Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(27): 15947-15954, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32576686

RESUMO

The cytosolic DNA sensor cGMP-AMP synthase (cGAS) synthesizes the noncanonical cyclic dinucleotide 2'3'-cGAMP to activate the adaptor protein stimulator of IFN genes (STING), thus awakening host immunity in response to DNA pathogen infection. However, dengue virus (DENV), an RNA virus without a DNA stage in its life cycle, also manipulates cGAS-STING-mediated innate immunity by proteolytic degradation of STING. Here, we found that the sensitivity of STING to DENV protease varied with different human STING haplotypes. Exogenous DNA further enhanced DENV protease's ability to interact and cleave protease-sensitive STING. DNA-enhanced STING cleavage was reduced in cGAS-knockdown cells and triggered by the cGAS product 2'3'-cGAMP. The source of DNA may not be endogenous mitochondrial DNA but rather exogenous reactivated viral DNA. Cells producing 2'3'-cGAMP by overexpressing cGAS or with DNA virus reactivation enhanced STING cleavage in neighboring cells harboring DENV protease. DENV infection reduced host innate immunity in cells with the protease-sensitive STING haplotype, whose homozygote genotype frequency was found significantly reduced in Taiwanese people with dengue fever. Therefore, the human STING genetic background and DNA pathogen coinfection may be the missing links contributing to DENV pathogenesis.


Assuntos
Dengue/enzimologia , Endopeptidases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nucleotídeos Cíclicos/metabolismo , Células A549 , DNA Viral/genética , Dengue/imunologia , Endopeptidases/genética , Haplótipos , Humanos , Evasão da Resposta Imune , Imunidade Inata , Nucleotídeos Cíclicos/genética
2.
J Med Virol ; 93(8): 4629-4637, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33634515

RESUMO

Globally, the burden due to dengue infection is increasing with a recent estimate of 96 million progressing to the disease every year. Dengue pathogenesis and the factors influencing it are not completely known. It is now widely speculated that there is an important role of matrix metalloproteinases (MMPs) in the initiation and progression of dengue pathogenesis; however, their exact roles are not fully understood. Overactivation of matrix metalloproteinases may contribute to the severity of dengue pathogenesis. Cytokines and various other mediators of inflammation interact with the vascular endothelium and matrix metalloproteinases may be one of the components among them. Extensive plasma leakage into tissue spaces may result in a shock. It is evident in the literature that MMP2 and MMP9 increase in dengue patients is correlated with the severity of the disease; however, the underlying mechanism is still unknown. Activation of innate cells and adaptive immune cells which include, B and T cells, macrophages or monocytes and dendritic cells also contribute to the dengue pathology. Newer therapeutic strategies include microRNAs, such as miR-134 (targets MMP3 and MMP1) and MicroRNA-320d, (targets MMP/TIMP proteolytic system). The use of antibodies-based therapeutics like (Andecaliximab; anti-matrix metalloproteinase-9 antibody) is also suggested against MMPs in dengue. In this review, we summarize some recent developments associated with the involvement of immune cells and their mediators associated with the matrix metalloproteinases mediated dengue pathogenesis. We highlight that, there is still very little knowledge about the MMPs in dengue pathogenesis which needs attention and extensive investigations.


Assuntos
Citocinas/imunologia , Vírus da Dengue/imunologia , Dengue/imunologia , Dengue/terapia , Metaloproteinases da Matriz/imunologia , Dengue/enzimologia , Dengue/patologia , Humanos , Metaloproteinase 2 da Matriz/imunologia , Metaloproteinase 9 da Matriz/imunologia , Índice de Gravidade de Doença
3.
Pharmacol Res ; 170: 105721, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34116207

RESUMO

Dengue virus (DENV) is the most prevalent arthropod-borne viral disease of humans and has a major impact on global public health. There is no clinically approved drugs for DENV infection. Since intracellular VEGFR2 is increased in DENV infected patients, we thus hypothesized that VEGFR2 participated DENV proliferation and its inhibitors could be served as antivirals against DENV. Actually our results showed that VEGFR2 was induced by DENV infection. Also the agonist of VEGFR2, VEGF-A, promoted DENV proliferation. Therefore, we screened the inhibitors of VEGFR2 and found that brivanib alaninate (brivanib) showed the best anti-DENV ability with the lowest cellular cytotoxicity. Mechanically, our results indicated VEGFR2 directly interacted with PTP1B to dephosphorylate AMPK to provide lipid environment for viral replication. However, this effect could be inhibited by brivanib, which significantly reversed the reduction of AMPK phosphorylation caused by DENV infection, thus improving the cellular lipid environment. Moreover, the antiviral effect of brivanib could be reversed by AMPK inhibitor, Compound C. In addition, oral administration of brivianib (20-50 mg/kg/day) clearly improved the survival rate of DENV2 infection, and this effect was abolished in accompanied with Compound C (10mg/kg/day). Collectively, our study disclosed the mechanism of VEGFR2 in DENV2 and evaluated the antiviral ability of brivanib, which deserved more attention for clinical usage in DENV infection.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Alanina/análogos & derivados , Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Dengue/tratamento farmacológico , Células Endoteliais/efeitos dos fármacos , Triazinas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Alanina/farmacologia , Animais , Células Cultivadas , Dengue/enzimologia , Dengue/virologia , Vírus da Dengue/crescimento & desenvolvimento , Vírus da Dengue/patogenicidade , Modelos Animais de Doenças , Células Endoteliais/enzimologia , Células Endoteliais/virologia , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-31636070

RESUMO

Flaviviruses comprise several medically important viruses, including Japanese encephalitis virus, West Nile virus, dengue virus (DENV), yellow fever virus, and Zika virus (ZIKV). A large outbreak of DENV and ZIKV occurred recently, leading to many cases of illness and death. However, despite decades of effort, we have no clinically specific therapeutic drugs against DENV and ZIKV. Previous studies showed that inflammatory responses play a critical role in dengue and Zika virus pathogenesis. Thus, in this study, we examined a series of novel anti-inflammatory compounds and found that treatment with compound 2d could dose dependently reduce viral protein expression and viral progeny production in HEK-293 and Raw264.7 cells infected with four serotypes of DENV and ZIKV. In addition, considering medication safety, compound 2d could not suppress cyclooxygenase-1 (COX-1) enzymatic activities and thus could prevent the side effect of bleeding. Moreover, compound 2d significantly inhibited COX-2 enzymatic activities and prostaglandin E2 levels, associated with viral replication, compared to results with a selective COX-2 inhibitor, celecoxib. Furthermore, administering 5 mg/kg compound 2d to DENV-2-infected AG129 mice prolonged survival and reduced viremia and serum cytokine levels. Overall, compound 2d showed therapeutic safety and efficacy in vitro and in vivo and could be further developed as a potential therapeutic agent for flavivirus infection.


Assuntos
Anti-Inflamatórios/farmacologia , Dengue/tratamento farmacológico , Infecção por Zika virus/tratamento farmacológico , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Antivirais/administração & dosagem , Antivirais/química , Antivirais/farmacologia , Celecoxib/farmacologia , Ciclo-Oxigenase 1/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Dengue/enzimologia , Dengue/virologia , Vírus da Dengue/classificação , Vírus da Dengue/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Camundongos , Camundongos da Linhagem 129 , Células RAW 264.7 , Segurança , Sorogrupo , Resultado do Tratamento , Replicação Viral/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Infecção por Zika virus/enzimologia , Infecção por Zika virus/virologia
5.
Adv Exp Med Biol ; 1062: 277-301, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29845540

RESUMO

The antiviral mechanism of action of iminosugars against many enveloped viruses, including dengue virus (DENV), HIV, influenza and hepatitis C virus, is believed to be mediated by inducing misfolding of viral N-linked glycoproteins through inhibition of host endoplasmic reticulum-resident α-glucosidase enzymes. This leads to reduced secretion and/or infectivity of virions and hence lower viral titres, both in vitro and in vivo. Free oligosaccharide analysis from iminosugar-treated cells shows that antiviral activity correlates with production of mono- and tri-glucosylated sugars, indicative of inhibition of ER α-glucosidases. We demonstrate that glucose-mimicking iminosugars inhibit isolated glycoprotein and glycolipid processing enzymes and that this inhibition also occurs in primary cells treated with these drugs. Galactose-mimicking iminosugars that have been tested do not inhibit glycoprotein processing but do inhibit glycolipid processing, and are not antiviral against DENV. By comparison, the antiviral activity of glucose-mimetic iminosugars that inhibit endoplasmic reticulum-resident α-glucosidases, but not glycolipid processing, demonstrates that inhibition of α-glucosidases is responsible for iminosugar antiviral activity against DENV. This monograph will review the investigations of many researchers into the mechanisms of action of iminosugars and the contribution of our current understanding of these mechanisms for optimising clinical delivery of iminosugars. The effects of iminosugars on enzymes other than glucosidases, the induction of ER stress and viral receptors will be also put into context. Data suggest that inhibition of α-glucosidases results in inhibited release of virus and is the primary antiviral mechanism of action of iminosugars against DENV.


Assuntos
Vírus da Dengue/fisiologia , Dengue/imunologia , Açúcares/imunologia , Animais , Dengue/enzimologia , Dengue/genética , Dengue/virologia , Vírus da Dengue/genética , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/virologia , Humanos , alfa-Glucosidases/genética , alfa-Glucosidases/imunologia
6.
BMC Infect Dis ; 17(1): 505, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28732476

RESUMO

BACKGROUND: Existing biomarkers such as AST, ALT and hematocrit have been associated with severe dengue but evidence are mixed. Recently, interests in creatine kinase as a dengue biomarker have risen. These biomarkers represent several underlying pathophysiological processes in dengue. Hence, we aimed to assess AST, ALT, CK and hematocrit in identification of severe dengue and to assess the correlational relationship amongst common biomarkers of dengue. METHODS: This was a retrospective cohort study of confirmed dengue patients who were warded in Kuala Lumpur Hospital between December 2014 and January 2015. CK, AST, ALT, hematocrit, platelet count, WBC and serum albumin were taken upon ward admission and repeated at timed intervals. Composite indices based on admission AST and ALT were analyzed. Correlation coefficients and coefficients of determination were computed. RESULTS: Among the 365 cases reviewed, twenty-two (6%) patients had severe dengue. AST and ALT were found to be good at identification of severe dengue. The AST2/ALT composite index was the most accurate (AUC 0.83; 95% CI 0.73 - 0.93). Optimal cutoff was 402 with a sensitivity of 59.1% (95% CI: 36.4 - 79.3%) and specificity of 92.4% (95% CI: 89.1 - 95.0%). Modified cutoff of 653 had a sensitivity of 40.9% (95% CI: 20.7 - 63.7%) and specificity of 97.4% (95% CI: 95.1 - 98.8%). Our analyses also suggested that several underlying biological processes represented by biomarkers tested were unrelated despite occurring in the same disease entity. Also, markers of plasma leakage were discordant and AST was likely hepatic in origin. CONCLUSIONS: The composite index AST2/ALT may be used as a marker for identification of severe dengue based on admission AST and ALT, with two choices of cutoff values, 402 and 653. AST is most likely of liver origin and CK does not provide additional value.


Assuntos
Fígado/enzimologia , Dengue Grave/diagnóstico , Dengue Grave/enzimologia , Adulto , Aspartato Aminotransferases/sangue , Biomarcadores/sangue , Creatina Quinase/sangue , Dengue/diagnóstico , Dengue/enzimologia , Feminino , Humanos , Masculino , Contagem de Plaquetas , Estudos Retrospectivos , Sensibilidade e Especificidade , Albumina Sérica/análise
7.
Protein Expr Purif ; 121: 141-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26849963

RESUMO

Dengue protease is a two-component enzyme and is an important drug target against dengue virus. The protease activity and protein stability of dengue nonstructural protein 3 (NS3) require a co-factor region from a four-span membrane protein NS2B. A natural form of dengue protease containing full-length NS2B and NS3 protease domain NS2BFL-NS3pro will be useful for dengue drug discovery. In current study, detergents that can be used for protease purification were tested. Using a water soluble protease construct, 39 detergents were selected for both NS2B and NS2BFL-NS3pro purification. The results showed that 18 detergents were able to sustain the activity of the natural dengue protease and 11 detergents could be used for NS2B purification. The results obtained in this study will be useful for biochemical and biophysical studies on dengue protease.


Assuntos
Vírus da Dengue/enzimologia , Dengue/enzimologia , Detergentes/química , Serina Endopeptidases/química , Dengue/virologia , Vírus da Dengue/patogenicidade , Descoberta de Drogas , Escherichia coli/genética , Cinética , Serina Endopeptidases/isolamento & purificação , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/isolamento & purificação
8.
J Immunol ; 193(3): 1258-67, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24973451

RESUMO

Hemorrhagic manifestations occur frequently accompanying a wide range of dengue disease syndromes. Much work has focused on the contribution of immune factors to the pathogenesis of hemorrhage, but how dengue virus (DENV) participates in the pathogenic process has never been explored. Although there is no consensus that apoptosis is the basis of vascular permeability in human dengue infections, we showed in dengue hemorrhage mouse model that endothelial cell apoptosis is important to hemorrhage development in mice. To explore the molecular basis of the contribution of DENV to endothelial cell death, we show in this study that DENV protease interacts with cellular IκBα and IκBß and cleaves them. By inducing IκBα and IκBß cleavage and IκB kinase activation, DENV protease activates NF-κB, which results in endothelial cell death. Intradermal inoculation of DENV protease packaged in adenovirus-associated virus-9 induces endothelial cell death and dermal hemorrhage in mice. Although the H51 activity site is not involved in the interaction between DENV protease and IκB-α/ß, the enzymatic activity is critical to the ability of DENV protease to induce IκBα and IκBß cleavage and trigger hemorrhage development. Moreover, overexpression of IκBα or IκBß protects endothelial cells from DENV-induced apoptosis. In this study, we show that DENV protease participates in the pathogenesis of dengue hemorrhage and discover IκBα and IκBß to be the new cellular targets that are cleaved by DENV protease.


Assuntos
Apoptose/imunologia , Dengue/imunologia , Endotélio Vascular/imunologia , Hemorragia/imunologia , Proteínas I-kappa B/metabolismo , NF-kappa B/antagonistas & inibidores , Serina Endopeptidases/metabolismo , Animais , Antígenos Virais/metabolismo , Antígenos Virais/fisiologia , Permeabilidade Capilar/imunologia , Morte Celular/imunologia , Linhagem Celular , Dengue/enzimologia , Dengue/patologia , Modelos Animais de Doenças , Endotélio Vascular/patologia , Endotélio Vascular/virologia , Células HEK293 , Hemorragia/patologia , Hemorragia/virologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Serina Endopeptidases/fisiologia
9.
J Virol ; 88(12): 6793-804, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24696471

RESUMO

UNLABELLED: Positive-sense RNA viruses, such as dengue virus (DENV), hijack the intracellular membrane machinery for their own replication. The Rab18 protein, a member of the Rab GTPase family, key regulators of membrane trafficking, is located on the organelles involved in DENV infection, such as the endoplasmic reticulum (ER) and lipid droplets (LDs). In this study, we addressed the potential involvement of Rab18 in DENV infection by using cells overexpressing the wild-type, GTP-bound active form, or GDP-bound inactive form of Rab18 and cells with Rab18 knockdown. DENV replication, measured by viral protein, viral RNA, and viral progeny production, as well as LD induction, was reduced in cells with inactive Rab18 and in cells deprived of Rab18 expression, suggesting a positive role of Rab18 in the DENV life cycle. Interestingly, the interaction of fatty acid synthase (FASN), a key lipogenic enzyme in lipid biosynthesis, with DENV NS3 protein relied on the conversion of the GDP-bound to the GTP-bound form of Rab18. Furthermore, the targeting of FASN to sites participating in DENV infection, such as the ER and LDs, depends on functional Rab18. Thus, Rab18-mediated membrane trafficking of FASN and NS3 facilitates DENV replication, probably by ensuring a sufficient and coordinated lipid supply for membrane proliferation and arrangement. IMPORTANCE: Infection by dengue virus (DENV), an important mosquito-borne virus threatening ∼40% of the world's population, can cause mild dengue fever or severe dengue hemorrhagic fever and dengue shock syndrome. The pathogenesis mechanisms of DENV-related diseases are not clear, but high viral replication is believed to be a risk factor for the severe form of DENV infection. Thus, understanding the detailed mechanism of DENV replication might help address this devastating virus. Here, we found that Rab18, a small GTPase involved in vesicle trafficking and located in the endoplasmic reticulum network and on the surfaces of lipid droplets, positively regulates DENV replication. The functional machinery of Rab18 is required to recruit the enzyme fatty acid synthase to sites of DENV replication and to interact with DENV NS3 protein to promote fatty acid biosynthesis. Thus, DENV usurps Rab18 to facilitate its own replication.


Assuntos
Vírus da Dengue/fisiologia , Dengue/enzimologia , Ácido Graxo Sintases/metabolismo , Replicação Viral , Proteínas rab de Ligação ao GTP/metabolismo , Dengue/metabolismo , Dengue/virologia , Vírus da Dengue/genética , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/virologia , Ácido Graxo Sintases/genética , Humanos , Ligação Proteica , Transporte Proteico , RNA Helicases/genética , RNA Helicases/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas rab de Ligação ao GTP/genética
10.
PLoS Pathog ; 9(8): e1003521, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935499

RESUMO

Dengue virus is transmitted by Aedes mosquitoes and infects at least 100 million people every year. Progressive urbanization in Asia and South-Central America and the geographic expansion of Aedes mosquito habitats have accelerated the global spread of dengue, resulting in a continuously increasing number of cases. A cost-effective, safe vaccine conferring protection with ideally a single injection could stop dengue transmission. Current vaccine candidates require several booster injections or do not provide protection against all four serotypes. Here we demonstrate that dengue virus mutants lacking 2'-O-methyltransferase activity are highly sensitive to type I IFN inhibition. The mutant viruses are attenuated in mice and rhesus monkeys and elicit a strong adaptive immune response. Monkeys immunized with a single dose of 2'-O-methyltransferase mutant virus showed 100% sero-conversion even when a dose as low as 1,000 plaque forming units was administrated. Animals were fully protected against a homologous challenge. Furthermore, mosquitoes feeding on blood containing the mutant virus were not infected, whereas those feeding on blood containing wild-type virus were infected and thus able to transmit it. These results show the potential of 2'-O-methyltransferase mutant virus as a safe, rationally designed dengue vaccine that restrains itself due to the increased susceptibility to the host's innate immune response.


Assuntos
Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Dengue/imunologia , Metiltransferases/imunologia , Animais , Cricetinae , Dengue/enzimologia , Dengue/genética , Dengue/prevenção & controle , Vacinas contra Dengue/genética , Vacinas contra Dengue/farmacologia , Vírus da Dengue/genética , Células HEK293 , Humanos , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Macaca mulatta , Metiltransferases/genética , Camundongos , Camundongos Mutantes , Mutação , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/farmacologia
11.
Biochem Biophys Res Commun ; 440(3): 393-8, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24070610

RESUMO

The non-structural protein NS2B/NS3 serine-protease complex of the dengue virus (DENV) is required for the maturation of the viral polyprotein. Dissociation of the NS2B cofactor from NS3 diminishes the enzymatic activity of the complex. In this study, we identified a small molecule inhibitor that interferes with the interaction between NS2B and NS3 using structure-based screening and a cell-based viral replication assay. A library containing 661,417 small compounds derived from the Molecular Operating Environment lead-like database was docked to the NS2B/NS3 structural model. Thirty-nine compounds with high scores were tested in a secondary screening using a cell-based viral replication assay. SK-12 was found to inhibit replication of all DENV serotypes (EC50=0.74-4.92 µM). In silico studies predicted that SK-12 pre-occupies the NS2B-binding site of NS3. Steady-state kinetics using a fluorogenic short peptide substrate demonstrated that SK-12 is a noncompetitive inhibitor against the NS2B/NS3 protease. Inhibition to Japanese encephalitis virus by SK-12 was relatively weak (EC50=29.81 µM), and this lower sensitivity was due to difference in amino acid at position 27 of NS3. SK-12 is the promising small-molecule inhibitor that targets the interaction between NS2B and NS3.


Assuntos
Antivirais/farmacologia , Dengue/tratamento farmacológico , Naftóis/farmacologia , Serina Proteases/química , Bibliotecas de Moléculas Pequenas/farmacologia , Sulfonamidas/farmacologia , Proteínas não Estruturais Virais/química , Replicação Viral/efeitos dos fármacos , Simulação por Computador , Dengue/enzimologia , Humanos , Modelos Químicos , Conformação Proteica
13.
J Biol Chem ; 286(8): 6233-40, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21147775

RESUMO

Crystal structure analysis of Flavivirus methyltransferases uncovered a flavivirus-conserved cavity located next to the binding site for its cofactor, S-adenosyl-methionine (SAM). Chemical derivatization of S-adenosyl-homocysteine (SAH), the product inhibitor of the methylation reaction, with substituents that extend into the identified cavity, generated inhibitors that showed improved and selective activity against dengue virus methyltransferase (MTase), but not related human enzymes. Crystal structure of dengue virus MTase with a bound SAH derivative revealed that its N6-substituent bound in this cavity and induced conformation changes in residues lining the pocket. These findings demonstrate that one of the major hurdles for the development of methyltransferase-based therapeutics, namely selectivity for disease-related methyltransferases, can be overcome.


Assuntos
Antivirais/química , Vírus da Dengue/enzimologia , Inibidores Enzimáticos/química , Metiltransferases/antagonistas & inibidores , Metiltransferases/química , S-Adenosilmetionina/análogos & derivados , S-Adenosilmetionina/química , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/química , Antivirais/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Dengue/tratamento farmacológico , Dengue/enzimologia , Dengue/genética , Vírus da Dengue/genética , Inibidores Enzimáticos/farmacologia , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , S-Adenosilmetionina/farmacologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
14.
Bioorg Med Chem ; 20(3): 1213-21, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22249124

RESUMO

Two click chemistry-derived focused libraries based on the benz[d]isothiazol-3(2H)-one scaffold were synthesized and screened against Dengue virus and West Nile virus NS2B-NS3 proteases. Several compounds (4l, 7j-n) displayed noteworthy inhibitory activity toward Dengue virus NS2B-NS3 protease in the absence and presence of added detergent. These compounds could potentially serve as a launching pad for a hit-to-lead optimization campaign.


Assuntos
Antivirais/química , Antivirais/farmacologia , Vírus da Dengue/enzimologia , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Vírus do Nilo Ocidental/enzimologia , Química Click , Dengue/tratamento farmacológico , Dengue/enzimologia , Vírus da Dengue/efeitos dos fármacos , Humanos , Modelos Moleculares , Tiazóis/química , Tiazóis/farmacologia , Febre do Nilo Ocidental/tratamento farmacológico , Febre do Nilo Ocidental/enzimologia , Vírus do Nilo Ocidental/efeitos dos fármacos
15.
J Immunol ; 183(12): 8035-43, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19923450

RESUMO

The 2',5'-oligoadenylate synthetase (OAS) and its downstream effector RNase L play important roles in host defense against virus infection. Oas1b, one of the eight Oas1 genes in the mouse genome, has been identified as a murine flavivirus-resistance gene. Four genes, OAS1, OAS2, OAS3, and OAS-like (OASL), have been identified in the human OAS gene family, and 10 isoforms, including OAS1 (p42, p44, p46, p48, and p52), OAS2 (p69 and p71), OAS3 (p100), and OASL (p30 and p59) can be generated by alternative splicing. In this study, we determined the role of the human OAS/RNase L pathway in host defense against dengue virus (DEN) infection and assessed the antiviral potential of each isoform in the human OAS family. DEN replication was reduced by overexpression and enhanced by knockdown of RNase L expression, indicating a protective role for RNase L against DEN replication in human cells. The human OAS1 p42, OAS1 p46, and OAS3 p100, but not the other OAS isoforms, blocked DEN replication via an RNase L-dependent mechanism. Furthermore, the anti-DEN activities of these three OAS isoforms correlated with their ability to trigger RNase L activation in DEN-infected cells. Thus, OAS1 p42/p46 and OAS3 p100 are likely to contribute to host defense against DEN infection and play a role in determining the outcomes of DEN disease severity.


Assuntos
2',5'-Oligoadenilato Sintetase/fisiologia , Vírus da Dengue/imunologia , Dengue/enzimologia , Dengue/prevenção & controle , Família Multigênica , 2',5'-Oligoadenilato Sintetase/biossíntese , 2',5'-Oligoadenilato Sintetase/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Cricetinae , Dengue/imunologia , Dengue/virologia , Endorribonucleases/genética , Endorribonucleases/metabolismo , Endorribonucleases/fisiologia , Ativação Enzimática/imunologia , Humanos , Isoenzimas/biossíntese , Isoenzimas/genética , Ativação Viral/imunologia
16.
Front Immunol ; 12: 629167, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122402

RESUMO

Neutrophil extracellular traps (NETs) are increasingly recognized to play a role in the pathogenesis of viral infections, including dengue. NETs can be formed NADPH oxidase (NOX)-dependently or NOX-independently. NOX-independent NETs can be induced by activated platelets and are very potent in activating the endothelium. Platelet activation with thrombocytopenia and endothelial dysfunction are prominent features of dengue virus infection. We postulated that dengue infection is associated with NOX-independent NET formation, which is related to platelet activation, endothelial perturbation and increased vascular permeability. Using our specific NET assays, we investigated the time course of NET formation in a cohort of Indonesian dengue patients. We found that plasma levels of NETs were profoundly elevated and that these NETs were predominantly NOX-independent NETs. During early recovery phase (7-13 days from fever onset), total NETs correlated negatively with platelet number and positively with platelet P-selectin expression, the binding of von Willebrand factor to platelets and levels of Syndecan-1. Patients with gall bladder wall thickening, an early marker of plasma leakage, had a higher median level of total NETs. Ex vivo, platelets induced NOX-independent NET formation in a dengue virus non-structural protein 1 (NS1)-dependent manner. We conclude that NOX-independent NET formation is enhanced in dengue, which is most likely mediated by NS1 and activated platelets.


Assuntos
Plaquetas/metabolismo , Vírus da Dengue/patogenicidade , Dengue/enzimologia , Armadilhas Extracelulares/metabolismo , NADPH Oxidases/metabolismo , Neutrófilos/enzimologia , Ativação Plaquetária , Adolescente , Adulto , Plaquetas/imunologia , Plaquetas/virologia , Estudos de Casos e Controles , Células Cultivadas , Dengue/sangue , Dengue/imunologia , Dengue/virologia , Vírus da Dengue/imunologia , Vírus da Dengue/metabolismo , Armadilhas Extracelulares/virologia , Feminino , Interações Hospedeiro-Patógeno , Humanos , Indonésia , Masculino , Neutrófilos/imunologia , Neutrófilos/virologia , Estudos Prospectivos , Proteínas não Estruturais Virais/metabolismo , Adulto Jovem
17.
ACS Appl Mater Interfaces ; 13(22): 25715-25726, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34036784

RESUMO

Dengue virus (DENV), an arbovirus transmitted by mosquitoes, causes infectious diseases such as dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. Despite the dangers posed by DENV, there are no approved antiviral drugs for treatment of DENV infection. Considering the potential for a global dengue outbreak, rapid development of antiviral agents against DENV infections is crucial as a preemptive measure; thus, the selection of apparent drug targets, such as the viral enzymes involved in the viral life cycle, is recommended. Helicase, a potential drug target in DENV, is a crucial viral enzyme that unwinds double-stranded viral RNA, releasing single-stranded RNA genomes during viral replication. Therefore, an inhibitor of helicase activity could serve as a direct-acting antiviral agent. Here, we introduce an RNA helicase assay based on graphene oxide, which enables fluorescence-based analysis of RNA substrate-specific helicase enzyme activity. This assay demonstrated high reliability and ability for high-throughput screening, identifying a new helicase inhibitor candidate, micafungin (MCFG), from an FDA-approved drug library. As a direct-acting antiviral agent targeting RNA helicase, MCFG inhibits DENV proliferation in cells and an animal model. Notably, in vivo, MCFG treatment reduced viremia, inflammatory cytokine levels, and viral loads in several tissues and improved survival rates by up to 40% in a lethal mouse model. Therefore, we suggest MCFG as a potential direct-acting antiviral drug candidate.


Assuntos
Antivirais/farmacologia , Técnicas Biossensoriais/métodos , Vírus da Dengue/efeitos dos fármacos , Dengue/tratamento farmacológico , Grafite/química , Micafungina/farmacologia , RNA Helicases/antagonistas & inibidores , Animais , Antifúngicos/farmacologia , Antivirais/química , Dengue/enzimologia , Dengue/virologia , Vírus da Dengue/enzimologia , Ensaios de Triagem em Larga Escala/métodos , Camundongos , Nanopartículas/química , Replicação Viral
18.
Sci Rep ; 10(1): 14493, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32879337

RESUMO

Dengue virus (DENV) is an arthropod-borne Flavivirus that can cause a range of symptomatic disease in humans. There are four dengue viruses (DENV 1 to 4) and infection with one DENV only provides transient protection against a heterotypic virus. Second infections are often more severe as the disease is potentiated by antibodies from the first infection through a process known as antibody dependent enhancement (ADE) of infection. Phosphorylation is a major post-translational modification that can have marked effects on a number of processes. To date there has been little information on the phosphorylation changes induced by DENV infection. This study aimed to determine global phosphoproteome changes induced by DENV 2 in U937 cells infected under an ADE protocol. A 2-dimensional electrophoretic approach coupled with a phosphoprotein-specific dye and mass spectroscopic analysis identified 15 statistically significant differentially phosphorylated proteins upon DENV 2 infection. One protein identified as significantly differentially phosphorylated, pyruvate kinase M2 (PKM2) was validated. Treatment with a PKM2 inhibitor modestly reduced levels of infection and viral output, but no change was seen in cellular viral protein levels, suggesting that PKM2 acts on exocytic virus release. While the effect of inhibition of PKM2 was relatively modest, the results highlight the need for a greater understanding of the role of phosphoproteins in DENV infection.


Assuntos
Dengue/enzimologia , Fosfoproteínas/química , Proteoma , Piruvato Quinase/química , Anticorpos Antivirais/imunologia , Anticorpos Facilitadores/imunologia , Vírus da Dengue/fisiologia , Eletroforese em Gel Bidimensional , Exocitose , Humanos , Espectrometria de Massas , Compostos Organometálicos , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Células U937 , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
19.
J Med Chem ; 63(8): 4205-4214, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32227946

RESUMO

Influenza and dengue viruses present a growing global threat to public health. Both viruses depend on the host endoplasmic reticulum (ER) glycoprotein folding pathway. In 2014, Sadat et al. reported two siblings with a rare genetic defect in ER α-glucosidase I (ER Glu I) who showed resistance to viral infections, identifying ER Glu I as a key antiviral target. Here, we show that a single dose of UV-4B (the hydrochloride salt form of N-(9'-methoxynonyl)-1-deoxynojirimycin; MON-DNJ) capable of inhibiting Glu I in vivo is sufficient to prevent death in mice infected with lethal viral doses, even when treatment is started as late as 48 h post infection. The first crystal structure of mammalian ER Glu I will constitute the basis for the development of potent and selective inhibitors. Targeting ER Glu I with UV-4B-derived compounds may alter treatment paradigms for acute viral disease through development of a single-dose therapeutic regime.


Assuntos
Dengue/prevenção & controle , Retículo Endoplasmático/efeitos dos fármacos , Inibidores de Glicosídeo Hidrolases/administração & dosagem , Influenza Humana/prevenção & controle , alfa-Glucosidases , Animais , Dengue/tratamento farmacológico , Dengue/enzimologia , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/enzimologia , Relação Dose-Resposta a Droga , Retículo Endoplasmático/enzimologia , Humanos , Influenza Humana/tratamento farmacológico , Influenza Humana/enzimologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Estrutura Secundária de Proteína , alfa-Glucosidases/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-19323035

RESUMO

We determined the differential expression levels of proteins in peripheral blood mononuclear cells of patients with dengue fever (DF) and dengue hemorrhagic fever (DHF). Proteins were subjected to two-dimensional electrophoresis, mass spectrometry and Western blot analysis. We identified 8 proteins that were 2-fold or more up-regulated in patients compared to healthy control, three of which, aldolase, thioredoxin peroxidase and alpha tubulin, were related to dengue infection. Both thioredoxin peroxidase and alpha tubulin were over-expressed 4.9 and 3.3 times respectively in DHF compared to DF patients while aldolase was up-regulated 2.2 times in DF compared to DHF patients. Alpha tubulin and thioredoxin peroxidase have the potential to be utilized as biomarkers for DHF.


Assuntos
Vírus da Dengue/enzimologia , Dengue/enzimologia , Frutose-Bifosfato Aldolase/metabolismo , Peroxirredoxinas/metabolismo , Dengue Grave/enzimologia , Tubulina (Proteína)/metabolismo , Adolescente , Adulto , Western Blotting , Estudos de Casos e Controles , Dengue/sangue , Eletroforese em Gel Bidimensional , Ensaio de Imunoadsorção Enzimática , Feminino , Frutose-Bifosfato Aldolase/genética , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Leucócitos Mononucleares/imunologia , Masculino , Espectrometria de Massas , Dengue Grave/sangue , Dengue Grave/diagnóstico , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA