dependence of these processes on particular brain regions appear to be generally conserved. We present evidence that the highly conserved ubiquitin ligase Neuralized (Neur) is expressed in the adult Drosophila mushroom body (MB) alpha/beta lobe peripheral neurons and is a limiting factor for the formation of long-term memory (LTM). We show that loss of one copy of neur gene results in significant LTM impairment, whereas overexpression of Neur in the peripheral neurons of the alpha/beta lobes of the adult MBs results in a dosage-dependent enhancement of LTM. In contrast, learning, early memories, or anesthesia-resistant memory are not affected. We also demonstrate that the role of Neuralized in LTM formation is restricted within the neurons of the periphery of the alpha/beta lobes, and we suggest that this structural subdivision of the MBs participates in the formation of LTM.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Memória/fisiologia , Corpos Pedunculados/fisiologia , Neurônios/enzimologia , Olfato/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Western Blotting , Encéfalo/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Estabilidade Enzimática , Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Imuno-Histoquímica , Transtornos da Memória/metabolismo , Corpos Pedunculados/enzimologia , Mutação , Estrutura Terciária de Proteína/genética , Ubiquitina-Proteína Ligases/genética
8.
Mol Cell Neurosci ; 38(1): 53-65, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18356078

RESUMO

Receptor tyrosine phosphatases (RPTPs) are required for axon guidance during embryonic development in Drosophila. Here we examine the roles of four RPTPs during development of the larval mushroom body (MB). MB neurons extend axons into parallel tracts known as the peduncle and lobes. The temporal order of neuronal birth is reflected in the organization of axons within these tracts. Axons of the youngest neurons, known as core fibers, extend within a single bundle at the center, while those of older neurons fill the outer layers. RPTPs are selectively expressed on the core fibers of the MB. Ptp10D and Ptp69D regulate segregation of the young axons into a single core bundle. Ptp69D signaling is required for axonal extension beyond the peduncle. Lar and Ptp69D are necessary for the axonal branching decisions that create the lobes. Avoidance of the brain midline by extending medial lobe axons involves signaling through Lar.


Assuntos
Axônios/enzimologia , Proteínas de Drosophila/fisiologia , Drosophila/enzimologia , Drosophila/crescimento & desenvolvimento , Corpos Pedunculados/enzimologia , Corpos Pedunculados/crescimento & desenvolvimento , Proteínas Tirosina Fosfatases/fisiologia , Animais , Axônios/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Drosophila/citologia , Proteínas de Drosophila/genética , Larva/citologia , Larva/enzimologia , Larva/crescimento & desenvolvimento , Mosaicismo/embriologia , Corpos Pedunculados/citologia , Vias Neurais/fisiologia , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Semelhantes a Receptores/fisiologia
9.
J Neurosci ; 27(16): 4396-402, 2007 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-17442824

RESUMO

Tyrosine phosphorylation mediates multiple signal transduction pathways that play key roles in developmental processes and behavioral plasticity. The level of tyrosine phosphorylation is regulated by protein tyrosine kinases and protein tyrosine phosphatases (PTPs). Extensive studies have investigated the roles of tyrosine kinases in memory formation. However, there were few studies on PTPs. To date, learning has been shown to be defective only for mouse knock-outs of PTPalpha, leukocyte common antigen-related, or PTPdelta. A major limitation of these studies arises from their inability to distinguish an acute (biochemical) impairment of memory formation from a more chronic abnormality in neurodevelopment. From a behavioral screen for defective long-term memory, we found chi mutants to disrupt expression of the PTP10D protein tyrosine phosphatase gene. We show that chi mutants are normal for learning, early memory, and anesthesia-resistant memory, whereas long-term memory specifically is abolished. Significantly, induction of a heat shock-PTP10D+ transgene before training fully rescues the memory defect of chi mutants, thereby demonstrating an acute role for PTP10D in behavioral plasticity. We show that PTP10D is widely expressed in the embryonic CNS and in the adult brain. Transgenic expression of upstream activating sequence-PTP10D+ in mushroom bodies is sufficient to rescue the memory defect of chi mutants. Our data clearly demonstrate that signaling through PTP10D in mushroom bodies is critical for the formation of long-term memory.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/fisiologia , Memória/fisiologia , Corpos Pedunculados/enzimologia , Proteínas Tirosina Fosfatases/fisiologia , Animais , Animais Geneticamente Modificados , Encéfalo/enzimologia , Drosophila/enzimologia
10.
Sci Rep ; 8(1): 2458, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29410515

RESUMO

Protein kinase A (PKA) has been shown to play a role in a plethora of cellular processes ranging from development to memory formation. Its activity is mediated by the catalytic subunits whereby many species express several paralogs. Drosophila encodes three catalytic subunits (PKA-C1-3) and whereas PKA-C1 has been well studied, the functions of the other two subunits were unknown. PKA-C3 is the orthologue of mammalian PRKX/Pkare and they are structurally more closely related to each other than to other catalytic subunits within their species. PRKX is expressed in the nervous system in mice but its function is also unknown. We now show that the loss of PKA-C3 in Drosophila causes copulation defects, though the flies are active and show no defects in other courtship behaviours. This phenotype is specifically due to the loss of PKA-C3 because PKA-C1 cannot replace PKA-C3. PKA-C3 is expressed in two pairs of interneurons that send projections to the ventro-lateral protocerebrum and the mushroom bodies and that synapse onto motor neurons in the ventral nerve cord. Rescue experiments show that expression of PKA-C3 in these interneurons is sufficient for copulation, suggesting a role in relaying information from the sensory system to motor neurons to initiate copulation.


Assuntos
Copulação , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Interneurônios/enzimologia , Sinapses/enzimologia , Animais , Cérebro/enzimologia , Cérebro/fisiopatologia , Corte , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/deficiência , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Drosophila/deficiência , Drosophila melanogaster/enzimologia , Regulação da Expressão Gênica , Teste de Complementação Genética , Interneurônios/patologia , Camundongos , Neurônios Motores/enzimologia , Neurônios Motores/patologia , Corpos Pedunculados/enzimologia , Corpos Pedunculados/fisiopatologia , Proteínas Serina-Treonina Quinases , Reprodução , Sinapses/patologia , Transmissão Sináptica
11.
J Neurosci ; 25(9): 2348-58, 2005 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-15745961

RESUMO

Shaker, a voltage-dependent K+ channel, is enriched in the mushroom bodies (MBs), the locus of olfactory learning in Drosophila. Mutations in the shaker locus are known to alter excitability, neurotransmitter release, synaptic plasticity, and olfactory learning. However, a direct link of Shaker channels to MB intrinsic neuron (MBN) physiology has not been documented. We found that transcripts for shab, shaw, shaker, and shal, among which only Shaker and Shal have been reported to code for A-type currents, are present in the MBs. The electrophysiological data showed that the absence of functional Shaker channels modifies the distribution of half-inactivation voltages (V(i1/2)) in the MBNs, indicating a segregation of Shaker channels to only a subset (approximately 28%) of their somata. In harmony with this notion, we found that approximately one-fifth of MBNs lacking functional Shaker channels displayed dramatically slowed-down outward current inactivation times and reduced peak-current amplitudes. Furthermore, whereas all MBNs were sensitive to 4-aminopyridine, a nonspecific A-type current blocker, a subset of neurons (approximately 24%) displayed little sensitivity to a Shal-specific toxin. This subset of neurons displaying toxin-insensitive outward currents had more depolarized V(i1/2) values attributable to Shaker channels. Our findings provide the first direct evidence that altered Shaker channel function disrupts MBN physiology in Drosophila. To our surprise, the experimental data also indicate that Shaker channels segregate to a minor fraction of MB neuronal somata (20-30%), and that Shal channels contribute the somatic A-type current in the majority of MBNs.


Assuntos
Proteínas de Drosophila/fisiologia , Corpos Pedunculados/citologia , Neurônios/fisiologia , Potássio/metabolismo , Superfamília Shaker de Canais de Potássio/fisiologia , Canais de Potássio Shal/fisiologia , 4-Aminopiridina/farmacologia , Animais , Animais Geneticamente Modificados , Northern Blotting/métodos , Distribuição de Qui-Quadrado , Relação Dose-Resposta à Radiação , Drosophila , Proteínas de Drosophila/genética , Proteínas de Fluorescência Verde/metabolismo , Larva , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Corpos Pedunculados/enzimologia , Mutagênese/fisiologia , Mutação/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/efeitos da radiação , Técnicas de Patch-Clamp/métodos , Bloqueadores dos Canais de Potássio/farmacologia , RNA Mensageiro/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Superfamília Shaker de Canais de Potássio/genética , Canais de Potássio Shal/genética
12.
PLoS One ; 9(1): e87714, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24498174

RESUMO

Epidermal Growth Factor Receptor (EGFR) signaling has a conserved role in ethanol-induced behavior in flies and mice, affecting ethanol-induced sedation in both species. However it is not known what other effects EGFR signaling may have on ethanol-induced behavior, or what roles other Receptor Tyrosine Kinase (RTK) pathways may play in ethanol induced behaviors. We examined the effects of both the EGFR and Fibroblast Growth Factor Receptor (FGFR) RTK signaling pathways on ethanol-induced enhancement of locomotion, a behavior distinct from sedation that may be associated with the rewarding effects of ethanol. We find that both EGFR and FGFR genes influence ethanol-induced locomotion, though their effects are opposite - EGFR signaling suppresses this behavior, while FGFR signaling promotes it. EGFR signaling affects development of the Drosophila mushroom bodies in conjunction with the JNK MAP kinase basket (bsk), and with the Ste20 kinase tao, and we hypothesize that the EGFR pathway affects ethanol-induced locomotion through its effects on neuronal development. We find, however, that FGFR signaling most likely affects ethanol-induced behavior through a different mechanism, possibly through acute action in adult neurons.


Assuntos
Comportamento Animal/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Proteínas de Drosophila/metabolismo , Receptores ErbB/metabolismo , Etanol/farmacologia , Corpos Pedunculados/enzimologia , Receptores de Peptídeos de Invertebrados/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Receptores ErbB/genética , Locomoção/efeitos dos fármacos , Locomoção/genética , Camundongos , Corpos Pedunculados/citologia , Receptores de Peptídeos de Invertebrados/genética , Transdução de Sinais/genética
13.
PLoS One ; 8(12): e83903, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24349558

RESUMO

A growing body of research indicates that pharmacological inhibition of histone deacetylases (HDACs) correlates with enhancement of long-term memory and current research is concentrated on determining the roles that individual HDACs play in cognitive function. Here, we investigate the role of HDAC4 in long-term memory formation in Drosophila. We show that overexpression of HDAC4 in the adult mushroom body, an important structure for memory formation, resulted in a specific impairment in long-term courtship memory, but had no affect on short-term memory. Overexpression of an HDAC4 catalytic mutant also abolished LTM, suggesting a mode of action independent of catalytic activity. We found that overexpression of HDAC4 resulted in a redistribution of the transcription factor MEF2 from a relatively uniform distribution through the nucleus into punctate nuclear bodies, where it colocalized with HDAC4. As MEF2 has also been implicated in regulation of long-term memory, these data suggest that the repressive effects of HDAC4 on long-term memory may be through interaction with MEF2. In the same genetic background, we also found that RNAi-mediated knockdown of HDAC4 impairs long-term memory, therefore we demonstrate that HDAC4 is not only a repressor of long-term memory, but also modulates normal memory formation.


Assuntos
Proteínas de Drosophila/biossíntese , Regulação Enzimológica da Expressão Gênica/fisiologia , Histona Desacetilases/biossíntese , Memória de Longo Prazo/fisiologia , Corpos Pedunculados/enzimologia , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Técnicas de Silenciamento de Genes , Histona Desacetilases/genética , Corpos Pedunculados/citologia , Fatores de Regulação Miogênica/genética , Fatores de Regulação Miogênica/metabolismo
14.
J Insect Physiol ; 58(2): 228-34, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22108023

RESUMO

Foraging experience is correlated with structural plasticity of the mushroom bodies of the honey bee brain. While several neurotransmitter and intracellular signaling pathways have been previously implicated as mediators of these structural changes, none interact directly with the cytoskeleton, the ultimate effector of changes in neuronal morphology. The Rho family of GTPases are small, monomeric G proteins that, when activated, initiate a signaling cascade that reorganizes the neuronal cytoskeleton. In this study, we measured activity of two members of the Rho family of GTPases, Rac and RhoA, in the mushroom bodies of bees with different durations of foraging experience. A transient increase in Rac activity coupled with a transient decrease in RhoA activity was found in honey bees with 4 days foraging experience compared with same-aged new foragers. These observations are in accord with previous reports based on studies of other species of a growth supporting role for Rac and a growth opposing role for RhoA. This is the first report of Rho GTPase activation in the honey bee brain.


Assuntos
Abelhas/enzimologia , Comportamento Alimentar/fisiologia , Corpos Pedunculados/enzimologia , Proteínas rac de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Envelhecimento/metabolismo , Animais , Dendritos/fisiologia , Proteínas de Insetos/metabolismo , Estações do Ano
15.
PLoS One ; 6(12): e29800, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22216356

RESUMO

Perception of temperature is an important brain function for organisms to survive. Evidence suggests that temperature preference behavior (TPB) in Drosophila melanogaster, one of poikilothermal animals, is regulated by cAMP-dependent protein kinase (PKA) signaling in mushroom bodies of the brain. However, downstream targets for the PKA signaling in this behavior have not been identified. From a genome-wide search for the genes regulated by PKA activity in the mushroom bodies, we identified the cyp6a17 Cytochrome P450 gene as a new target for PKA. Our detailed analysis of mutants by genetic, molecular and behavioral assays shows that cyp6a17 is essential for temperature preference behavior. cyp6a17 expression is enriched in the mushroom bodies of the adult brain. Tissue-specific knockdown and rescue experiments demonstrate that cyp6a17 is required in the mushroom bodies for normal temperature preference behavior. This is the first study, to our knowledge, to show PKA-dependent expression of a cytochrome P450 gene in the mushroom bodies and its role as a key factor for temperature preference behavior. Taken together, this study reveals a new PKA-Cytochrome P450 pathway that regulates the temperature preference behavior.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Drosophila melanogaster/fisiologia , Temperatura , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Corpos Pedunculados/enzimologia , Mutação
16.
J Neurosci Methods ; 179(1): 9-15, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19437615

RESUMO

RNA interference (RNAi) is a powerful technique for the study of molecular mechanisms underlying many biological processes, including brain functions. Among methods for RNAi, systemic administration of double-stranded RNA (systemic RNAi) is the most convenient for basic research as well as medical application, but it has yielded only limited success. To our knowledge, systemic RNAi has not been achieved for the study of learning and memory in any animals. Here we demonstrate successful systemic RNAi of the NOS gene coding for nitric oxide synthase, which, as we previously suggested, plays a critical role in the formation of olfactory long-term memory (LTM), in the nymphal cricket Gryllus bimaculatus. In situ hybridization demonstrated a high level of expression of NOS in a subset of Kenyon cells of the mushroom body, which is known to participate in olfactory learning and memory, in addition to some neurons around the antenna lobe and the base of the optic lobe. Injection of NOS double-stranded RNA (dsRNA) into the haemolymph completely impaired 1-day memory retention, although 30 min retention was unaffected. This impairment was fully rescued by injection of an NO donor, NOR3, thus suggesting that the effect of NOS dsRNA is through inhibition of NOS. Inhibition of NOS had no effects on recall of LTM. The results demonstrate that silencing of NOS expression by systemic RNAi impairs LTM formation. Systemic RNAi will become a useful method for study of the molecular mechanisms of learning and memory.


Assuntos
Aprendizagem/fisiologia , Memória/fisiologia , Corpos Pedunculados/enzimologia , Óxido Nítrico Sintase/metabolismo , Interferência de RNA , Animais , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Inibidores Enzimáticos/farmacologia , Expressão Gênica , Gryllidae , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos , Corpos Pedunculados/citologia , NG-Nitroarginina Metil Éster/farmacologia , Neurônios/fisiologia , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/genética , Nitrocompostos/farmacologia , Lobo Óptico de Animais não Mamíferos/citologia , RNA de Cadeia Dupla/metabolismo , RNA Mensageiro/metabolismo , Homologia de Sequência
17.
Dev Biol ; 280(1): 177-86, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15766757

RESUMO

The Drosophila mushroom bodies (MBs), paired brain structures composed of vertical and medial lobes, achieve their final organization at metamorphosis. The alpha lobe absent (ala) mutant randomly lacks either the vertical lobes or two of the median lobes. We characterize the ala axonal phenotype at the single-cell level, and show that the ala mutation affects Drosophila ethanolamine (Etn) kinase activity and induces Etn accumulation. Etn kinase is overexpressed in almost all cancer cells. We demonstrate that this enzymatic activity is required in MB neuroblasts to allow a rapid rate of cell division at metamorphosis, linking Etn kinase activity with mitotic progression. Tight control of the pace of neuroblast division is therefore crucial for completion of the developmental program in the adult brain.


Assuntos
Divisão Celular/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Corpos Pedunculados/citologia , Neurônios/citologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Etanolamina/metabolismo , Temperatura Alta , Metamorfose Biológica , Corpos Pedunculados/enzimologia , Corpos Pedunculados/crescimento & desenvolvimento , Mutação , Neoplasias/enzimologia , Neurônios/fisiologia , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA