Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(7): e1011486, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37459364

RESUMO

Trypanosoma brucei is a single celled eukaryotic parasite in the group of the Kinetoplastea. The parasite harbors a single mitochondrion with a singular mitochondrial genome that is known as the kinetoplast DNA (kDNA). The kDNA consists of a unique network of thousands of interlocked circular DNA molecules. To ensure proper inheritance of the kDNA to the daughter cells, the genome is physically linked to the basal body, the master organizer of the cell cycle in trypanosomes. The connection that spans, cytoplasm, mitochondrial membranes and the mitochondrial matrix is mediated by the Tripartite Attachment Complex (TAC). Using a combination of proteomics and RNAi we test the current model of hierarchical TAC assembly and identify TbmtHMG44 and TbKAP68 as novel candidates of a complex that connects the TAC to the kDNA. Depletion of TbmtHMG44 or TbKAP68 each leads to a strong kDNA loss but not missegregation phenotype as previously defined for TAC components. We demonstrate that the proteins rely on both the TAC and the kDNA for stable localization to the interface between these two structures. In vitro experiments suggest a direct interaction between TbmtHMG44 and TbKAP68 and that recombinant TbKAP68 is a DNA binding protein. We thus propose that TbmtHMG44 and TbKAP68 are part of a distinct complex connecting the kDNA to the TAC.


Assuntos
DNA Mitocondrial , Trypanosoma brucei brucei , DNA Mitocondrial/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , DNA de Cinetoplasto/genética , DNA de Cinetoplasto/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Protozoários/metabolismo , Replicação do DNA
2.
PLoS Pathog ; 18(6): e1010207, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35709300

RESUMO

The protist parasite Trypanosoma brucei has a single mitochondrion with a single unit genome termed kinetoplast DNA (kDNA). Faithfull segregation of replicated kDNA is ensured by a complicated structure termed tripartite attachment complex (TAC). The TAC physically links the basal body of the flagellum with the kDNA spanning the two mitochondrial membranes. Here, we characterized p166 as the only known TAC subunit that is anchored in the inner membrane. Its C-terminal transmembrane domain separates the protein into a large N-terminal region that interacts with the kDNA-localized TAC102 and a 34 aa C-tail that binds to the intermembrane space-exposed loop of the integral outer membrane protein TAC60. Whereas the outer membrane region requires four essential subunits for proper TAC function, the inner membrane integral p166, via its interaction with TAC60 and TAC102, would theoretically suffice to bridge the distance between the OM and the kDNA. Surprisingly, non-functional p166 lacking the C-terminal 34 aa still localizes to the TAC region. This suggests the existence of additional TAC-associated proteins which loosely bind to non-functional p166 lacking the C-terminal 34 aa and keep it at the TAC. However, binding of full length p166 to these TAC-associated proteins alone would not be sufficient to withstand the mechanical load imposed by the segregating basal bodies.


Assuntos
Genoma Mitocondrial , Trypanosoma brucei brucei , DNA de Cinetoplasto/genética , DNA de Cinetoplasto/metabolismo , Flagelos/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
3.
Annu Rev Microbiol ; 73: 133-154, 2019 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-31500537

RESUMO

Trypanosomes have complex life cycles within which there are both proliferative and differentiation cell divisions. The coordination of the cell cycle to achieve these different divisions is critical for the parasite to infect both host and vector. From studying the regulation of the proliferative cell cycle of the Trypanosoma brucei procyclic life cycle stage, three subcycles emerge that control the duplication and segregation of (a) the nucleus, (b) the kinetoplast, and (c) a set of cytoskeletal structures. We discuss how the clear dependency relationships within these subcycles, and the potential for cross talk between them, are likely required for overall cell cycle coordination. Finally, we look at the implications this interdependence has for proliferative and differentiation divisions through the T. brucei life cycle and in related parasitic trypanosomatid species.


Assuntos
Ciclo Celular , Trypanosoma brucei brucei/crescimento & desenvolvimento , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , DNA de Cinetoplasto/metabolismo , DNA de Protozoário/metabolismo , Regulação da Expressão Gênica
4.
PLoS Genet ; 16(2): e1008390, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32084124

RESUMO

Base J, ß-D-glucosyl-hydroxymethyluracil, is a modification of thymine DNA base involved in RNA Polymerase (Pol) II transcription termination in kinetoplastid protozoa. Little is understood regarding how specific thymine residues are targeted for J-modification or the mechanism of J regulated transcription termination. To identify proteins involved in J-synthesis, we expressed a tagged version of the J-glucosyltransferase (JGT) in Leishmania tarentolae, and identified four co-purified proteins by mass spectrometry: protein phosphatase (PP1), a homolog of Wdr82, a potential PP1 regulatory protein (PNUTS) and a protein containing a J-DNA binding domain (named JBP3). Gel shift studies indicate JBP3 is a J-DNA binding protein. Reciprocal tagging, co-IP and sucrose gradient analyses indicate PP1, JGT, JBP3, Wdr82 and PNUTS form a multimeric complex in kinetoplastids, similar to the mammalian PTW/PP1 complex involved in transcription termination via PP1 mediated dephosphorylation of Pol II. Using RNAi and analysis of Pol II termination by RNA-seq and RT-PCR, we demonstrate that ablation of PNUTS, JBP3 and Wdr82 lead to defects in Pol II termination at the 3'-end of polycistronic gene arrays in Trypanosoma brucei. Mutants also contain increased antisense RNA levels upstream of transcription start sites, suggesting an additional role of the complex in regulating termination of bi-directional transcription. In addition, PNUTS loss causes derepression of silent Variant Surface Glycoprotein genes involved in host immune evasion. Our results suggest a novel mechanistic link between base J and Pol II polycistronic transcription termination in kinetoplastids.


Assuntos
DNA de Cinetoplasto/metabolismo , Proteínas de Protozoários/metabolismo , RNA Polimerase II/metabolismo , Terminação da Transcrição Genética , Trypanosoma brucei brucei/fisiologia , Animais , DNA de Cinetoplasto/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genes de Protozoários , Glucosídeos/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Histonas/genética , Histonas/metabolismo , Leishmania/fisiologia , Mutação , Proteínas de Protozoários/genética , Interferência de RNA , RNA Polimerase II/genética , Timina/metabolismo , Uracila/análogos & derivados , Uracila/metabolismo
5.
Biochemistry ; 61(23): 2751-2765, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36399653

RESUMO

Trypanosoma brucei and related parasites contain an unusual catenated mitochondrial genome known as kinetoplast DNA (kDNA) composed of maxicircles and minicircles. The kDNA structure and replication mechanism are divergent and essential for parasite survival. POLIB is one of three Family A DNA polymerases independently essential to maintain the kDNA network. However, the division of labor among the paralogs, particularly which might be a replicative, proofreading enzyme, remains enigmatic. De novo modeling of POLIB suggested a structure that is divergent from all other Family A polymerases, in which the thumb subdomain contains a 369 amino acid insertion with homology to DEDDh DnaQ family 3'-5' exonucleases. Here we demonstrate recombinant POLIB 3'-5' exonuclease prefers DNA vs RNA substrates and degrades single- and double-stranded DNA nonprocessively. Exonuclease activity prevails over polymerase activity on DNA substrates at pH 8.0, while DNA primer extension is favored at pH 6.0. Mutations that ablate POLIB polymerase activity slow the exonuclease rate suggesting crosstalk between the domains. We show that POLIB extends an RNA primer more efficiently than a DNA primer in the presence of dNTPs but does not incorporate rNTPs efficiently using either primer. Immunoprecipitation of Pol I-like paralogs from T. brucei corroborates the pH selectivity and RNA primer preferences of POLIB and revealed that the other paralogs efficiently extend a DNA primer. The enzymatic properties of POLIB suggest this paralog is not a replicative kDNA polymerase, and the noncanonical polymerase domain provides another example of exquisite diversity among DNA polymerases for specialized function.


Assuntos
Trypanosoma brucei brucei , DNA de Cinetoplasto/genética , DNA de Cinetoplasto/metabolismo , DNA Polimerase gama/metabolismo , Primers do DNA/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Exonucleases/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo
6.
Trends Genet ; 34(4): 270-278, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29329720

RESUMO

While the vast majority of cellular DNA in eukaryotes is contained in long linear strands in chromosomes, we have long recognized some exceptions like mitochondrial DNA, plasmids in yeasts, and double minutes (DMs) in cancer cells where the DNA is present in extrachromosomal circles. In addition, specialized extrachromosomal circles of DNA (eccDNA) have been noted to arise from repetitive genomic sequences like telomeric DNA or rDNA. Recently eccDNA arising from unique (nonrepetitive) DNA have been discovered in normal and malignant cells, raising interesting questions about their biogenesis, function and clinical utility. Here, we review recent results and future directions of inquiry on these new forms of eccDNA.


Assuntos
DNA Circular/genética , DNA Mitocondrial/genética , DNA de Neoplasias/genética , Neoplasias/genética , Células Neoplásicas Circulantes/química , Animais , Cromossomos Humanos/química , Cromossomos Humanos/metabolismo , DNA de Cloroplastos/química , DNA de Cloroplastos/genética , DNA de Cloroplastos/metabolismo , DNA Circular/química , DNA Circular/metabolismo , DNA de Cinetoplasto/química , DNA de Cinetoplasto/genética , DNA de Cinetoplasto/metabolismo , DNA Mitocondrial/química , DNA Mitocondrial/metabolismo , DNA de Neoplasias/química , DNA de Neoplasias/metabolismo , Células Eucarióticas/química , Células Eucarióticas/metabolismo , Humanos , Kinetoplastida/genética , Kinetoplastida/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Células Neoplásicas Circulantes/metabolismo , Plantas/genética , Plantas/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telômero/química , Telômero/metabolismo
7.
RNA Biol ; 18(sup1): 139-147, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34308760

RESUMO

The ribonucleoprotein RNase MRP is responsible for the processing of ribosomal RNA precursors. It is found in virtually all eukaryotes that have been examined. In the Euglenozoa, including the genera Euglena, Diplonema and kinetoplastids, MRP RNA and protein subunits have so far escaped detection using bioinformatic methods. However, we now demonstrate that the RNA component is widespread among the Euglenozoa and that these RNAs have secondary structures that conform to the structure of all other phylogenetic groups. In Euglena, we identified the same set of P/MRP protein subunits as in many other protists. However, we failed to identify any of these proteins in the kinetoplastids. This finding poses interesting questions regarding the structure and function of RNase MRP in these species.


Assuntos
DNA de Cinetoplasto/metabolismo , Endorribonucleases/metabolismo , Euglena/enzimologia , Conformação de Ácido Nucleico , Proteínas de Protozoários/metabolismo , Processamento Pós-Transcricional do RNA , RNA de Protozoário/metabolismo , Pareamento de Bases , Sequência de Bases , DNA de Cinetoplasto/química , DNA de Cinetoplasto/genética , Endorribonucleases/química , Endorribonucleases/genética , Euglena/genética , Euglena/crescimento & desenvolvimento , Kinetoplastida/enzimologia , Kinetoplastida/genética , Kinetoplastida/crescimento & desenvolvimento , Filogenia , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , RNA de Protozoário/química , RNA de Protozoário/genética
8.
J Cell Sci ; 131(8)2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29626111

RESUMO

The unicellular parasite Trypanosoma brucei harbors one mitochondrial organelle with a singular genome called the kinetoplast DNA (kDNA). The kDNA consists of a network of concatenated minicircles and a few maxicircles that form the kDNA disc. More than 30 proteins involved in kDNA replication have been described. However, several mechanistic questions are only poorly understood. Here, we describe and characterize minicircle replication factor 172 (MiRF172), a novel mitochondrial genome replication factor that is essential for cell growth and kDNA maintenance. By performing super-resolution microscopy, we show that MiRF172 is localized to the kDNA disc, facing the region between the genome and the mitochondrial membranes. We demonstrate that depletion of MiRF172 leads to a loss of minicircles and maxicircles. Detailed analysis suggests that MiRF172 is involved in the reattachment of replicated minicircles to the kDNA disc. Furthermore, we provide evidence that the localization of the replication factor MiRF172 not only depends on the kDNA itself, but also on the mitochondrial genome segregation machinery, suggesting an interaction between the two essential entities.This article has an associated First Person interview with the first author of the paper.


Assuntos
Replicação do DNA , DNA de Cinetoplasto/metabolismo , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/genética , Genoma Mitocondrial , Trypanosoma brucei brucei/genética , Animais , DNA de Cinetoplasto/genética , DNA Mitocondrial/genética , Proteínas de Ligação a DNA/metabolismo , Trypanosoma brucei brucei/metabolismo
9.
PLoS Pathog ; 14(7): e1007195, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30020996

RESUMO

The sleeping sickness parasite Trypanosoma brucei has a complex life cycle, alternating between a mammalian host and the tsetse fly vector. A tightly controlled developmental programme ensures parasite transmission between hosts as well as survival within them and involves strict regulation of mitochondrial activities. In the glucose-rich bloodstream, the replicative 'slender' stage is thought to produce ATP exclusively via glycolysis and uses the mitochondrial F1FO-ATP synthase as an ATP hydrolysis-driven proton pump to generate the mitochondrial membrane potential (ΔΨm). The 'procyclic' stage in the glucose-poor tsetse midgut depends on mitochondrial catabolism of amino acids for energy production, which involves oxidative phosphorylation with ATP production via the F1FO-ATP synthase. Both modes of the F1FO enzyme critically depend on FO subunit a, which is encoded in the parasite's mitochondrial DNA (kinetoplast or kDNA). Comparatively little is known about mitochondrial function and the role of kDNA in non-replicative 'stumpy' bloodstream forms, a developmental stage essential for disease transmission. Here we show that the L262P mutation in the nuclear-encoded F1 subunit γ that permits survival of 'slender' bloodstream forms lacking kDNA ('akinetoplastic' forms), via FO-independent generation of ΔΨm, also permits their differentiation into stumpy forms. However, these akinetoplastic stumpy cells lack a ΔΨm and have a reduced lifespan in vitro and in mice, which significantly alters the within-host dynamics of the parasite. We further show that generation of ΔΨm in stumpy parasites and their ability to use α-ketoglutarate to sustain viability depend on F1-ATPase activity. Surprisingly, however, loss of ΔΨm does not reduce stumpy life span. We conclude that the L262P γ subunit mutation does not enable FO-independent generation of ΔΨm in stumpy cells, most likely as a consequence of mitochondrial ATP production in these cells. In addition, kDNA-encoded genes other than FO subunit a are important for stumpy form viability.


Assuntos
DNA Mitocondrial , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/patogenicidade , Tripanossomíase Africana/metabolismo , Tripanossomíase Africana/transmissão , Animais , DNA de Cinetoplasto/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Camundongos
10.
Mol Cell ; 42(1): 106-17, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21474072

RESUMO

The majority of trypanosomal mitochondrial pre-mRNAs undergo massive uridine insertion/deletion editing, which creates open reading frames. Although the pre-editing addition of short 3' A tails is known to stabilize transcripts during and after the editing, the processing event committing the fully edited mRNAs to translation remained unknown. Here, we show that a heterodimer of pentatricopeptide repeat-containing (PPR) proteins, termed kinetoplast polyadenylation/uridylation factors (KPAFs) 1 and 2, induces the postediting addition of A/U heteropolymers by KPAP1 poly(A) polymerase and RET1 terminal uridyltransferase. Edited transcripts bearing 200- to 300-nucleotide-long A/U tails, but not short A tails, were enriched in translating ribosomal complexes and affinity-purified ribosomal particles. KPAF1 repression led to a selective loss of A/U-tailed mRNAs and concomitant inhibition of protein synthesis. These results establish A/U extensions as the defining cis-elements of translation-competent mRNAs. Furthermore, we demonstrate that A/U-tailed mRNA preferentially interacts with the small ribosomal subunit, whereas edited substrates and complexes bind to the large subunit.


Assuntos
Mitocôndrias/genética , Mitocôndrias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Sequência de Bases , DNA de Cinetoplasto/genética , DNA de Cinetoplasto/metabolismo , Dados de Sequência Molecular , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/genética , Edição de RNA , Interferência de RNA , Precursores de RNA/genética , Precursores de RNA/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/antagonistas & inibidores , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
11.
Nucleic Acids Res ; 45(14): 8378-8391, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28637278

RESUMO

Trypanosoma brucei, the causative agent of sleeping sickness (Human African Trypanosomiasis, HAT), contains a kinetoplast with the mitochondrial DNA (kDNA), comprising of >70% AT base pairs. This has prompted studies of drugs interacting with AT-rich DNA, such as the N-phenylbenzamide bis(2-aminoimidazoline) derivatives 1 [4-((4,5-dihydro-1H-imidazol-2-yl)amino)-N-(4-((4,5-dihydro-1H-imidazol-2-yl)amino)phenyl)benzamide dihydrochloride] and 2 [N-(3-chloro-4-((4,5-dihydro-1H-imidazol-2-yl)amino)phenyl)-4-((4,5-dihydro-1H-imidazol-2-yl)amino)benzamide] as potential drugs for HAT. Both compounds show in vitro effects against T. brucei and in vivo curative activity in a mouse model of HAT. The main objective was to identify their cellular target inside the parasite. We were able to demonstrate that the compounds have a clear effect on the S-phase of T. brucei cell cycle by inflicting specific damage on the kinetoplast. Surface plasmon resonance (SPR)-biosensor experiments show that the drug can displace HMG box-containing proteins essential for kDNA function from their kDNA binding sites. The crystal structure of the complex of the oligonucleotide d[AAATTT]2 with compound 1 solved at 1.25 Å (PDB-ID: 5LIT) shows that the drug covers the minor groove of DNA, displaces bound water and interacts with neighbouring DNA molecules as a cross-linking agent. We conclude that 1 and 2 are powerful trypanocides that act directly on the kinetoplast, a structure unique to the order Kinetoplastida.


Assuntos
Pareamento de Bases , DNA de Cinetoplasto/genética , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/genética , Tripanossomíase Africana/metabolismo , Animais , Sítios de Ligação/genética , Cristalografia por Raios X , DNA de Cinetoplasto/química , DNA de Cinetoplasto/metabolismo , Humanos , Camundongos , Conformação de Ácido Nucleico , Ligação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Ressonância de Plasmônio de Superfície , Tripanossomicidas/química , Tripanossomicidas/metabolismo , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/metabolismo , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia
12.
PLoS Pathog ; 12(5): e1005586, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27168148

RESUMO

Trypanosomes show an intriguing organization of their mitochondrial DNA into a catenated network, the kinetoplast DNA (kDNA). While more than 30 proteins involved in kDNA replication have been described, only few components of kDNA segregation machinery are currently known. Electron microscopy studies identified a high-order structure, the tripartite attachment complex (TAC), linking the basal body of the flagellum via the mitochondrial membranes to the kDNA. Here we describe TAC102, a novel core component of the TAC, which is essential for proper kDNA segregation during cell division. Loss of TAC102 leads to mitochondrial genome missegregation but has no impact on proper organelle biogenesis and segregation. The protein is present throughout the cell cycle and is assembled into the newly developing TAC only after the pro-basal body has matured indicating a hierarchy in the assembly process. Furthermore, we provide evidence that the TAC is replicated de novo rather than using a semi-conservative mechanism. Lastly, we demonstrate that TAC102 lacks an N-terminal mitochondrial targeting sequence and requires sequences in the C-terminal part of the protein for its proper localization.


Assuntos
Segregação de Cromossomos/fisiologia , Genoma Mitocondrial , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , DNA de Cinetoplasto/metabolismo , Flagelos , Imunofluorescência , Immunoblotting , Microscopia Eletrônica de Transmissão , Trypanosoma brucei brucei/ultraestrutura
13.
Proc Natl Acad Sci U S A ; 112(29): 9112-7, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26150481

RESUMO

Kinetoplastid parasites cause lethal diseases in humans and animals. The kinetoplast itself contains the mitochondrial genome, comprising a huge, complex DNA network that is also an important drug target. Isometamidium, for example, is a key veterinary drug that accumulates in the kinetoplast in African trypanosomes. Kinetoplast independence and isometamidium resistance are observed where certain mutations in the F1-γ-subunit of the two-sector F1Fo-ATP synthase allow for Fo-independent generation of a mitochondrial membrane potential. To further explore kinetoplast biology and drug resistance, we screened a genome-scale RNA interference library in African trypanosomes for isometamidium resistance mechanisms. Our screen identified 14 V-ATPase subunits and all 4 adaptin-3 subunits, implicating acidic compartment defects in resistance; V-ATPase acidifies lysosomes and related organelles, whereas adaptin-3 is responsible for trafficking among these organelles. Independent strains with depleted V-ATPase or adaptin-3 subunits were isometamidium resistant, and chemical inhibition of the V-ATPase phenocopied this effect. While drug accumulation in the kinetoplast continued after V-ATPase subunit depletion, acriflavine-induced kinetoplast loss was specifically tolerated in these cells and in cells depleted for adaptin-3 or endoplasmic reticulum membrane complex subunits, also identified in our screen. Consistent with kinetoplast dispensability, V-ATPase defective cells were oligomycin resistant, suggesting ATP synthase uncoupling and bypass of the normal Fo-A6-subunit requirement; this subunit is the only kinetoplast-encoded product ultimately required for viability in bloodstream-form trypanosomes. Thus, we describe 30 genes and 3 protein complexes associated with kinetoplast-dependent growth. Mutations affecting these genes could explain natural cases of dyskinetoplasty and multidrug resistance. Our results also reveal potentially conserved communication between the compartmentalized two-sector rotary ATPases.


Assuntos
DNA de Cinetoplasto/metabolismo , Resistência a Medicamentos , Mitocôndrias/enzimologia , ATPases Translocadoras de Prótons/metabolismo , Trypanosoma brucei brucei/enzimologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Ácidos/metabolismo , Animais , Compartimento Celular/efeitos dos fármacos , Resistência a Medicamentos/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Mitocôndrias/efeitos dos fármacos , Fenantridinas/química , Fenantridinas/farmacologia , Reação em Cadeia da Polimerase , Subunidades Proteicas/metabolismo , Interferência de RNA/efeitos dos fármacos , Reprodutibilidade dos Testes , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/genética
14.
J Mol Evol ; 84(2-3): 104-115, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28210761

RESUMO

We screened the genomes of a broad panel of kinetoplastid protists for genes encoding proteins associated with the RNA interference (RNAi) system using probes from the Argonaute (AGO1), Dicer1 (DCL1), and Dicer2 (DCL2) genes of Leishmania brasiliensis and Crithidia fasciculata. We identified homologs for all the three of these genes in the genomes of a subset of these organisms. However, several of these organisms lacked evidence for any of these genes, while others lacked only DCL2. The open reading frames encoding these putative proteins were structurally analyzed in silico. The alignments indicated that the genes are homologous with a high degree of confidence, and three-dimensional structural models strongly supported a functional relationship to previously characterized AGO1, DCL1, and DCL2 proteins. Phylogenetic analysis of these putative proteins showed that these genes, when present, evolved in parallel with other nuclear genes, arguing that the RNAi system genes share a common progenitor, likely across all Kinetoplastea. In addition, the genome segments bearing these genes are highly conserved and syntenic, even among those taxa in which they are absent. However, taxa in which these genes are apparently absent represent several widely divergent branches of kinetoplastids, arguing that these genes were independently lost at least six times in the evolutionary history of these organisms. The mechanisms responsible for the apparent coordinate loss of these RNAi system genes independently in several lineages of kinetoplastids, while being maintained in other related lineages, are currently unknown.


Assuntos
Crithidia fasciculata/genética , DNA de Cinetoplasto/genética , Leishmania braziliensis/genética , Trypanosomatina/genética , Sequência de Aminoácidos/genética , Proteínas Argonautas/genética , Evolução Biológica , DNA de Cinetoplasto/metabolismo , Eucariotos/genética , Evolução Molecular , Genoma/genética , Filogenia , Interferência de RNA/fisiologia , Ribonuclease III/genética , Alinhamento de Sequência/métodos , Sintenia/genética
15.
Annu Rev Microbiol ; 66: 473-91, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22994497

RESUMO

One of the most fascinating and unusual features of trypanosomatids, parasites that cause disease in many tropical countries, is their mitochondrial DNA. This genome, known as kinetoplast DNA (kDNA), is organized as a single, massive DNA network formed of interlocked DNA rings. In this review, we discuss recent studies on kDNA structure and replication, emphasizing recent developments on replication enzymes, how the timing of kDNA synthesis is controlled during the cell cycle, and the machinery for segregating daughter networks after replication.


Assuntos
Replicação do DNA , DNA de Cinetoplasto/genética , DNA de Cinetoplasto/metabolismo , Trypanosomatina/genética , DNA Circular/genética , DNA Circular/metabolismo , DNA de Protozoário/genética , DNA de Protozoário/metabolismo , Conformação de Ácido Nucleico
16.
BMC Infect Dis ; 17(1): 791, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29273010

RESUMO

BACKGROUND: Leishmania donovani is the etiological agent of visceral leishmaniasis (VL) in the Indian subcontinent. However, it is also known to cause cutaneous leishmaniasis (CL) in Sri Lanka. Sri Lankan L. donovani differs from other L. donovani strains, both at the molecular and biochemical level. To investigate the different species or strain-specific differences of L. donovani in Sri Lanka we evaluated sequence variation of the kinetoplastid DNA (kDNA). METHODS: Parasites isolated from skin lesions of 34 CL patients and bone marrow aspirates from 4 VL patients were genotyped using the kDNA minicircle PCR analysis. A total of 301 minicircle sequences that included sequences from Sri Lanka, India, Nepal and six reference species of Leishmania were analyzed. RESULTS: Haplotype diversity of Sri Lankan isolates were high (H d = 0.757) with strong inter-geographical genetic differentiation (F ST > 0.25). In this study, L. donovani isolates clustered according to their geographic origin, while Sri Lankan isolates formed a separate cluster and were clearly distinct from other Leishmania species. Within the Sri Lankan group, there were three distinct sub-clusters formed, from CL patients who responded to standard antimony therapy, CL patients who responded poorly to antimony therapy and from VL patients. There was no specific clustering of sequences based on geographical origin within Sri Lanka. CONCLUSION: This study reveals high levels of haplotype diversity of L. donovani in Sri Lanka with a distinct genetic association with clinically relevant phenotypic characteristics. The use of genetic tools to identify clinically relevant features of Leishmania parasites has important therapeutic implications for leishmaniasis.


Assuntos
Variação Genética , Leishmania donovani/genética , Leishmaniose Cutânea/diagnóstico , Medula Óssea/parasitologia , Medula Óssea/patologia , Análise por Conglomerados , Estudos Transversais , DNA de Cinetoplasto/química , DNA de Cinetoplasto/genética , DNA de Cinetoplasto/metabolismo , Genótipo , Haplótipos , Humanos , Leishmania donovani/classificação , Leishmania donovani/isolamento & purificação , Leishmaniose Cutânea/epidemiologia , Leishmaniose Cutânea/parasitologia , Masculino , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Pele/parasitologia , Pele/patologia , Sri Lanka/epidemiologia
17.
Antimicrob Agents Chemother ; 60(11): 6828-6836, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27600039

RESUMO

Leishmaniasis is a disease caused by pathogenic Leishmania parasites; current treatments are toxic and expensive, and drug resistance has emerged. While pentamidine, a diamidine-type compound, is one of the treatments, its antileishmanial mechanism of action has not been investigated in depth. Here we tested several diamidines, including pentamidine and its analog DB75, against Leishmania donovani and elucidated their antileishmanial mechanisms. We identified three promising new antileishmanial diamidine compounds with 50% effective concentrations (EC50s) of 3.2, 3.4, and 4.5 µM, while pentamidine and DB75 exhibited EC50s of 1.46 and 20 µM, respectively. The most potent antileishmanial inhibitor, compound 1, showed strong DNA binding properties, with a shift in the melting temperature (ΔTm) of 24.2°C, whereas pentamidine had a ΔTm value of 2.1°C, and DB75 had a ΔTm value of 7.7°C. Additionally, DB75 localized in L. donovani kinetoplast DNA (kDNA) and mitochondria but not in nuclear DNA (nDNA). For 2 new diamidines, strong localization signals were observed in kDNA at 1 µM, and at higher concentrations, the signals also appeared in nuclei. All tested diamidines showed selective and dose-dependent inhibition of kDNA, but not nDNA, replication, likely by inhibiting L. donovani topoisomerase IB. Overall, these results suggest that diamidine antileishmanial compounds exert activity by accumulating toward and blocking replication of parasite kDNA.


Assuntos
Amidinas/farmacologia , Leishmania donovani/efeitos dos fármacos , Tripanossomicidas/farmacologia , Amidinas/química , Benzamidinas/química , Benzamidinas/farmacologia , Replicação do DNA/efeitos dos fármacos , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , DNA de Cinetoplasto/metabolismo , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Fluorescência , Leishmania donovani/crescimento & desenvolvimento , Terapia de Alvo Molecular , Pentamidina/análogos & derivados , Pentamidina/farmacologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia , Tripanossomicidas/química
18.
Biochem Soc Trans ; 44(5): 1201-1217, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27911702

RESUMO

The kinetochore is the macromolecular protein complex that drives chromosome segregation in eukaryotes. Its most fundamental function is to connect centromeric DNA to dynamic spindle microtubules. Studies in popular model eukaryotes have shown that centromere protein (CENP)-A is critical for DNA-binding, whereas the Ndc80 complex is essential for microtubule-binding. Given their conservation in diverse eukaryotes, it was widely believed that all eukaryotes would utilize these components to make up a core of the kinetochore. However, a recent study identified an unconventional type of kinetochore in evolutionarily distant kinetoplastid species, showing that chromosome segregation can be achieved using a distinct set of proteins. Here, I review the discovery of the two kinetochore systems and discuss how their studies contribute to a better understanding of the eukaryotic chromosome segregation machinery.


Assuntos
Centrômero/metabolismo , Segregação de Cromossomos , Cinetocoros/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Centrômero/genética , Proteína Centromérica A , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA de Cinetoplasto/genética , DNA de Cinetoplasto/metabolismo , Evolução Molecular , Microtúbulos/genética , Microtúbulos/metabolismo , Fuso Acromático/genética , Fuso Acromático/metabolismo
19.
Proc Natl Acad Sci U S A ; 110(36): 14741-6, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23959897

RESUMO

Viability of the tsetse fly-transmitted African trypanosome Trypanosoma brucei depends on maintenance and expression of its kinetoplast (kDNA), the mitochondrial genome of this parasite and a putative target for veterinary and human antitrypanosomatid drugs. However, the closely related animal pathogens T. evansi and T. equiperdum are transmitted independently of tsetse flies and survive without a functional kinetoplast for reasons that have remained unclear. Here, we provide definitive evidence that single amino acid changes in the nuclearly encoded F1FO-ATPase subunit γ can compensate for complete physical loss of kDNA in these parasites. Our results provide insight into the molecular mechanism of compensation for kDNA loss by showing FO-independent generation of the mitochondrial membrane potential with increased dependence on the ADP/ATP carrier. Our findings also suggest that, in the pathogenic bloodstream stage of T. brucei, the huge and energetically demanding apparatus required for kDNA maintenance and expression serves the production of a single F1FO-ATPase subunit. These results have important implications for drug discovery and our understanding of the evolution of these parasites.


Assuntos
Genoma Mitocondrial/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Mutação Puntual , Proteínas de Protozoários/genética , Trypanosoma/genética , Sequência de Aminoácidos , Animais , Western Blotting , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , DNA de Cinetoplasto/genética , DNA de Cinetoplasto/metabolismo , Citometria de Fluxo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/genética , Potencial da Membrana Mitocondrial/fisiologia , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ionóforos de Próton/farmacologia , Proteínas de Protozoários/metabolismo , Homologia de Sequência de Aminoácidos , Trypanosoma/metabolismo , Moscas Tsé-Tsé/parasitologia
20.
J Biol Chem ; 289(49): 33712-29, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25336639

RESUMO

I knew nothing and had thought nothing about parasites until 1971. In fact, if you had asked me before then, I might have commented that parasites were rather disgusting. I had been at the Johns Hopkins School of Medicine for three years, and I was on the lookout for a new project. In 1971, I came across a paper in the Journal of Molecular Biology by Larry Simpson, a classmate of mine in graduate school. Larry's paper described a remarkable DNA structure known as kinetoplast DNA (kDNA), isolated from a parasite. kDNA, the mitochondrial genome of trypanosomatids, is a DNA network composed of several thousand interlocked DNA rings. Almost nothing was known about it. I was looking for a project on DNA replication, and I wanted it to be both challenging and important. I had no doubt that working with kDNA would be a challenge, as I would be exploring uncharted territory. I was also sure that the project would be important when I learned that parasites with kDNA threaten huge populations in underdeveloped tropical countries. Looking again at Larry's paper, I found the electron micrographs of the kDNA networks to be rather beautiful. I decided to take a chance on kDNA. Little did I know then that I would devote the next forty years of my life to studying kDNA replication.


Assuntos
Replicação do DNA , DNA de Cinetoplasto/metabolismo , Kinetoplastida/metabolismo , DNA de Cinetoplasto/genética , DNA de Cinetoplasto/história , DNA de Cinetoplasto/ultraestrutura , Regulação da Expressão Gênica , Haemosporida/genética , Haemosporida/metabolismo , Haemosporida/ultraestrutura , História do Século XX , História do Século XXI , Kinetoplastida/genética , Kinetoplastida/ultraestrutura , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA