Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 35(6): 1834-1847, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-36896651

RESUMO

Small regulatory RNAs can move between organisms and regulate gene expression in the recipient. Whether the trans-species small RNAs being exported are distinguished from the normal endogenous small RNAs of the source organism is not known. The parasitic plant Cuscuta campestris (dodder) produces many microRNAs that specifically accumulate at the host-parasite interface, several of which have trans-species activity. We found that induction of C. campestris interface-induced microRNAs is similar regardless of host species and occurs in C. campestris haustoria produced in the absence of any host. The loci-encoding C. campestris interface-induced microRNAs are distinguished by a common cis-regulatory element. This element is identical to a conserved upstream sequence element (USE) used by plant small nuclear RNA loci. The properties of the interface-induced microRNA primary transcripts strongly suggest that they are produced via U6-like transcription by RNA polymerase III. The USE promotes accumulation of interface-induced miRNAs (IIMs) in a heterologous system. This promoter element distinguishes C. campestris IIM loci from other plant small RNAs. Our data suggest that C. campestris IIMs are produced in a manner distinct from canonical miRNAs. All confirmed C. campestris microRNAs with documented trans-species activity are interface-induced and possess these features. We speculate that RNA polymerase III transcription of IIMs may allow these miRNAs to be exported to hosts.


Assuntos
Cuscuta , MicroRNAs , Parasitos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Cuscuta/genética , Cuscuta/metabolismo , Parasitos/genética , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , RNA Polimerase III/metabolismo , Interações Hospedeiro-Parasita , Plantas/genética
2.
Planta ; 256(6): 118, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36376619

RESUMO

MAIN CONCLUSIONS: C. campestris parasitisation increases internal host defences at the expense of environmentally directed ones in the host species A. campestris, thus limiting plant defence against progressive parasitisation. Cuscuta campestris Yunck is a holoparasitic species that parasitises wild species and crops. Among their hosts, Artemisia campestris subsp. variabilis (Ten.) Greuter is significantly affected in natural ecosystems. Limited information is available on the host recognition mechanism and there are no data on the interactions between these species and the effects on the primary and specialised metabolism in response to parasitisation. The research aims at evaluating the effect of host-parasite interactions, through a GC-MS untargeted metabolomic analysis, chlorophyll a fluorescence, ionomic and δ13C measurements, as well as volatile organic compound (VOC) fingerprint in A. campestris leaves collected in natural environment. C. campestris parasitisation altered plant water status, forcing stomatal opening, stimulating plant transpiration, and inducing physical damages to the host antenna complex, thus reducing the efficiency of its photosynthetic machinery. Untargeted-metabolomics analysis highlighted that the parasitisation significantly perturbed the amino acids and sugar metabolism, inducing an increase in the production of osmoprotectants, which generally accumulate in plants as a protective strategy against oxidative stress. Notably, VOCs analysis highlighted a reduction in sesquiterpenoids and an increase in monoterpenoids levels; involved in plant defence and host recognition, respectively. Moreover, C. campestris induced in the host a reduction in 3-hexenyl-acetate, a metabolite with known repellent activity against Cuscuta spp. We offer evidences that C. campestris parasitisation increases internal host defences via primary metabolites at the expense of more effective defensive compounds (secondary metabolites), thus limiting A. campestris defence against progressive parasitisation.


Assuntos
Artemisia , Cuscuta , Cuscuta/metabolismo , Ecossistema , Clorofila A/metabolismo , Fotossíntese
3.
Genomics ; 112(4): 2695-2702, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32145379

RESUMO

The protein-coding genes and pseudogenes of Cuscuta australis had the diverse contribution to the formation and evolution of parasitism. The codon usage pattern analysis of these two type genes could be used to understand the gene transcription and translation. In this study, we systematically analyzed the codon usage patterns of protein-coding sequences and pseudogenes sequences in C. australis. The results showed that the high frequency codons of protein coding sequences and pseudogenes had the same A/U bias in the third position. However, these two sequences had converse bias at the third base in optimal codons: the protein coding sequences preferred G/C-ending codons while pseudogene sequences preferred A/U-ending codons. Neutrality plot and effective number of codons plot revealed that natural selection played a more important role than mutation pressure in two sequences codon usage bias. Furthermore, the gene expression level had a significant positive correlation with codon usage bias in C. australis. Highly-expressed protein coding genes exhibited a higher codon bias than lowly-expressed genes. Meanwhile, the high-expression genes tended to use G/C-ending synonymous codons. This result further verified the optimal codons usage bias and its correlation with the gene expression in C. australis.


Assuntos
Uso do Códon , Cuscuta/genética , Expressão Gênica , Proteínas de Plantas/genética , Códon , Cuscuta/metabolismo , Genoma de Planta , Proteínas de Plantas/metabolismo , Pseudogenes
4.
J Exp Bot ; 71(3): 1171-1184, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31665509

RESUMO

The dodders (Cuscuta spp.) are a genus of shoot parasites. In nature, a dodder often simultaneously parasitizes two or more neighboring hosts. Salt stress is a common abiotic stress for plants. It is unclear whether dodder transmits physiologically relevant salt stress-induced systemic signals among its hosts and whether these systemic signals affect the hosts' tolerance to salt stress. Here, we simultaneously parasitized two or more cucumber plants with dodder. We found that salt treatment of one host highly primed the connected host, which showed strong decreases in the extent of leaf withering and cell death in response to subsequent salt stress. Transcriptomic analysis indicated that 24 h after salt treatment of one cucumber, the transcriptome of the other dodder-connected cucumber largely resembled that of the salt-treated one, indicating that inter-plant systemic signals primed these dodder-connected cucumbers at least partly through transcriptomic reconfiguration. Furthermore, salt treatment of one of the cucumbers induced physiological changes, including altered proline contents, stomatal conductance, and photosynthetic rates, in both of the dodder-connected cucumbers. This study reveals a role of dodder in mediating salt-induced inter-plant signaling among dodder-connected hosts and highlights the physiological function of these mobile signals in plant-plant interactions under salt stress.


Assuntos
Cuscuta/metabolismo , Tolerância ao Sal , Ecossistema , Interações Hospedeiro-Parasita , Transcriptoma
5.
Physiol Plant ; 168(4): 934-947, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31605394

RESUMO

The uptake of inorganic nutrients by rootless parasitic plants, which depend on host connections for all nutrient supplies, is largely uncharted. Using X-ray fluorescence spectroscopy (XRF), we analyzed the element composition of macro- and micronutrients at infection sites of the parasitic angiosperm Cuscuta reflexa growing on hosts of the genus Pelargonium. Imaging methods combining XRF with 2-D or 3-D (confocal) microscopy show that most of the measured elements are present at similar concentrations in the parasite compared to the host. However, calcium and strontium levels drop pronouncedly at the host/parasite interface, and manganese appears to accumulate in the host tissue surrounding the interface. Chlorine is present in the haustorium at similar levels as in the host tissue but is decreased in the stem of the parasite. Thus, our observations indicate a restricted uptake of calcium, strontium, manganese and chlorine by the parasite. Xylem-mobile dyes, which can probe for xylem connectivity between host and parasite, provided evidence for an interspecies xylem flow, which in theory would be expected to carry all of the elements indiscriminately. We thus conclude that inorganic nutrient uptake by the parasite Cuscuta is regulated by specific selective barriers whose existence has evaded detection until now.


Assuntos
Cuscuta/metabolismo , Pelargonium , Doenças das Plantas , Minerais
6.
Planta ; 248(3): 591-599, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29808234

RESUMO

MAIN CONCLUSION: The weevil gall contains two distinct regions, differing in hydrolytic and antioxidant enzymes activity and profiles, which is also functionally distinct from the non-infected Cuscuta stems. Weevils of the genus Smicronyx are gall-forming insects, widely distributed on parasitic flowering plants of the genus Cuscuta. Thus, they are considered epiparasites and potential method for biological control of their agriculturally harmful hosts. Although several reports on gall formation in Cuscuta spp. exist, the metabolic and functional changes, occurring in the gall, remained largely unknown. Smicronyx sp. galls, collected from a wild Cuscuta campestris population, were dissected into two distinct regions, inner and outer cortex, defined by the higher chlorophyll content of the inner cortex. Based on hydrolytic and antioxidant enzymes activity and isoenzymatic profiles as analyzed after electrophoretic separation, we suggested that the gall differs in its metabolic activity from the non-infected plant tissue. While the outer cortex serves as a region of nutrient storage and mobilization, the inner cortex is directly involved in larvae nutrition. The increase in metabolic activity resulted in significantly increased superoxide dismutase activity in the gall, while several other antioxidant enzymes diminished. The present research offers new insights into the functionally differing regions of Smicronyx galls and the metabolic changes, induced in C. campestris in result of the gall formation.


Assuntos
Cuscuta/parasitologia , Tumores de Planta/parasitologia , Gorgulhos/metabolismo , Animais , Clorofila/metabolismo , Cuscuta/enzimologia , Cuscuta/metabolismo , Eletroforese em Gel de Poliacrilamida , Peptídeo Hidrolases/metabolismo , Peroxidases/metabolismo , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Superóxido Dismutase/metabolismo
7.
Protein Expr Purif ; 152: 137-145, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-26876003

RESUMO

Tissue-type plasminogen activator (tPA) is a serine protease that plays a crucial role in the fibrinolytic system. We increased the activity of tPA by splicing the active site of dodder-cuscutain gene to human tPA. The chimeric cDNA of tPA was constructed by Splicing by Overlap Extension Polymerase Chain Reaction (SOEing-PCR) method and transferred to the hairy roots of tobacco using different strains of Agrobacterium rhizogenes. Chimeric-tPA was purified by lysine-sepharose chromatography and specific aptamers were designed using SELEX method. Multi wall carbon nanotubes were functionalized with selected aptamers, packed in a column, and used for purification. The results demonstrated that selected aptamer having KD values of 0.320 nM and IC50 of 28.9 nM possessed good affinity to tPA, and the chimeric-tPA was properly purified by aptamer-chromatography. Hairy roots expressing chimeric-tPA and normal-tPA produced 900 and 450 ngmg-1 of total protein, respectively. The activities of chimeric-tPA and normal-tPA were 90 and 60 IUml-1, respectively. Compared to the normal-tPA, chimeric-tPA showed more activity.


Assuntos
Aptâmeros de Nucleotídeos/química , Cromatografia de Afinidade/métodos , Cuscuta/genética , Nicotiana/genética , Proteínas de Plantas/isolamento & purificação , Ativador de Plasminogênio Tecidual/isolamento & purificação , Agrobacterium/genética , Agrobacterium/metabolismo , Aptâmeros de Nucleotídeos/síntese química , Clonagem Molecular , Cuscuta/metabolismo , Ensaios Enzimáticos , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Nanotubos de Carbono/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Técnica de Seleção de Aptâmeros , Ativador de Plasminogênio Tecidual/biossíntese , Ativador de Plasminogênio Tecidual/genética , Nicotiana/metabolismo
8.
Plant Cell Physiol ; 58(11): 1868-1877, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29016904

RESUMO

Stem parasitic plants (Cuscuta spp.) develop a specialized organ called a haustorium to penetrate their hosts' stem tissues. To reach the vascular tissues of the host plant, the haustorium needs to overcome the physical barrier of the cell wall, and the parasite-host interaction via the cell wall is a critical process. However, the cell wall components responsible for the establishment of parasitic connections have not yet been identified. In this study, we investigated the spatial distribution patterns of cell wall components at a parasitic interface using parasite-host complexes of Cuscuta campestris-Arabidopsis thaliana and Cuscuta japonica-Glycine max. We focused on arabinogalactan proteins (AGPs), because AGPs accumulate in the cell walls of searching hyphae of both C. campestris and C. japonica. We found more AGPs in elongated haustoria than in pre haustoria, indicating that AGP accumulation is developmentally regulated. Using in situ hybridization, we identified five genes in C. campestris that encode hyphal-expressed AGPs that belong to the fasciclin-like AGP (FLA) family, which were named CcFLA genes. Three of the five CcFLA genes were expressed in the holdfast, which develops on the Cuscuta stem epidermis at the attachment site for the host's stem epidermis. Our results suggest that AGPs are involved in hyphal elongation and adhesion to host cells, and in the adhesion between the epidermal tissues of Cuscuta and its host.


Assuntos
Cuscuta/citologia , Interações Hospedeiro-Parasita/fisiologia , Mucoproteínas/metabolismo , Caules de Planta/metabolismo , Arabidopsis/parasitologia , Adesão Celular/fisiologia , Parede Celular/imunologia , Parede Celular/metabolismo , Cuscuta/genética , Cuscuta/metabolismo , Epitopos , Regulação da Expressão Gênica de Plantas , Mucoproteínas/química , Mucoproteínas/genética , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/parasitologia
9.
Plant Physiol ; 172(1): 181-97, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27482077

RESUMO

Parasitic plants acquire diverse secondary metabolites from their hosts, including defense compounds that target insect herbivores. However, the ecological implications of this phenomenon, including the potential enhancement of parasite defenses, remain largely unexplored. We studied the translocation of glucosinolates from the brassicaceous host plant Arabidopsis (Arabidopsis thaliana) into parasitic dodder vines (Convolvulaceae; Cuscuta gronovii) and its effects on the parasite itself and on dodder-aphid interactions. Aliphatic and indole glucosinolates reached concentrations in parasite tissues higher than those observed in corresponding host tissues. Dodder growth was enhanced on cyp79B2 cyp79B3 hosts (without indole glucosinolates) but inhibited on atr1D hosts (with elevated indole glucosinolates) relative to wild-type hosts, which responded to parasitism with localized elevation of indole and aliphatic glucosinolates. These findings implicate indole glucosinolates in defense against parasitic plants. Rates of settling and survival on dodder vines by pea aphids (Acyrthosiphon pisum) were reduced significantly when dodder parasitized glucosinolate-producing hosts (wild type and atr1D) compared with glucosinolate-free hosts (cyp79B2 cyp79B3 myb28 myb29). However, settling and survival of green peach aphids (Myzus persicae) were not affected. M. persicae population growth was actually reduced on dodder parasitizing glucosinolate-free hosts compared with wild-type or atr1D hosts, even though stems of the former contain less glucosinolates and more amino acids. Strikingly, this effect was reversed when the aphids fed directly upon Arabidopsis, which indicates an interactive effect of parasite and host genotype on M. persicae that stems from host effects on dodder. Thus, our findings indicate that glucosinolates may have both direct and indirect effects on dodder-feeding herbivores.


Assuntos
Afídeos/fisiologia , Arabidopsis/metabolismo , Cuscuta/fisiologia , Glucosinolatos/metabolismo , Animais , Afídeos/metabolismo , Arabidopsis/genética , Arabidopsis/parasitologia , Cromatografia Líquida de Alta Pressão , Cuscuta/metabolismo , Cuscuta/parasitologia , Comportamento Alimentar/fisiologia , Genótipo , Interações Hospedeiro-Parasita , Indóis/metabolismo , Mutação
10.
New Phytol ; 207(3): 805-16, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25808919

RESUMO

Host plant penetration is the gateway to survival for holoparasitic Cuscuta and requires host cell wall degradation. Compositional differences of cell walls may explain why some hosts are amenable to such degradation while others can resist infection. Antibody-based techniques for comprehensive profiling of cell wall epitopes and cell wall-modifying enzymes were applied to several susceptible hosts and a resistant host of Cuscuta reflexa and to the parasite itself. Infected tissue of Pelargonium zonale contained high concentrations of de-esterified homogalacturonans in the cell walls, particularly adjacent to the parasite's haustoria. High pectinolytic activity in haustorial extracts and high expression levels of pectate lyase genes suggest that the parasite contributes directly to wall remodeling. Mannan and xylan concentrations were low in P. zonale and in five susceptible tomato introgression lines, but high in the resistant Solanum lycopersicum cv M82, and in C. reflexa itself. Knowledge of the composition of resistant host cell walls and the parasite's own cell walls is useful in developing strategies to prevent infection by parasitic plants.


Assuntos
Parede Celular/metabolismo , Cuscuta/metabolismo , Interações Hospedeiro-Parasita , Metabolômica , Parasitos/fisiologia , Pelargonium/parasitologia , Solanum lycopersicum/parasitologia , Animais , Cuscuta/citologia , Resistência à Doença , Epitopos/metabolismo , Glucanos/metabolismo , Solanum lycopersicum/citologia , Análise em Microsséries , Pectinas/metabolismo , Pelargonium/citologia , Doenças das Plantas/parasitologia , Caules de Planta/fisiologia , Plantas Geneticamente Modificadas , Polissacarídeo-Liases/metabolismo , Polissacarídeos/metabolismo , Xilanos/metabolismo
11.
Mycorrhiza ; 25(7): 573-85, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25720736

RESUMO

Seedlings of parasitic Cuscuta species are autotrophic but can survive only a short period of time, during which they must locate and attach to a suitable host. They have an ephemeral root-like organ considered not a "true" root by most studies. In the present study, two species with contrasting ecology were examined: Cuscuta gronovii, a North American riparian species, and Cuscuta campestris, an invasive dodder that thrives in disturbed habitats. The morphology, structure, and absorptive capability of their root-like organ were compared, their potential for colonization by two species of arbuscular mycorrhizal fungi (AMF) was assessed, and the effect of the AMF on seedling growth and survival was determined. The root of both species absorbed water and interacted with AMF, but the two species exhibited dissimilar growth and survival patterns depending on the colonization level of their seedlings. The extensively colonized seedlings of C. gronovii grew more and survived longer than non-colonized seedlings. In contrast, the scarce colonization of C. campestris seedlings did not increase their growth or longevity. The differential growth responses of the AMF-colonized and non-colonized Cuscuta species suggest a mycorrhizal relationship and reflect their ecology. While C. gronovii roots have retained a higher ability to interact with AMF and are likely to take advantage of fungal communities in riparian habitats, the invasive C. campestris has largely lost this ability possibly as an adaptation to disturbed ecosystems. These results indicate that dodders have a true root, even if much reduced and ephemeral, that can interact with AMF.


Assuntos
Cuscuta/crescimento & desenvolvimento , Cuscuta/microbiologia , Micorrizas/fisiologia , Cuscuta/anatomia & histologia , Cuscuta/metabolismo , Ecossistema , Plântula/anatomia & histologia , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/microbiologia , Especificidade da Espécie
12.
Int J Mol Sci ; 15(1): 830-8, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24413752

RESUMO

Reliable, rapid and inexpensive detection of cellulolytic enzymes that can be used for a wide variety of biological and environmental samples are currently in high demand. Here, a new cellulase detection protocol is described that circumvents problems observed with popular agar-based methods by exploiting the ability of carboxymethylcellulose (CMC) to form gel-like surfaces on its own. These pure CMC-layers are sensitive to cellulolytic degradation and stainable by Gram's iodine without showing unwelcome reactions with other enzymes. The staining intensity negatively correlates with the enzyme activity and can be used for quantification. Cellulase activities are not obstructed by high sugar contents (e.g., in plant material) which limit the applicability of other quantification methods, making our new method particularly attractive for screening of plant extracts. A useful variant of this new method is its applicability to plant tissue prints for spatial mapping of the cellulolytic activity in a zymogram-like fashion.


Assuntos
Carboximetilcelulose Sódica/metabolismo , Celulase/análise , Ensaios Enzimáticos , Ágar/química , Ágar/metabolismo , Carboximetilcelulose Sódica/química , Cuscuta/metabolismo , Pelargonium/metabolismo , Plantas/metabolismo , Solanum/metabolismo , Especificidade por Substrato
13.
Plant Physiol Biochem ; 210: 108633, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38663263

RESUMO

Cuscuta campestris is a common and problematic parasitic plant which relies on haustoria to connect to and siphon nutrients from host plants. Glycoside hydrolase family 9 (GH9) cellulases (EC 3.2.1.4) play critical roles in plant cell wall biosynthesis and disassembly, but their roles during Cuscuta host invasion remains underexplored. In this study, we identified 22 full-length GH9 cellulase genes in C. campestris genome, which encoded fifteen secreted and seven membrane-anchored cellulases that showed distinct phylogenetic relationships. Expression profiles suggested that some of the genes are involved in biosynthesis and remodeling of the parasite's cell wall during haustoriogenesis, while other genes encoding secreted B- and C-type cellulases are tentatively associated with degrading host cell walls during invasion. Transcriptomic data in a host-free system and in the presence of susceptible or partially resistant tomato hosts, showed for especially GH9B7, GH9B11 and GH9B12 a shift in expression profiles in the presence of hosts, being more highly expressed during host attachment, indicating that Cuscuta can tune cellulase expression in response to a host. Functional analyses of recombinant B- and C-type cellulases showed endoglucanase activities over wide pH and temperature conditions, and activities towards multiple cellulose and hemicellulose substrates. These findings improve our understanding of host cell wall disassembly by Cuscuta, and cellulase activity towards broad substrate range potentially explain its wide host range. This is the first study to provide a broad biochemical insight into Cuscuta GH9 cellulases, which based on our study may have potential applications in industrial bioprocessing.


Assuntos
Celulases , Cuscuta , Celulases/metabolismo , Celulases/genética , Especificidade por Substrato , Cuscuta/genética , Cuscuta/enzimologia , Cuscuta/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Filogenia , Regulação da Expressão Gênica de Plantas , Parede Celular/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/enzimologia
14.
Behav Brain Res ; 465: 114887, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38499156

RESUMO

Sepsis-associated encephalopathy (SAE) frequently encounters patients who are in intensive care units and ∼70% of patients with severe systemic infection. However, due to the unclear pathological mechanisms of SAE, the desease-modifying drug is still lack. Here, we aimed to explore whether the flavonoid components extracted from CCL (CCLF) seeds possess protective effects on SAE animals, and systematically evaluate the transcriptomic alteration (in the hippocampus) after CCLF treatment on SAE animals employing RNA sequencing. We observed that CCLF improved the brain's learning and memory abilities and the structural integrity of BBB using cecal ligation and puncture (CLP)-induced SAE animal models, evaluated by behavioral test and tissue examination of animals respectively. RNA sequencing results showed that CCLF treatment reverses SAE-induced transcriptomic alteration in the hippocampus. Moreover, CCLF also dramatically relieved inflammatory (such as TNF-α, IL-2, and IL-6) and oxidative (MDA and SOD activity) stresses, and inhibited SAE-induced neuron apoptosis in brain tissues. More importantly, CCLF restored the PI3K/AKT signaling pathway and then induced the Nrf2 nuclear translocation to drive HO-1 expression both in vitro and in vivo. LY294002, an inhibitor of PI3K, obviously blocked CCLF's functions on anti-apoptosis, anti-inflammation, and anti-oxidation in vivo, demonstrating that CCLF achieves its bioactivities in a PI3K/AKT signaling dependent manner. Altogether, CCLF exhibits remarkable neuro-protective function and may be a promising candidate for further clinical trials for SAE treatment.


Assuntos
Cuscuta , Encefalopatia Associada a Sepse , Sepse , Animais , Cuscuta/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/patologia , Encefalopatia Associada a Sepse/tratamento farmacológico
15.
New Phytol ; 200(4): 1225-33, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23914903

RESUMO

The cross-species movement of mRNA from hosts to the parasitic plant Cuscuta pentagona has been reported previously, but has not been characterized quantitatively or with attention to uptake patterns and the fate of specific mRNAs. Real-time PCR and RNA-Seq approaches were used to identify and characterize mobile transcripts from tomato and Arabidopsis hosts into C. pentagona. Tomato transcripts of Gibberellic Acid Insensitive (SlGAI) and Cathepsin D Proteinase Inhibitor (SlPI) differed significantly in the rate of uptake into the parasite, but were then distributed over the length of the parasite shoot. When parasite shoots were detached from the hosts, the SlPI transcript concentrations in the parasite showed the greatest decrease within the first 8 h. Arabidopsis transcripts also varied in mobility into the parasite, and assay of specific regions of a Salt-inducible Zinc Finger Protein (AtSZF1) transcript revealed distinct patterns of abundance in the parasite. The uptake and distribution of host mRNAs into C. pentagona appears to vary among mRNAs, and perhaps even with the region of the mRNA under investigation. We propose that mRNAs traffic into the parasite via multiple routes, or that other mechanisms for selective uptake and mobility exist between host and parasite.


Assuntos
Arabidopsis/genética , Cuscuta/metabolismo , Transporte de RNA , RNA de Plantas/metabolismo , Solanum lycopersicum/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , Análise de Sequência de RNA , Transcriptoma/genética
16.
BMC Complement Med Ther ; 22(1): 335, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550546

RESUMO

BACKGROUND: Cuscuta epithymum Murr. (C. epithymum), as an herbal medicine, has played an anti-cancerous role in various studies; however, its possible neuroprotective effects have been neglected. Here, we aimed to investigate the protective effects of C. epithymum seeds crude extract and different fractions on rat glioblastoma cells (C6) in L-glutamate oxidative condition. METHODS: Initially, the total phenolic content of C. epithymum crude extract and the fractions (all produced by maceration method) was determined. Subsequently, C6 cells were pre-treated with the various concentrations of crude extract and fractions 24 h before L-glutamate exposure. Likewise, C6 cells were treated with the same concentrations of crude extract and fractions 24 h after exposure to L-glutamate. The cell viability and morphology were compared in crude extract and fractions groups, then superoxide dismutase (SODs) activity, reactive oxygen species (ROS), and malondialdehyde (MDA) levels were measured. The flow cytometry test was used to study C. epithymum crude extract's effects on the cell cycle and also to quantify the apoptosis, necrosis, and live cells population in different groups. RESULTS: C. epithymum crude extract and fractions (hexanoic, dichloromethanolic, and methanolic) had concentration-dependent cytotoxicity (IC50:126.47, 2101.96, 140.97, and 218.96 µg/ml, respectively). The crude extract and methanolic fraction contained phenolic compounds (55.99 ± 2.795 and 50.80 ± 2.969 mg gallic acid/g extract), while in hexanoic and dichloromethanolic fractions, the phenolic content was undetectable. In the cell viability assay, in comparison to fractions, the crude extract showed a more protective effect against glutamate-induced oxidative condition (P < 0.0001). The crude extract increased the SODs activity (P < 0.001) and decreased MDA and ROS levels (P < 0.0001) in comparison to the glutamate group. The crude extract significantly increased the population of cells in G1 (from 63.04 to 76.29) and decreased the percentage of cells in G2 (from 11.56 to 6.7) and S phase (from 25.4 to 17.01). In addition, it decreased the apoptotic and necrotic cell populations (from 34 to 17.1) and also increased the percentage of live cells (from 66.8 to 83.4 percent) in the flow cytometry test. CONCLUSION: C. epithymum crude extract plays a neuroprotective role by activating the defense mechanisms in cell against the oxidative condition.


Assuntos
Cuscuta , Plantas Medicinais , Ratos , Animais , Extratos Vegetais/farmacologia , Ácido Glutâmico/toxicidade , Cuscuta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plantas Medicinais/metabolismo , Fenóis/farmacologia
17.
Acta Cir Bras ; 37(2): e370204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35507968

RESUMO

PURPOSE: To evaluate the protective effect of Cuscuta chinensis Lam. polysaccharides (PCCL) on 5-fluorouracil-(5-FU)-induced intestinal mucositis (IM) in mice. METHODS: PCCL was orally administered at a dose of 20 mg·kg-1 for 7 days and its protective effect on 5-FU-induced IM (5-FU, 50 mg·kg-1 for 5 days) was evaluated by monitoring changes in body weight, degree of diarrhea, levels of tissue inflammatory factors (tumor necrosis factor α, interleukin 6, and interleukin 1ß levels), apoptosis rates, and the expression levels of caspase-3, Bax and Bcl-2. RESULTS: The severity of mucosal injury (as reflected by body weight changes, degree of diarrhea, height of villi, and damage to crypts) was significantly attenuated by PCCL administration. PCCL also reduced the levels of tissue inflammatory factors, the apoptosis rate, and the expression of caspase-3 and Bax, and increased Bcl-2 expression. CONCLUSIONS: PCCL administration may be significantly protective against 5-FU-induced IM by inhibiting apoptosis and regulating the abnormal inflammation associated with it.


Assuntos
Cuscuta , Mucosite , Animais , Antimetabólitos Antineoplásicos/efeitos adversos , Peso Corporal , Caspase 3/metabolismo , Cuscuta/metabolismo , Diarreia/induzido quimicamente , Diarreia/tratamento farmacológico , Diarreia/patologia , Fluoruracila/efeitos adversos , Mucosa Intestinal/patologia , Camundongos , Mucosite/induzido quimicamente , Mucosite/tratamento farmacológico , Mucosite/prevenção & controle , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Sementes , Proteína X Associada a bcl-2/metabolismo
18.
Food Funct ; 13(14): 7638-7649, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35735022

RESUMO

Neuroinflammation, which occurs due to microglia, is related to the pathogenesis of neurodegenerative disorders. Recently, the development of functional foods that down-regulate over-activated microglial cells to prevent the progression of neurodegenerative disorders has been proposed, since over-activated microglia induce a chronic source of neurotoxic factors and reduce neuronal survival. Thus, the anti-neuroinflammatory effects of a functional food mixture (CCL01) including Cuscuta seeds and Lactobacillus paracasei NK112 on lipopolysaccharide (LPS)-induced experimental models were investigated. In LPS-induced in vitro models, the expression levels of inflammatory mediators (e.g., inducible nitric oxide synthase, cyclooxygenase-2, nitric oxide, and prostaglandin E2) and pro-inflammatory cytokines (e.g., tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6) were decreased upon CCL01 treatment. CCL01 showed an anti-neuroinflammatory effect in LPS-induced microglial cells via the inhibition of the mitogen-activated protein kinase (MAPK)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway and the activation of the nuclear factor erythroid-2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. In the LPS-treated in vivo mouse models, the increased expression of ionized calcium binding adaptor molecule 1 (Iba-1), which indicates microglial activity, was markedly decreased upon treatment with CCL01 (50 and 200 mg kg-1) in the hippocampus and cortex areas of the mouse brains in comparison with the LPS-injected group. In addition, the groups to which CCL01 was administered had significantly decreased plasma levels of tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6 in the LPS-injected mouse models. Our data suggest that CCL01 may be a potential anti-neuroinflammatory agent that can prevent microglia overactivation, and it could be useful for developing functional foods.


Assuntos
Cuscuta , Lacticaseibacillus paracasei , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Cuscuta/metabolismo , Alimento Funcional , Interleucina-6/metabolismo , Lacticaseibacillus paracasei/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Microglia , NF-kappa B/genética , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Sementes/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
19.
Cells ; 10(6)2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198864

RESUMO

Members of the genus Cuscuta are generally considered to be non-photosynthetic, stem-holoparasitic flowering plants. Under certain circumstances, at least some members of the genus are capable of limited photosynthesis. The galls of the Smicronyx weevils formed on Cuscuta campestris are particularly rich in chlorophylls compared to the stem of the parasitic plant. In the present study, we aimed to characterize the photosynthetic activity in the inner and outer gall cortices in comparison to the non-photosynthetic stems and a reference plant (Arabidopsis thaliana). The recorded prompt chlorophyll fluorescence transients were analyzed using JIP test. Detailed analysis of the chlorophyll fluorescence confirmed the presence of actively functioning photosynthetic machinery, especially in the inner cortex of the galls. This photosynthesis, induced by the insect larvae, did not reach the levels of the photosynthetic activity in Arabidopsis thaliana plants. Thylakoid protein complexes were identified by separation with two-dimensional Blue Native/SDS PAGE. It appeared that some of the complexes presented in A. thaliana are missing in C. campestris. We hypothesize that the insect-triggered transition from non-photosynthetic to photosynthetic tissue in the gall is driven by the increased requirements for nutrients related to the larval nutrition.


Assuntos
Besouros , Cuscuta , Fotossíntese , Caules de Planta , Animais , Cuscuta/metabolismo , Cuscuta/parasitologia , Caules de Planta/metabolismo , Caules de Planta/parasitologia
20.
Plant Sci ; 303: 110770, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33487354

RESUMO

Dodder is a holoparasitic flowering plant that re-establishes parasitism with the host when broken off from the host. However, how in vitro dodder shoots recycle stored nutrients to maintain growth for reparasitizing hosts is not well characterized. Here, the spatial and temporal distribution characteristics of carbohydrates and reactive oxygen species (ROS) were analysed to explore the mechanism of recycling stored nutrients in dodder shoots in vitro. Our results showed that in vitro dodder shoots grew actively for more than 10 d, while dry mass decreased continuously. During this process, the transcript levels and activities of amylases gradually increased until 2 d and then declined in basal stems, which induced starch degradation at the tissue, cellular and subcellular levels. Additionally, the distribution characteristics of H2O2 and the activities and transcript levels of antioxidant enzymes indicated that shoot tips exhibited more robust ROS-scavenging capacity, and basal stems maintained higher ROS accumulation. Comparative proteomics analysis revealed that starch in basal stems acted as an energy source, and the glycolysis, TCA cycle and pentose phosphate pathway represented the energy supply for shoot tip elongation with time. These results indicated that efficient nutrient recycling and ROS modulation facilitated the parasitism of dodder grown in vitro by promoting shoot elongation growth to reach the host.


Assuntos
Antioxidantes/metabolismo , Carbono/metabolismo , Cuscuta/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Metabolismo dos Carboidratos , Cuscuta/metabolismo , Cuscuta/ultraestrutura , Microscopia Eletrônica de Transmissão , Brotos de Planta/metabolismo , Brotos de Planta/ultraestrutura , Proteômica , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA