Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 629(8012): 697-703, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658755

RESUMO

RAD52 is important for the repair of DNA double-stranded breaks1,2, mitotic DNA synthesis3-5 and alternative telomere length maintenance6,7. Central to these functions, RAD52 promotes the annealing of complementary single-stranded DNA (ssDNA)8,9 and provides an alternative to BRCA2/RAD51-dependent homologous recombination repair10. Inactivation of RAD52 in homologous-recombination-deficient BRCA1- or BRCA2-defective cells is synthetically lethal11,12, and aberrant expression of RAD52 is associated with poor cancer prognosis13,14. As a consequence, RAD52 is an attractive therapeutic target against homologous-recombination-deficient breast, ovarian and prostate cancers15-17. Here we describe the structure of RAD52 and define the mechanism of annealing. As reported previously18-20, RAD52 forms undecameric (11-subunit) ring structures, but these rings do not represent the active form of the enzyme. Instead, cryo-electron microscopy and biochemical analyses revealed that ssDNA annealing is driven by RAD52 open rings in association with replication protein-A (RPA). Atomic models of the RAD52-ssDNA complex show that ssDNA sits in a positively charged channel around the ring. Annealing is driven by the RAD52 N-terminal domains, whereas the C-terminal regions modulate the open-ring conformation and RPA interaction. RPA associates with RAD52 at the site of ring opening with critical interactions occurring between the RPA-interacting domain of RAD52 and the winged helix domain of RPA2. Our studies provide structural snapshots throughout the annealing process and define the molecular mechanism of ssDNA annealing by the RAD52-RPA complex.


Assuntos
Microscopia Crioeletrônica , DNA de Cadeia Simples , Complexos Multiproteicos , Proteína Rad52 de Recombinação e Reparo de DNA , Proteína de Replicação A , Humanos , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/ultraestrutura , Modelos Moleculares , Ligação Proteica , Proteína Rad52 de Recombinação e Reparo de DNA/química , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/ultraestrutura , Proteína de Replicação A/química , Proteína de Replicação A/metabolismo , Proteína de Replicação A/ultraestrutura , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Domínios Proteicos , Sítios de Ligação
2.
Nature ; 632(8027): 1165-1173, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39085614

RESUMO

DNA crosslinks block DNA replication and are repaired by the Fanconi anaemia pathway. The FANCD2-FANCI (D2-I) protein complex is central to this process as it initiates repair by coordinating DNA incisions around the lesion1. However, D2-I is also known to have a more general role in DNA repair and in protecting stalled replication forks from unscheduled degradation2-4. At present, it is unclear how DNA crosslinks are recognized and how D2-I functions in replication fork protection. Here, using single-molecule imaging, we show that D2-I is a sliding clamp that binds to and diffuses on double-stranded DNA. Notably, sliding D2-I stalls on encountering single-stranded-double-stranded (ss-ds) DNA junctions, structures that are generated when replication forks stall at DNA lesions5. Using cryogenic electron microscopy, we determined structures of D2-I on DNA that show that stalled D2-I makes specific interactions with the ss-dsDNA junction that are distinct from those made by sliding D2-I. Thus, D2-I surveys dsDNA and, when it reaches an ssDNA gap, it specifically clamps onto ss-dsDNA junctions. Because ss-dsDNA junctions are found at stalled replication forks, D2-I can identify sites of DNA damage. Therefore, our data provide a unified molecular mechanism that reconciles the roles of D2-I in the recognition and protection of stalled replication forks in several DNA repair pathways.


Assuntos
Dano ao DNA , Reparo do DNA , Replicação do DNA , DNA de Cadeia Simples , DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi , Proteínas de Grupos de Complementação da Anemia de Fanconi , Animais , Feminino , Humanos , Extratos Celulares , Microscopia Crioeletrônica , Difusão , DNA/química , DNA/metabolismo , DNA/ultraestrutura , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/ultraestrutura , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/química , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/ultraestrutura , Proteínas de Grupos de Complementação da Anemia de Fanconi/química , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/ultraestrutura , Modelos Moleculares , Ligação Proteica , Imagem Individual de Molécula , Xenopus laevis
3.
Nature ; 619(7970): 640-649, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37344589

RESUMO

Homologous recombination (HR) fulfils a pivotal role in the repair of DNA double-strand breaks and collapsed replication forks1. HR depends on the products of several paralogues of RAD51, including the tetrameric complex of RAD51B, RAD51C, RAD51D and XRCC2 (BCDX2)2. BCDX2 functions as a mediator of nucleoprotein filament assembly by RAD51 and single-stranded DNA (ssDNA) during HR, but its mechanism remains undefined. Here we report cryogenic electron microscopy reconstructions of human BCDX2 in apo and ssDNA-bound states. The structures reveal how the amino-terminal domains of RAD51B, RAD51C and RAD51D participate in inter-subunit interactions that underpin complex formation and ssDNA-binding specificity. Single-molecule DNA curtain analysis yields insights into how BCDX2 enhances RAD51-ssDNA nucleoprotein filament assembly. Moreover, our cryogenic electron microscopy and functional analyses explain how RAD51C alterations found in patients with cancer3-6 inactivate DNA binding and the HR mediator activity of BCDX2. Our findings shed light on the role of BCDX2 in HR and provide a foundation for understanding how pathogenic alterations in BCDX2 impact genome repair.


Assuntos
Proteínas de Ligação a DNA , Recombinação Homóloga , Complexos Multiproteicos , Humanos , Microscopia Crioeletrônica , Replicação do DNA , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/ultraestrutura , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Neoplasias/genética , Nucleoproteínas/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Rad51 Recombinase/química , Rad51 Recombinase/metabolismo , Rad51 Recombinase/ultraestrutura , Especificidade por Substrato
4.
Mol Cell ; 81(20): 4271-4286.e4, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34403695

RESUMO

Helitrons are widespread eukaryotic DNA transposons that have significantly contributed to genome variability and evolution, in part because of their distinctive, replicative rolling-circle mechanism, which often mobilizes adjacent genes. Although most eukaryotic transposases form oligomers and use RNase H-like domains to break and rejoin double-stranded DNA (dsDNA), Helitron transposases contain a single-stranded DNA (ssDNA)-specific HUH endonuclease domain. Here, we report the cryo-electron microscopy structure of a Helitron transposase bound to the 5'-transposon end, providing insight into its multidomain architecture and function. The monomeric transposase forms a tightly packed assembly that buries the covalently attached cleaved end, protecting it until the second end becomes available. The structure reveals unexpected architectural similarity to TraI, a bacterial relaxase that also catalyzes ssDNA movement. The HUH active site suggests how two juxtaposed tyrosines, a feature of many replication initiators that use HUH nucleases, couple the conformational shift of an α-helix to control strand cleavage and ligation reactions.


Assuntos
Quirópteros/metabolismo , Elementos de DNA Transponíveis , DNA de Cadeia Simples/metabolismo , Transposases/metabolismo , Animais , Domínio Catalítico , Quirópteros/genética , Microscopia Crioeletrônica , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/ultraestrutura , Células HEK293 , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade , Transposases/genética , Transposases/ultraestrutura , Tirosina
5.
Nature ; 609(7927): 630-639, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36002576

RESUMO

The Holliday junction is a key intermediate formed during DNA recombination across all kingdoms of life1. In bacteria, the Holliday junction is processed by two homo-hexameric AAA+ ATPase RuvB motors, which assemble together with the RuvA-Holliday junction complex to energize the strand-exchange reaction2. Despite its importance for chromosome maintenance, the structure and mechanism by which this complex facilitates branch migration are unknown. Here, using time-resolved cryo-electron microscopy, we obtained structures of the ATP-hydrolysing RuvAB complex in seven distinct conformational states, captured during assembly and processing of a Holliday junction. Five structures together resolve the complete nucleotide cycle and reveal the spatiotemporal relationship between ATP hydrolysis, nucleotide exchange and context-specific conformational changes in RuvB. Coordinated motions in a converter formed by DNA-disengaged RuvB subunits stimulate hydrolysis and nucleotide exchange. Immobilization of the converter enables RuvB to convert the ATP-contained energy into a lever motion, which generates the pulling force driving the branch migration. We show that RuvB motors rotate together with the DNA substrate, which, together with a progressing nucleotide cycle, forms the mechanistic basis for DNA recombination by continuous branch migration. Together, our data decipher the molecular principles of homologous recombination by the RuvAB complex, elucidate discrete and sequential transition-state intermediates for chemo-mechanical coupling of hexameric AAA+ motors and provide a blueprint for the design of state-specific compounds targeting AAA+ motors.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Proteínas de Bactérias , DNA Helicases , DNA Cruciforme , ATPases Associadas a Diversas Atividades Celulares/química , ATPases Associadas a Diversas Atividades Celulares/metabolismo , ATPases Associadas a Diversas Atividades Celulares/ultraestrutura , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Microscopia Crioeletrônica , DNA Helicases/química , DNA Helicases/metabolismo , DNA Helicases/ultraestrutura , DNA Cruciforme/química , DNA Cruciforme/metabolismo , DNA Cruciforme/ultraestrutura , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/ultraestrutura , Recombinação Homóloga , Hidrólise , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/ultraestrutura , Nucleotídeos , Conformação Proteica , Rotação
6.
Mol Cell ; 67(1): 106-116.e4, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28579332

RESUMO

Gene transcription is carried out by RNA polymerases (RNAPs). For transcription to occur, the closed promoter complex (RPc), where DNA is double stranded, must isomerize into an open promoter complex (RPo), where the DNA is melted out into a transcription bubble and the single-stranded template DNA is delivered to the RNAP active site. Using a bacterial RNAP containing the alternative σ54 factor and cryoelectron microscopy, we determined structures of RPc and the activator-bound intermediate complex en route to RPo at 3.8 and 5.8 Å. Our structures show how RNAP-σ54 interacts with promoter DNA to initiate the DNA distortions required for transcription bubble formation, and how the activator interacts with RPc, leading to significant conformational changes in RNAP and σ54 that promote RPo formation. We propose that DNA melting is an active process initiated in RPc and that the RNAP conformations of intermediates are significantly different from that of RPc and RPo.


Assuntos
DNA de Cadeia Simples/metabolismo , Escherichia coli/enzimologia , Klebsiella pneumoniae/enzimologia , Desnaturação de Ácido Nucleico , RNA Polimerase Sigma 54/metabolismo , Iniciação da Transcrição Genética , Sítios de Ligação , Microscopia Crioeletrônica , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/ultraestrutura , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Klebsiella pneumoniae/genética , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , Ligação Proteica , Conformação Proteica , RNA Polimerase Sigma 54/genética , RNA Polimerase Sigma 54/ultraestrutura , Relação Estrutura-Atividade
7.
Mol Cell ; 57(5): 812-823, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25661486

RESUMO

Chromosomal replication is entwined with DNA damage tolerance (DDT) and chromatin structure establishment via elusive mechanisms. Here we examined how specific replication conditions affecting replisome architecture and repriming impact on DDT. We show that Saccharomyces cerevisiae Polα/Primase/Ctf4 mutants, proficient in bulk DNA replication, are defective in recombination-mediated damage-bypass by template switching (TS) and have reduced sister chromatid cohesion. The decrease in error-free DDT is accompanied by increased usage of mutagenic DDT, fork reversal, and higher rates of genome rearrangements mediated by faulty strand annealing. Notably, the DDT defects of Polα/Primase/Ctf4 mutants are not the consequence of increased sister chromatid distance, but are instead caused by altered single-stranded DNA metabolism and abnormal replication fork topology. We propose that error-free TS is driven by timely replicative helicase-coupled re-priming. Defects in this event impact on replication fork architecture and sister chromatid proximity, and represent a frequent source of chromosome lesions upon replication dysfunctions.


Assuntos
Cromátides/genética , Dano ao DNA , DNA Polimerase I/metabolismo , DNA Primase/metabolismo , Replicação do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , DNA Polimerase I/genética , DNA Primase/genética , Reparo do DNA/genética , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/ultraestrutura , Proteínas de Ligação a DNA/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Microscopia Eletrônica , Modelos Genéticos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Recombinação Genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/genética , Fatores de Tempo
8.
Nucleic Acids Res ; 49(21): e121, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34500456

RESUMO

We report a rapid experimental procedure based on high-density in vivo psoralen inter-strand DNA cross-linking coupled to spreading of naked purified DNA, positive staining, low-angle rotary shadowing, and transmission electron microscopy (TEM) that allows quick visualization of the dynamic of heavy strand (HS) and light strand (LS) human mitochondrial DNA replication. Replication maps built on linearized mitochondrial genomes and optimized rotary shadowing conditions enable clear visualization of the progression of the mitochondrial DNA synthesis and visualization of replication intermediates carrying long single-strand DNA stretches. One variant of this technique, called denaturing spreading, allowed the inspection of the fine chromatin structure of the mitochondrial genome and was applied to visualize the in vivo three-strand DNA structure of the human mitochondrial D-loop intermediate with unprecedented clarity.


Assuntos
Replicação do DNA , DNA Mitocondrial/ultraestrutura , DNA de Cadeia Simples/ultraestrutura , Microscopia Eletrônica de Transmissão/métodos , Mitocôndrias , Humanos , Mitocôndrias/genética , Mitocôndrias/ultraestrutura
9.
Nucleic Acids Res ; 49(11): 6596-6603, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34110422

RESUMO

DNA origami requires long scaffold DNA to be aligned with the guidance of short staple DNA strands. Scaffold DNA is produced in Escherichia coli as a form of the M13 bacteriophage by rolling circle amplification (RCA). This study shows that RCA can be reconfigured by reducing phage protein V (pV) expression, improving the production throughput of scaffold DNA by at least 5.66-fold. The change in pV expression was executed by modifying the untranslated region sequence and monitored using a reporter green fluorescence protein fused to pV. In a separate experiment, pV expression was controlled by an inducer. In both experiments, reduced pV expression was correlated with improved M13 bacteriophage production. High-cell-density cultivation was attempted for mass scaffold DNA production, and the produced scaffold DNA was successfully folded into a barrel shape without compromising structural quality. This result suggested that scaffold DNA production throughput can be significantly improved by reprogramming the RCA in E. coli.


Assuntos
Bacteriófago M13/fisiologia , DNA de Cadeia Simples/biossíntese , Proteínas de Ligação a DNA/genética , Proteínas Virais/genética , Regiões 5' não Traduzidas , Bacteriófago M13/genética , Bacteriófago M13/metabolismo , DNA de Cadeia Simples/ultraestrutura , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Mutação , Proteínas Virais/metabolismo , Replicação Viral
10.
Nucleic Acids Res ; 49(1): 285-305, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33332547

RESUMO

RECQ5 is one of five RecQ helicases found in humans and is thought to participate in homologous DNA recombination by acting as a negative regulator of the recombinase protein RAD51. Here, we use kinetic and single molecule imaging methods to monitor RECQ5 behavior on various nucleoprotein complexes. Our data demonstrate that RECQ5 can act as an ATP-dependent single-stranded DNA (ssDNA) motor protein and can translocate on ssDNA that is bound by replication protein A (RPA). RECQ5 can also translocate on RAD51-coated ssDNA and readily dismantles RAD51-ssDNA filaments. RECQ5 interacts with RAD51 through protein-protein contacts, and disruption of this interface through a RECQ5-F666A mutation reduces translocation velocity by ∼50%. However, RECQ5 readily removes the ATP hydrolysis-deficient mutant RAD51-K133R from ssDNA, suggesting that filament disruption is not coupled to the RAD51 ATP hydrolysis cycle. RECQ5 also readily removes RAD51-I287T, a RAD51 mutant with enhanced ssDNA-binding activity, from ssDNA. Surprisingly, RECQ5 can bind to double-stranded DNA (dsDNA), but it is unable to translocate. Similarly, RECQ5 cannot dismantle RAD51-bound heteroduplex joint molecules. Our results suggest that the roles of RECQ5 in genome maintenance may be regulated in part at the level of substrate specificity.


Assuntos
DNA de Cadeia Simples/metabolismo , Recombinação Homóloga , Proteínas Motores Moleculares/metabolismo , RecQ Helicases/metabolismo , Imagem Individual de Molécula , Trifosfato de Adenosina/metabolismo , DNA de Cadeia Simples/ultraestrutura , Humanos , Hidrólise , Cinética , Microscopia de Força Atômica , Proteínas Motores Moleculares/ultraestrutura , Mutação de Sentido Incorreto , Mutação Puntual , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , RecQ Helicases/genética , RecQ Helicases/ultraestrutura , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/metabolismo , Proteína de Replicação A/metabolismo , Especificidade por Substrato
11.
Nucleic Acids Res ; 48(22): 12983-12999, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33270897

RESUMO

The adeno-associated virus (AAV) non-structural Rep proteins catalyze all the DNA transactions required for virus viability including, DNA replication, transcription regulation, genome packaging, and during the latent phase, site-specific integration. Rep proteins contain two multifunctional domains: an Origin Binding Domain (OBD) and a SF3 helicase domain (HD). Studies have shown that Rep proteins have a dynamic oligomeric behavior where the nature of the DNA substrate molecule modulates its oligomeric state. In the presence of ssDNA, Rep68 forms a large double-octameric ring complex. To understand the mechanisms underlying AAV Rep function, we investigated the cryo-EM and X-ray structures of Rep68-ssDNA complexes. Surprisingly, Rep68 generates hybrid ring structures where the OBD forms octameric rings while the HD forms heptamers. Moreover, the binding to ATPγS promotes a large conformational change in the entire AAA+ domain that leads the HD to form both heptamer and hexamers. The HD oligomerization is driven by an interdomain linker region that acts as a latch to 'catch' the neighboring HD subunit and is flexible enough to permit the formation of different stoichiometric ring structures. Overall, our studies show the structural basis of AAV Rep's structural flexibility required to fulfill its multifunctional role during the AAV life cycle.


Assuntos
Trifosfato de Adenosina/análogos & derivados , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Dependovirus/genética , Proteínas Virais/genética , Trifosfato de Adenosina/genética , Microscopia Crioeletrônica , DNA Helicases/genética , DNA Helicases/ultraestrutura , DNA de Cadeia Simples/ultraestrutura , Proteínas de Ligação a DNA/ultraestrutura , Dependovirus/ultraestrutura , Humanos , Proteínas Virais/ultraestrutura
12.
Nucleic Acids Res ; 48(22): 12689-12696, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33166411

RESUMO

Nucleotide excision repair (NER) in eukaryotes is orchestrated by the core form of the general transcription factor TFIIH, containing the helicases XPB, XPD and five 'structural' subunits, p62, p44, p34, p52 and p8. Recent cryo-EM structures show that p62 makes extensive contacts with p44 and in part occupies XPD's DNA binding site. While p44 is known to regulate the helicase activity of XPD during NER, p62 is thought to be purely structural. Here, using helicase and adenosine triphosphatase assays we show that a complex containing p44 and p62 enhances XPD's affinity for dsDNA 3-fold over p44 alone. Remarkably, the relative affinity is further increased to 60-fold by dsDNA damage. Direct binding studies show this preference derives from p44/p62's high affinity (20 nM) for damaged ssDNA. Single molecule imaging of p44/p62 complexes without XPD reveals they bind to and randomly diffuse on DNA, however, in the presence of UV-induced DNA lesions these complexes stall. Combined with the analysis of a recent cryo-EM structure, we suggest that p44/p62 acts as a novel DNA-binding entity that enhances damage recognition in TFIIH. This revises our understanding of TFIIH and prompts investigation into the core subunits for an active role during DNA repair and/or transcription.


Assuntos
Reparo do DNA/genética , Proteínas de Ligação a RNA/ultraestrutura , Fator de Transcrição TFIIH/ultraestrutura , Sítios de Ligação/efeitos da radiação , Microscopia Crioeletrônica , Dano ao DNA/efeitos da radiação , DNA Helicases/genética , DNA Helicases/ultraestrutura , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/efeitos da radiação , DNA de Cadeia Simples/ultraestrutura , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , Humanos , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Proteínas de Ligação a RNA/genética , Imagem Individual de Molécula , Fator de Transcrição TFIIH/genética , Transcrição Gênica/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Proteína Grupo D do Xeroderma Pigmentoso/genética , Proteína Grupo D do Xeroderma Pigmentoso/ultraestrutura
13.
Proc Natl Acad Sci U S A ; 116(12): 5493-5498, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30819888

RESUMO

The filamentous bacteriophage IKe infects Escherichia coli cells bearing IncN pili. We report the cryo-electron microscopy structure of the micrometer-long IKe viral particle at a resolution of 3.4 Å. The major coat protein [protein 8 (p8)] consists of 47 residues that fold into a ∼68-Å-long helix. An atomic model of the coat protein was built. Five p8 helices in a horizontal layer form a pentamer, and symmetrically neighboring p8 layers form a right-handed helical cylinder having a rise per pentamer of 16.77 Å and a twist of 38.52°. The inner surface of the capsid cylinder is positively charged and has direct interactions with the encapsulated circular single-stranded DNA genome, which has an electron density consistent with an unusual left-handed helix structure. Similar to capsid structures of other filamentous viruses, strong capsid packing in the IKe particle is maintained by hydrophobic residues. Despite having a different length and large sequence differences from other filamentous phages, π-π interactions were found between Tyr9 of one p8 and Trp29 of a neighboring p8 in IKe that are similar to interactions observed in phage M13, suggesting that, despite sequence divergence, overall structural features are maintained.


Assuntos
Bacteriófago IKe/ultraestrutura , Bacteriófago IKe/genética , Bacteriófago IKe/fisiologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/ultraestrutura , Microscopia Crioeletrônica , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/ultraestrutura , Modelos Moleculares , Alinhamento de Sequência , Montagem de Vírus
14.
Nano Lett ; 20(2): 1218-1225, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31960675

RESUMO

Spin-dependent and enantioselective electron-molecule scattering occurs in photoelectron transmission through chiral molecular films. This spin selectivity leads to electron spin filtering by molecular helices, with increasing magnitude concomitant with increasing numbers of helical turns. Using ultraviolet photoelectron spectroscopy, we measured spin-selective surface charging accompanying photoemission from ferromagnetic substrates functionalized with monolayers of mercurated DNA hairpins that constitute only one helical turn. Mercury ions bind specifically at thymine-thymine mismatches within self-hybridized single-stranded DNA, enabling precise control over the number and position of Hg2+ along the helical axis. Differential charging of the organic layers, manifested as substrate-magnetization-dependent photoionization energies, was observed for DNA hairpins containing Hg2+; no differences were measured for hairpin monolayers in the absence of Hg2+. Inversion of the DNA helical secondary structure at increased metal loading led to complementary inversion in spin selectivity. We attribute these results to increased scattering probabilities from relativistic enhancement of spin-orbit interactions in mercurated DNA.


Assuntos
DNA de Cadeia Simples/química , DNA/química , Imãs/química , Mercúrio/química , Fenômenos Biofísicos , DNA/ultraestrutura , DNA de Cadeia Simples/ultraestrutura , Transporte de Elétrons/genética , Elétrons , Humanos , Espectroscopia Fotoeletrônica , Estereoisomerismo
15.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33947069

RESUMO

The accurate knowledge of the elastic properties of single-stranded DNA (ssDNA) is key to characterize the thermodynamics of molecular reactions that are studied by force spectroscopy methods where DNA is mechanically unfolded. Examples range from DNA hybridization, DNA ligand binding, DNA unwinding by helicases, etc. To date, ssDNA elasticity has been studied with different methods in molecules of varying sequence and contour length. A dispersion of results has been reported and the value of the persistence length has been found to be larger for shorter ssDNA molecules. We carried out pulling experiments with optical tweezers to characterize the elastic response of ssDNA over three orders of magnitude in length (60-14 k bases). By fitting the force-extension curves (FECs) to the Worm-Like Chain model we confirmed the above trend:the persistence length nearly doubles for the shortest molecule (60 b) with respect to the longest one (14 kb). We demonstrate that the observed trend is due to the different force regimes fitted for long and short molecules, which translates into two distinct elastic regimes at low and high forces. We interpret this behavior in terms of a force-induced sugar pucker conformational transition (C3'-endo to C2'-endo) upon pulling ssDNA.


Assuntos
DNA de Cadeia Simples/química , Desoxirribose/química , Conformação de Ácido Nucleico , DNA de Cadeia Simples/ultraestrutura , Elasticidade , Pinças Ópticas , Estresse Mecânico , Termodinâmica
16.
Soft Matter ; 16(4): 990-1001, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31853526

RESUMO

Three-dimensional DNA networks, composed of tri- or higher valent nanostars with sticky, single-stranded DNA overhangs, have been previously studied in the context of designing thermally responsive, viscoelastic hydrogels. In this work, we use linker-mediated gels, where the sticky ends of two trivalent nanostars are connected through the complementary sticky ends of a linear DNA duplex. We can design this connection to be either rigid or flexible by introducing flexible, non-binding bases. The additional flexibility provided by these non-binding bases influences the effective elasticity of the percolating gel formed at low temperatures. Here we show that by choosing the right length of the linear duplex and non-binding flexible joints, we obtain a completely different phase behaviour to that observed for rigid linkers. In particular, we use dynamic light scattering as a microrheological tool to monitor the self-assembly of DNA nanostars with linear linkers as a function of temperature. While we observe classical gelation when using rigid linkers, the presence of flexible joints leads to a cluster fluid with a much-reduced viscosity. Using both the oxDNA model and a coarse-grained simulation to investigate the nanostar-linker topology, we hypothesise on the possible structure formed by the DNA clusters. Moreover, we present a systematic study of the strong viscosity increase of aqueous solutions in the presence of these DNA building blocks.


Assuntos
DNA de Cadeia Simples/química , DNA/química , Hidrogéis/química , DNA/ultraestrutura , DNA de Cadeia Simples/ultraestrutura , Difusão Dinâmica da Luz , Elasticidade , Temperatura , Viscosidade , Água/química
17.
Genomics ; 111(4): 567-578, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29550497

RESUMO

Single molecule analysis can help us study genomics efficiently. It involves studying single DNA molecules for genomic studies. DNA combing is one of such techniques which allowed us to study single DNA molecules for multiple uses. DNA combing technology can be used to perform Fiber-FISH and optical mapping. Physical mapping of genomes can be studied by restriction digestion of combed DNA on glass slides. Restriction fragments can be arranged into optical maps by gathering fluorescent intensity data by CCD camera and image analysis by softwares. Physical mapping and DNA segment rearrangements can be studied by Fiber-FISH which involves application of probes on genomic DNA combed over glass slides. We developed a novel methodology involving combing solution optimization, denatured combed DNA and performed restriction digestion of combed DNA. Thus we provided an efficient and robust combing platform for its application in Fiber-FISH and optical mapping.


Assuntos
DNA de Cadeia Simples/química , Hibridização in Situ Fluorescente/métodos , Imagem Individual de Molécula/métodos , DNA de Cadeia Simples/ultraestrutura , Humanos , Desnaturação de Ácido Nucleico
18.
Molecules ; 25(20)2020 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-33080770

RESUMO

Topoisomerases in the type IA subfamily can catalyze change in topology for both DNA and RNA substrates. A type IA topoisomerase may have been present in a last universal common ancestor (LUCA) with an RNA genome. Type IA topoisomerases have since evolved to catalyze the resolution of topological barriers encountered by genomes that require the passing of nucleic acid strand(s) through a break on a single DNA or RNA strand. Here, based on available structural and biochemical data, we discuss how a type IA topoisomerase may recognize and bind single-stranded DNA or RNA to initiate its required catalytic function. Active site residues assist in the nucleophilic attack of a phosphodiester bond between two nucleotides to form a covalent intermediate with a 5'-phosphotyrosine linkage to the cleaved nucleic acid. A divalent ion interaction helps to position the 3'-hydroxyl group at the precise location required for the cleaved phosphodiester bond to be rejoined following the passage of another nucleic acid strand through the break. In addition to type IA topoisomerase structures observed by X-ray crystallography, we now have evidence from biophysical studies for the dynamic conformations that are required for type IA topoisomerases to catalyze the change in the topology of the nucleic acid substrates.


Assuntos
DNA Topoisomerases Tipo I/genética , DNA de Cadeia Simples/genética , Conformação Proteica , RNA/genética , Catálise , Domínio Catalítico/genética , Cristalografia por Raios X , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/ultraestrutura , DNA de Cadeia Simples/ultraestrutura , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Genoma/genética , RNA/ultraestrutura , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética
19.
J Biol Chem ; 293(24): 9473-9485, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29674319

RESUMO

Conformations adopted by long stretches of single-stranded DNA (ssDNA) are of central interest in understanding the architecture of replication forks, R loops, and other structures generated during DNA metabolism in vivo This is particularly so if the ssDNA consists of short nucleotide repeats. Such studies have been hampered by the lack of defined substrates greater than ∼150 nt and the absence of high-resolution biophysical approaches. Here we describe the generation of very long ssDNA consisting of the mammalian telomeric repeat (5'-TTAGGG-3') n , as well as the interrogation of its structure by EM and single-molecule magnetic tweezers (smMT). This repeat is of particular interest because it contains a run of three contiguous guanine residues capable of forming G quartets as ssDNA. Fluorescent-dye exclusion assays confirmed that this G-strand ssDNA forms ubiquitous G-quadruplex folds. EM revealed thick bead-like filaments that condensed the DNA ∼12-fold. The bead-like structures were 5 and 8 nm in diameter and linked by thin filaments. The G-strand ssDNA displayed initial stability to smMT force extension that ultimately released in steps that were multiples ∼28 nm at forces between 6 and 12 pN, well below the >20 pN required to unravel G-quadruplexes. Most smMT steps were consistent with the disruption of the beads seen by EM. Binding by RAD51 distinctively altered the force extension properties of the G-strand ssDNA, suggesting a stochastic G-quadruplex-dependent condensation model that is discussed.


Assuntos
DNA de Cadeia Simples/química , DNA de Cadeia Simples/ultraestrutura , Quadruplex G , Sequência de Bases , DNA de Cadeia Simples/metabolismo , Humanos , Ligação Proteica , Rad51 Recombinase/metabolismo , Telômero/química , Telômero/metabolismo , Telômero/ultraestrutura
20.
Mol Cell ; 42(2): 224-36, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21504833

RESUMO

Recent evidence for 5'-cytosine (C)-rich overhangs at the telomeres of the nematode Caenorhabditis elegans provided the impetus to re-examine the end structure of mammalian telomeres. Two-dimensional (2D) gel electrophoresis, single telomere-length analysis (STELA), and strand-specific exonuclease assays revealed the presence of a 5'-C-rich overhang at the telomeres of human and mouse chromosomes. C-overhangs were prominent in G1/S arrested as well as terminally differentiated cells, indicating that they did not represent replication intermediates. C-rich overhangs were far more prevalent in tumor cells engaged in the alternative lengthening of telomeres (ALT) pathway of telomere maintenance, which relies on the homologous recombination (HR) machinery. Transient siRNA-based depletion of the HR-specific proteins RAD51, RAD52, and XRCC3 resulted in changes in C-overhang levels, implicating the involvement of 5'-C-overhangs in the HR-dependent pathway of telomere maintenance.


Assuntos
Cromossomos Humanos/ultraestrutura , DNA de Cadeia Simples/ultraestrutura , Recombinação Genética , Telômero/ultraestrutura , Animais , Composição de Bases , Cromossomos Humanos/química , Cromossomos Humanos/metabolismo , Citosina , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Eletroforese em Gel Bidimensional , Exonucleases/metabolismo , Células HeLa , Humanos , Camundongos , Conformação de Ácido Nucleico , Interferência de RNA , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Telômero/química , Telômero/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA