Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Regul Toxicol Pharmacol ; 128: 105097, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34902532

RESUMO

In forensic toxicology, a marker of street heroin use is urgent especially in the absence of urinary 6-monoacetylmorphine. ATM4G, the Glucuronide of Acetylated product of Thebaine compound 4 Metabolite (ATM4), arising from byproducts of street heroin synthesis has been considered as a useful marker in some European studies. However, whether ATM4G is a universal marker particularly in Southeast Asia due to 'street' heroin with high purity, it's still unclear. To investigate putative markers for different regions, ATM4G and other metabolites including the Acetylated product of Thebaine compound 3 Metabolite (ATM3) and thebaol, also originated from thebaine were detected in 552 urine samples from heroin users in Taiwan. Results were compared with that from samples collected in the UK and Germany. Only a sulfo-conjugate of ATM4, ATM4S, was detected in 28 Taiwanese users using a sensitive MS3 method whilst out of 351 samples from the UK and Germany, ATM4G was present in 91. Thebaol-glucuronide was first time detected in 118. No markers were detected in urine following herbal medicine use or poppy seed ingestion. The presence of ATM4S/ATM4G might be affected by ethnicities and heroin supplied in regions. Thebaol-glucuronide is another putative marker with ATM4G and ATM4S for street heroin use.


Assuntos
Toxicologia Forense/métodos , Glucuronídeos/urina , Heroína/metabolismo , Detecção do Abuso de Substâncias/métodos , Sudeste Asiático , Europa (Continente) , Cromatografia Gasosa-Espectrometria de Massas/métodos , Heroína/urina , Humanos , Derivados da Morfina/urina , Tebaína/urina
2.
Molecules ; 27(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36235294

RESUMO

Common methodologies such as liquid-liquid extraction and solid-phase extraction are applied for the extraction of opioids from biological specimens i.e., blood and urine. Techniques including LC-MS/LC-MSMS, GC-MS, etc. are used for qualitative or quantitative determination of opioids. The goal of the present work is to design a green, economic, rugged, and simple extraction technique for famous opioids in human blood and urine and their simultaneous quantification by GC-MS equipped with an inert plus electron impact (EI) ionization source at SIM mode to produce reproducible and efficient results. Morphine, codeine, 6-acetylmorphine, nalbuphine, tramadol and dextromethorphan were selected as target opioids. Anhydrous Epsom salt was applied for dSPE of opioids from blood and urine into acetonitrile extraction solvent with the addition of sodium phosphate buffer (pH 6) and n-hexane was added to remove non-polar interfering species from samples. BSTFA was used as a derivatizing agent for GC-MS. Following method validation, the LOD/LLOQ and ULOQ were determined for morphine, codeine, nal-buphine, tramadol, and dextromethorphan at 10 ng/mL and 1500 ng/mL, respectively, while the LOD/LLOQ and ULOQ were determined for 6-acetylmorphine at 5 ng/mL and 150 ng/mL, respectively. This method was applied to real blood and urine samples of opioid abusers and the results were found to be reproducible with true quantification.


Assuntos
Nalbufina , Tramadol , Acetonitrilas , Analgésicos Opioides , Codeína/análise , Dextrometorfano , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Morfina/análise , Derivados da Morfina/urina , Extração em Fase Sólida/métodos , Solventes , Detecção do Abuso de Substâncias/métodos
3.
Molecules ; 25(4)2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098143

RESUMO

Studying the origin of opiate and/or opiate metabolites in individual urine specimens after consumption of cold syrups is vital for patients, doctors, and law enforcement. A rapid liquid chromatography-tandem mass spectrometry method using "dilute-and-shoot" analysis without the need for extraction, hydrolysis and/or derivatization has been developed and validated. The approach provides linear ranges of 2.5-1000 ng mL-1 for 6-acetylmorphine, codeine, chlorpheniramine, and carbinoxamine, 2.5-800 ng mL-1 for morphine and morphine-3-ß-d-glucuronide, and 2.5-600 ng mL-1 for morphine-6-ß-d-glucuronide and codeine-6-ß-d-glucuronide, with excellent correlation coefficients (R2 > 0.995) and matrix effects (< 5%). Urine samples collected from the ten participants orally administered cold syrups were analyzed. The results concluded that participants consuming codeine-containing cold syrups did not routinely pass urine tests for opiates, and their morphine-codeine concentration ratios (M/C) were not always < 1. In addition, the distribution map of the clinical total concentration of the sum of morphine and codeine against the antihistamines (chlorpheniramine or carbinoxamine) were plotted for discrimination of people who used cold syrups. The 15 real cases have been studied by using M/C rule, cutoff value, and distribution map, further revealing a potential approach to determine opiate metabolite in urine originating from cold syrups.


Assuntos
Analgésicos Opioides/urina , Codeína/urina , Antagonistas dos Receptores Histamínicos/urina , Alcaloides Opiáceos/urina , Adulto , Analgésicos Opioides/administração & dosagem , Clorfeniramina/urina , Codeína/administração & dosagem , Codeína/análogos & derivados , Feminino , Medicina Legal , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino , Pessoa de Meia-Idade , Morfina/urina , Derivados da Morfina/urina , Piridinas/urina , Adulto Jovem
4.
Toxicol Mech Methods ; 30(6): 450-453, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32375552

RESUMO

Introduction: 6-Monoacetylmorphine (6-MAM) is a specific metabolite of heroin. Thus, the presence of 6-MAM in urine is a definitive indication of heroin intake. The possibility of having an immunoassay procedure to measure 6-MAM would be a diagnosis tool to discriminate, among opiates-positive, those patients who have consumed heroin and those who have not.Methods: EMIT® II Plus 6-Acetylmorphine Assay was used to measure 6-MAM in urine. The positive opiate screening results were confirmed at the Toxicology laboratory of our hospital by GC-MS.Results: This study includes 63 urine samples from subjects admitted to emergency department with suspicion of opiate consumption. Specificity was evaluated in the two groups of samples studied. In the first group all samples which resulted negative by opiate immunoassay (n = 33) were negative for 6-MAM immunoassay test. Thus, the specificity obtained for 6-MAM immunoassay in this group was 100%. Regarding the second specificity study, performed in positive samples by opiate immunoassay which were negative to 6 MAM by GC-MS, the specificity decreased down to 75%. In the study of sensitivity all samples confirmed as positive to 6-MAM by confirmatory method (GC-MS) resulted positive by the screening method, thus sensitivity obtained was 100%.Discussion: In this study no FN for 6-MAM was observed and therefore the new Emit® II Plus 6- Acetylmorphine Assay procedure has a high NPV, thus a negative result with 6-MAM immunoassay practically excludes heroine consume. The positive results to 6-MAM by immunoassay should be confirmed by a more analytically specific method, such as GCMS.


Assuntos
Dependência de Heroína/diagnóstico , Imunoensaio , Derivados da Morfina/urina , Detecção do Abuso de Substâncias , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Automação Laboratorial , Biomarcadores/urina , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Dependência de Heroína/urina , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Urinálise , Adulto Jovem
5.
Electrophoresis ; 40(16-17): 2193-2203, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30815884

RESUMO

Fentanyl and morphine are opioid drugs as well as new psychoactive substances. Even originally introduced as efficient anesthetic drugs to relieve moderate-to-severe pain in clinic, the overdose of new synthetic opioids is currently a serious public health problem in numerous countries worldwide. The entire category of fentanyls has been included in the regulatory list in several countries. There is a great and urgent demand to rapidly recognize fentanyls and morphines in various samples. Here, we report an on-site surface-enhanced Raman spectroscopic method to classify fentanyls from morphines by the Raman spectroscopic signature of the molecular scaffold structure, with an assistance of principle component analysis algorithm. Moreover, by simple but fine-tuning approach of inorganic salt-induced aggregation of gold nanoparticles substrate, we achieved a selective detection of 10 ng/mL fentanyl from 2000-fold of heroin, the most common coexisting substance in chemical samples. Good differentiation of 50 ng/mL fentanyl from 10 000-fold morphine as a main metabolite of heroin in urine samples was also possible after a feasible pretreatment by StageTip procedures. Depending on different structures, the detection sensitivity of five fentanyls ranged from 50 to 2000 ng/mL.


Assuntos
Fentanila/análise , Fentanila/isolamento & purificação , Derivados da Morfina/análise , Derivados da Morfina/isolamento & purificação , Análise Espectral Raman/métodos , Fentanila/urina , Ouro/química , Humanos , Limite de Detecção , Modelos Lineares , Nanopartículas Metálicas/química , Derivados da Morfina/urina
6.
J Vet Pharmacol Ther ; 42(4): 401-410, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30919469

RESUMO

The objective of the current study was to describe and characterize the pharmacokinetics and selected pharmacodynamic effects of morphine and its two major metabolites in horses following several doses of morphine. A total of ten horses were administered a single intravenous dose of morphine: 0.05, 0.1, 0.2, or 0.5 mg/kg, or saline control. Blood samples were collected up to 72 hr, analyzed for morphine, and metabolites by LC/MS/MS, and pharmacokinetic parameters were determined. Step count, heart rate and rhythm, gastrointestinal borborygmi, fecal output, packed cell volume, and total protein were also assessed. Morphine-3 glucuronide (M3G) was the predominant metabolite detected, with concentrations exceeding those of morphine-6 glucuronide (M6G) at all time points. Maximal concentrations of M3G and M6G ranged from 55.1 to 504 and 6.2 to 28.4 ng/ml, respectively, across dose groups. The initial assessment of morphine pharmacokinetics was done using noncompartmental analysis (NCA). The volume of distribution at steady-state and systemic clearance ranged from 9.40 to 16.9 L/kg and 23.3 to 32.4 ml min-1  kg-1 , respectively. Adverse effects included signs of decreased gastrointestinal motility and increased central nervous excitation. There was a correlation between increasing doses of morphine, increases in M3G concentrations, and adverse effects. Findings from this study support direct administration of purified M3G and M6G to horses to better characterize the pharmacokinetics of morphine and its metabolites and to assess pharmacodynamic activity of these metabolites.


Assuntos
Analgésicos Opioides/farmacocinética , Cavalos/sangue , Derivados da Morfina/urina , Morfina/farmacocinética , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/urina , Animais , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Injeções Intravenosas , Masculino , Morfina/administração & dosagem , Morfina/urina
7.
Ann Pharm Fr ; 77(6): 468-487, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31564417

RESUMO

In the field of doping, a great interest is carried for the analysis of morphine, a powerful narcotic analgesic opiate which use is prohibited during competitions. In order to confirm the abnormal analytical result in our anti-doping laboratory, a sensitive and selective gas chromatography-mass spectrometry (GC-MS) method was performed for the quantification of urinary morphine. As sample preparation is a key step for the determination of drugs in biological samples, the aim of this work consists of the optimization of the urinary human sample pretreatment conditions before quantification by GC/MS. Enzymatic hydrolysis associated with liquid-liquid extraction constitute the major pre-treatment steps. Our study has first focused on the optimization of the extraction solvents then to enzymatic hydrolysis which morphine is released from its glucuronide conjugated form. Onboard premiums, a study involving the effect of "amount of enzyme", "incubation temperature" and "duration of hydrolysis" was conducted. This univariate study has enabled us to evaluate the influence of each of these operating variables on the area ratio of morphine to the internal standard (Amorphine/AIS) response and to set the experimental fields for each one of them. Based on these results, an experimental design was established using the Box-Behnken model to determine, by multivariate analysis, the optimal operating conditions maximizing the "Amophine/AIS" response. After validation, the analysis of response surface makes it possible to set the optimum operating conditions, which the ratio "Amorphine/AIS" is maximized. The retained conditions for enzymatic hydrolysis are 160µl of Escherichia coli glucuronidase enzyme during 6hours of incubation at a temperature of 36°C. The solvent mixture Methyl-t-Butyl Ether/isopropanol (4:1, v/v) was selected since it has improved morphine extraction from the urinary matrix allowing a gain of 50% when compared to that used in our routine laboratory. Our developed extraction method can be successfully applied for our forensic anti-doping analysis of morphin in human sample urine.


Assuntos
Dopagem Esportivo , Derivados da Morfina/urina , Morfina/isolamento & purificação , Urinálise/métodos , 2-Propanol , Acetamidas , Centrifugação , Proteínas de Escherichia coli/metabolismo , Fluoracetatos , Cromatografia Gasosa-Espectrometria de Massas , Glucuronidase/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Éteres Metílicos , Modelos Químicos , Morfina/química , Derivados da Morfina/química , Solubilidade , Solventes , Temperatura , Compostos de Trimetilsilil
8.
Biomed Chromatogr ; 32(2)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28833311

RESUMO

A robust ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the determination of morphine-6-d-glucuronide (M6G), morphine-3-d-glucuronide (M3G) and morphine (MOR) in human plasma and urine has been developed and validated. The analytes of interest were extracted from plasma by protein precipitation. The urine sample was prepared by dilution. Both plasma and urine samples were chromatographed on an Acquity UPLC HSS T3 column using gradient elution. Detection was performed on a Xevo TQ-S tandem mass spectrometer in multiple reaction monitoring mode using positive electrospray ionization. Matrix interferences were not observed at the retention time of the analytes and internal standard, naloxone-D5. The lower limits of quantitation of plasma and urine were 2/0.5/0.5 and 20/4/2 ng/mL for M6G/M3G/MOR, respectively. Calibration curves were linear over the concentration ranges of 2-2000/0.5-500/0.5-500 and 20-20,000/4-4000/2-2000 ng/mL for M6G/M3G/MOR in plasma and urine samples, respectively. The precision was <7.14% and the accuracy was within 85-115%. Furthermore, stability of the analytes at various conditions, dilution integrity, extraction recovery and matrix effect were assessed. Finally, this quantitative method was successfully applied to the pharmacokinetic study of M6G injection in Chinese noncancer pain patients.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Derivados da Morfina/sangue , Derivados da Morfina/urina , Espectrometria de Massas em Tandem/métodos , Humanos , Limite de Detecção , Derivados da Morfina/química , Derivados da Morfina/farmacocinética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
Biopharm Drug Dispos ; 38(1): 50-74, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27925239

RESUMO

The physiologically based model with segregated flow to the intestine (SFM-PBPK; partial, lower flow to enterocyte region vs. greater flow to serosal region) was found to describe the first-pass glucuronidation of morphine (M) to morphine-3ß-glucuronide (MG) in rats after intraduodenal (i.d.) and intravenous (i.v.) administration better than the traditional model (TM), for which a single intestinal flow perfused the whole of the intestinal tissue. The segregated flow model (SFM) described a disproportionately greater extent of intestinal morphine glucuronidation for i.d. vs. i.v. administration. The present study applied the same PBPK modeling approaches to examine the contributions of the intestine and liver on the first-pass metabolism of the precursor, codeine (C, 3-methylmorphine) in the rat. Unexpectedly, the profiles of codeine, morphine and morphine-3ß-glucuronide in whole blood, bile and urine, assayed by LCMS, were equally well described by both the TM-PBPK and SFM-PBPK. The fitted parameters for the models were similar, and the net formation intrinsic clearance of morphine (from codeine) for the liver was much higher, being 9- to 13-fold that of the intestine. Simulations, based on the absence of intestinal formation of morphine, correlated well with observations. The lack of discrimination of SFM and TM with the codeine data did not invalidate the SFM-PBPK model but rather suggests that the liver is the only major organ for codeine metabolism. Because of little or no contribution by the intestine to the metabolism of codeine, both the TM- and SFM-PBPK models are equally consistent with the data. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Analgésicos Opioides/farmacocinética , Codeína/farmacocinética , Mucosa Intestinal/metabolismo , Modelos Biológicos , Analgésicos Opioides/sangue , Analgésicos Opioides/urina , Animais , Bile/metabolismo , Codeína/sangue , Codeína/urina , Absorção Intestinal , Fígado/metabolismo , Masculino , Morfina/sangue , Morfina/urina , Derivados da Morfina/sangue , Derivados da Morfina/urina , Ratos Sprague-Dawley
10.
Drug Metab Dispos ; 44(7): 1123-38, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27098743

RESUMO

We used the intestinal segregated flow model (SFM) versus the traditional model (TM), nested within physiologically based pharmacokinetic (PBPK) models, to describe the biliary and urinary excretion of morphine 3ß-glucuronide (MG) after intravenous and intraduodenal dosing of morphine in rats in vivo. The SFM model describes a partial (5%-30%) intestinal blood flow perfusing the transporter- and enzyme-rich enterocyte region, whereas the TM describes 100% flow perfusing the intestine as a whole. For the SFM, drugs entering from the circulation are expected to be metabolized to lesser extents by the intestine due to the segregated flow, reflecting the phenomenon of shunting and route-dependent intestinal metabolism. The poor permeability of MG crossing the liver or intestinal basolateral membranes mandates that most of MG that is excreted into bile is hepatically formed, whereas MG that is excreted into urine originates from both intestine and liver metabolism, since MG is effluxed back to blood. The ratio of MG amounts in urine/bile [Formula: see text] for intraduodenal/intravenous dosing is expected to exceed unity for the SFM but approximates unity for the TM. Compartmental analysis of morphine and MG data, without consideration of the permeability of MG and where MG is formed, suggests the ratio to be 1 and failed to describe the kinetics of MG. The observed intraduodenal/intravenous ratio of [Formula: see text] (2.55 at 4 hours) was better predicted by the SFM-PBPK (2.59 at 4 hours) and not the TM-PBPK (1.0), supporting the view that the SFM is superior for the description of intestinal-liver metabolism of morphine to MG. The SFM-PBPK model predicts an appreciable contribution of the intestine to first pass M metabolism.


Assuntos
Duodeno/irrigação sanguínea , Duodeno/metabolismo , Circulação Hepática , Fígado/irrigação sanguínea , Fígado/metabolismo , Modelos Biológicos , Derivados da Morfina/farmacocinética , Morfina/farmacocinética , Circulação Esplâncnica , Administração Intravenosa , Administração Oral , Animais , Permeabilidade da Membrana Celular , Eliminação Hepatobiliar , Inativação Metabólica , Masculino , Morfina/administração & dosagem , Morfina/sangue , Morfina/urina , Derivados da Morfina/sangue , Derivados da Morfina/urina , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional , Eliminação Renal
11.
Anal Bioanal Chem ; 407(18): 5365-79, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25925859

RESUMO

In the field of LC-MS, reversed phase liquid chromatography is the predominant method of choice for the separation of prohibited substances from various classes in sports drug testing. However, highly polar and charged compounds still represent a challenging task in liquid chromatography due to their difficult chromatographic behavior using reversed phase materials. A very promising approach for the separation of hydrophilic compounds is hydrophilic interaction liquid chromatography (HILIC). Despite its great potential and versatile advantages for the separation of highly polar compounds, HILIC is up to now not very common in doping analysis, although most manufacturers offer a variety of HILIC columns in their portfolio. In this study, a novel multi-target approach based on HILIC high resolution/high accuracy mass spectrometry is presented to screen for various polar stimulants, stimulant sulfo-conjugates, glycerol, AICAR, ethyl glucuronide, morphine-3-glucuronide, and myo-inositol trispyrophosphate after direct injection of diluted urine specimens. The usage of an effective online sample cleanup and a zwitterionic HILIC analytical column in combination with a new generation Hybrid Quadrupol-Orbitrap® mass spectrometer enabled the detection of highly polar analytes without any time-consuming hydrolysis or further purification steps, far below the required detection limits. The methodology was fully validated for qualitative and quantitative (AICAR, glycerol) purposes considering the parameters specificity; robustness (rRT < 2.0%); linearity (R > 0.99); intra- and inter-day precision at low, medium, and high concentration levels (CV < 20%); limit of detection (stimulants and stimulant sulfo-conjugates < 10 ng/mL; norfenefrine; octopamine < 30 ng/mL; AICAR < 10 ng/mL; glycerol 100 µg/mL; ETG < 100 ng/mL); accuracy (AICAR 103.8-105.5%, glycerol 85.1-98.3% at three concentration levels) and ion suppression/enhancement effects.


Assuntos
Estimulantes do Sistema Nervoso Central/urina , Cromatografia Líquida/métodos , Detecção do Abuso de Substâncias/métodos , Espectrometria de Massas em Tandem/métodos , Urinálise/métodos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/urina , Cromatografia Líquida/instrumentação , Dopagem Esportivo , Desenho de Equipamento , Feminino , Glucuronatos/urina , Glicerol/urina , Humanos , Interações Hidrofóbicas e Hidrofílicas , Hipoglicemiantes/urina , Fosfatos de Inositol/urina , Limite de Detecção , Masculino , Derivados da Morfina/urina , Ribonucleotídeos/urina , Detecção do Abuso de Substâncias/instrumentação , Espectrometria de Massas em Tandem/instrumentação , Urinálise/instrumentação
12.
Scand J Clin Lab Invest ; 75(2): 156-61, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25562730

RESUMO

AIM: Exhaled breath has recently been identified as a possible matrix for drug testing. This study explored the potential of this new method for compliance monitoring of patients being treated for dependence disorders. METHODS: Outpatients in treatment programs were recruited for this study. Urine was collected as part of clinical routine and a breath sample was collected in parallel together with a questionnaire about their views of the testing procedure. Urine was analyzed for amphetamines, benzodiazepines, cannabis, cocaine, buprenorphine, methadone and opiates using CEDIA immunochemical screening and mass spectrometry confirmation. The exhaled breath was collected using the SensAbues device and analyzed by mass spectrometry for amphetamine, methamphetamine, diazepam, oxazepam, tetrahydrocannabinol, cocaine, benzoylecgonine, buprenorphine, methadone, morphine, codeine and 6-acetylmorphine. RESULTS: A total of 122 cases with parallel urine and breath samples were collected; 34 of these were negative both in urine and breath. Out of 88 cases with positive urine samples 51 (58%) were also positive in breath. Among the patients on methadone treatment, all were positive for methadone in urine and 83% were positive in breath. Among patients in treatment with buprenorphine, 92% were positive in urine and among those 80% were also positive in breath. The questionnaire response documented that in general, patients accepted drug testing well and that the breath sampling procedure was preferred. CONCLUSION: Compliance testing for the intake of prescribed and unprescribed drugs among patients in treatment for dependence disorders using the exhaled breath sampling technique is a viable method and deserves future attention.


Assuntos
Testes Respiratórios/métodos , Detecção do Abuso de Substâncias/métodos , Adolescente , Adulto , Idoso , Anfetaminas/análise , Anfetaminas/urina , Buprenorfina/análise , Buprenorfina/urina , Cocaína/análogos & derivados , Cocaína/análise , Cocaína/urina , Usuários de Drogas , Expiração , Feminino , Humanos , Masculino , Metadona/análise , Metadona/urina , Metanfetamina/análise , Metanfetamina/urina , Pessoa de Meia-Idade , Morfina/análise , Morfina/urina , Derivados da Morfina/análise , Derivados da Morfina/urina , Cooperação do Paciente , Adulto Jovem
13.
Molecules ; 20(4): 5329-45, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25816077

RESUMO

The illegal use of opiates and cocaine is a challenge world-wide, but some derivatives are also valuable pharmaceuticals. Reference samples of the active ingredients and their metabolites are needed both for controlling administration in the clinic and to detect drugs of abuse. Especially, (13)C-labeled compounds are useful for identification and quantification purposes by mass spectroscopic techniques, potentially increasing accuracy by minimizing ion alteration/suppression effects. Thus, the synthesis of [acetyl-(13)C4]heroin, [acetyl-(13)C4-methyl-(13)C]heroin, [acetyl-(13)C2-methyl-(13)C]6-acetylmorphine, [N-methyl-(13)C-O-metyl-(13)C]codeine and phenyl-(13)C6-labeled derivatives of cocaine, benzoylecgonine, norcocaine and cocaethylene was undertaken to provide such reference materials. The synthetic work has focused on identifying (13)C atom-efficient routes towards these derivatives. Therefore, the (13)C-labeled opiates and cocaine derivatives were made from the corresponding natural products.


Assuntos
Analgésicos Opioides/síntese química , Produtos Biológicos/análise , Cocaína/análogos & derivados , Morfina/síntese química , Urinálise/normas , Analgésicos Opioides/química , Analgésicos Opioides/metabolismo , Analgésicos Opioides/urina , Produtos Biológicos/urina , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cocaína/síntese química , Codeína/síntese química , Codeína/química , Heroína/síntese química , Heroína/química , Humanos , Estrutura Molecular , Morfina/química , Derivados da Morfina/urina , Detecção do Abuso de Substâncias/normas
14.
Anal Bioanal Chem ; 406(18): 4443-51, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24788888

RESUMO

The analysis of opioids, cocaine, and metabolites from blood serum is a routine task in forensic laboratories. Commonly, the employed methods include many manual or partly automated steps like protein precipitation, dilution, solid phase extraction, evaporation, and derivatization preceding a gas chromatography (GC)/mass spectrometry (MS) or liquid chromatography (LC)/MS analysis. In this study, a comprehensively automated method was developed from a validated, partly automated routine method. This was possible by replicating method parameters on the automated system. Only marginal optimization of parameters was necessary. The automation relying on an x-y-z robot after manual protein precipitation includes the solid phase extraction, evaporation of the eluate, derivatization (silylation with N-methyl-N-trimethylsilyltrifluoroacetamide, MSTFA), and injection into a GC/MS. A quantitative analysis of almost 170 authentic serum samples and more than 50 authentic samples of other matrices like urine, different tissues, and heart blood on cocaine, benzoylecgonine, methadone, morphine, codeine, 6-monoacetylmorphine, dihydrocodeine, and 7-aminoflunitrazepam was conducted with both methods proving that the analytical results are equivalent even near the limits of quantification (low ng/ml range). To our best knowledge, this application is the first one reported in the literature employing this sample preparation system.


Assuntos
Analgésicos Opioides/análise , Cocaína/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Extração em Fase Sólida/métodos , Detecção do Abuso de Substâncias/métodos , Acetamidas/química , Analgésicos Opioides/sangue , Analgésicos Opioides/urina , Automação , Cocaína/sangue , Cocaína/urina , Codeína/análogos & derivados , Codeína/análise , Codeína/sangue , Codeína/urina , Flunitrazepam/análogos & derivados , Flunitrazepam/análise , Flunitrazepam/sangue , Flunitrazepam/urina , Fluoracetatos/química , Humanos , Limite de Detecção , Metadona/análise , Metadona/sangue , Metadona/urina , Morfina/análise , Morfina/sangue , Morfina/urina , Derivados da Morfina/análise , Derivados da Morfina/sangue , Derivados da Morfina/urina , Reprodutibilidade dos Testes , Robótica/instrumentação , Robótica/métodos , Compostos de Trimetilsilil/química
15.
Anal Bioanal Chem ; 403(3): 777-84, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22370589

RESUMO

In-line solid-phase extraction-capillary electrophoresis coupled with mass spectrometric detection (SPE-CE-MS) has been used for determination of 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), codeine (COD), hydrocodeine (HCOD), and 6-acetylmorphine (6AM) in urine. The preconcentration system consists of a small capillary filled with Oasis HLB sorbent and inserted into the inlet section of the electrophoresis capillary. The SPE-CE-MS experimental conditions were optimized as follows: the sample (adjusted to pH 6.0) was loaded at 930 mbar for 60 min, elution was performed with methanol at 50 mbar for 35 s, 60 mmol L(-1) ammonium acetate at pH 3.8 was used as running buffer, the separation voltage was 30 kV, and the sheath liquid at a flow rate of 5.0 µL min(-1) was isopropanol-water 50:50 (v/v) containing 0.5% acetic acid. Analysis of urine samples spiked with the four drugs and diluted 1:1 (v/v) was studied in the linear range 0.08-10 ng mL(-1). Detection limits (LODs) (S/N = 3) were between 0.013 and 0.210 ng mL(-1). Repeatability (expressed as relative standard deviation) was below 7.2%. The method developed enables simple and effective determination of these drugs of abuse in urine samples at the levels encountered in toxicology and doping.


Assuntos
Codeína/urina , Eletroforese Capilar/métodos , Drogas Ilícitas/urina , Derivados da Morfina/urina , Pirrolidinas/urina , Extração em Fase Sólida/métodos , Codeína/análogos & derivados , Codeína/isolamento & purificação , Humanos , Drogas Ilícitas/isolamento & purificação , Limite de Detecção , Derivados da Morfina/isolamento & purificação , Pirrolidinas/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray/métodos
16.
Anal Bioanal Chem ; 403(7): 2057-63, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22526670

RESUMO

6-Monoacetylmorphine (6-MAM), being a unique metabolite of heroin, is routinely tested in urine samples to monitor heroin use. However, detection of 6-MAM-related opiates such as morphine is known to be affected by in vitro urine adulteration using oxidizing adulterants such as potassium nitrite. This study aimed to investigate the fate of 6-MAM after exposure to nitrite and to identify any formed oxidation products that may potentially be used for monitoring heroin abuse despite nitrite adulteration. Potassium nitrite (0.05 M and 0.6 M) was reacted with 6-MAM (5-10,000 ng/mL) in both water and blank urine with pH adjusted to range from 3 to 8. Following reaction at room temperature for varying periods, the reaction mixtures were monitored by both the CEDIA® Heroin Metabolite (6-AM) immunoassay and liquid chromatography-mass spectrometry (LC-MS) methods. Structural elucidation of the isolated oxidation products was based on mass spectrometry and nuclear magnetic resonance spectroscopic evidence. Nitrite, under acidic environment (pH<7), was shown to be effective in masking the detection of 6-MAM by both the CEDIA® immunoassay and the LC-MS methods. 2-Nitro-6-monoacetylmorphine (2-nitro-MAM) was identified as the sole oxidation product, which remained detectable in urine for at least 11 days under the experimental conditions investigated. 2-Nitro-MAM was detectable in a urine sample of a heroin user after nitrite exposure. 2-Nitro-MAM has shown potential to serve as a marker for monitoring heroin abuse when urine is adulterated with nitrite. Certification of 2-nitro-MAM reference standard for further development of its quantitative testing methods is thus warranted.


Assuntos
Biomarcadores/análise , Derivados da Morfina/análise , Derivados da Morfina/urina , Nitritos/urina , Cromatografia Líquida , Humanos , Imunoensaio , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Transtornos Relacionados ao Uso de Opioides/diagnóstico , Transtornos Relacionados ao Uso de Opioides/urina
17.
J Sep Sci ; 35(3): 367-75, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22258807

RESUMO

The aim of this work was to synthesize morphine-3-O-sulfate and morphine-6-O-sulfate for use as reference substances, and to determine the sulfate conjugates as possible heroin and morphine metabolites in plasma and urine by a validated LC-MS/MS method. Morphine-6-O-sulfate and morphine-3-O-sulfate were prepared as dihydrates from morphine hydrochloride, in overall yields of 41 and 39% with product purities of >99.5% and >98%, respectively. For bioanalysis, the chromatographic system consisted of a reversed-phase column and gradient elution. The tandem mass spectrometer was operated in the positive electrospray mode using selected reaction monitoring, of transition m/z 366.15 to 286.40. The measuring range was 5-500 ng/mL for morphine-3-O-sulfate and 4.5-454 ng/mL for morphine-6-O-sulfate in plasma. In urine, the measuring range was 50-5000 ng/mL for morphine-3-O-sulfate and 45.4-4544 ng/mL for morphine-6-O-sulfate. The intra-assay and total imprecision (coefficient of variation) was below 11% for both analytes in urine and plasma. Quantifiable levels of morphine-3-O-sulfate in authentic urine and plasma samples were found. Only one authentic urine sample contained a detectable level of morphine-6-O-sulfate, while no detectable morphine-6-O-sulfate was found in plasma samples.


Assuntos
Derivados da Morfina/análise , Derivados da Morfina/síntese química , Morfina/análise , Morfina/síntese química , Cromatografia Líquida de Alta Pressão , Cristalografia por Raios X , Humanos , Modelos Moleculares , Morfina/sangue , Morfina/urina , Derivados da Morfina/sangue , Derivados da Morfina/urina , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem
18.
Anal Chem ; 82(2): 714-22, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20028021

RESUMO

Currently, there is need for laboratory-based high-throughput and reliable point-of-care drug screening methodologies. We demonstrate here a chip-based label-free porous silicon (PSi) photonic sensor for detecting opiates in urine. This technique provides a cost-effective alternative to conventional labeled drug screening immunoassays with potential for translation to multiplexed analysis. Important effects of surface chemistry and competitive binding assay protocol on the sensitivity of opiate detection are revealed. Capability to tune sensitivity and detection range over approximately 3 orders of magnitude (18.0 nM to 10.8 muM) was achieved by varying the applied urine specimen volume (100-5 muL), which results in systematic shifts in the competitive binding response curve. A detection range (0.36-4.02 muM) of morphine in urine (15 muL) was designed to span the current positive cutoff value (1.05 muM morphine) in medical opiate urine screening. Desirable high cross-reactivity to oxycodone, in addition to other common opiates, morphine, morphine-3-glucuronide, 6-acetyl morphine, demonstrates an advantage over current commercial screening assays, while low interference with cocaine metabolite was maintained. This study uniquely displays PSi sensor technology as an inexpensive, rapid, and reliable drug screening technology. Furthermore, the versatile surface chemistry developed can be implemented on a range of solid-supported sensors to conduct competitive inhibition assays.


Assuntos
Técnicas Biossensoriais/métodos , Entorpecentes/urina , Silício/química , Detecção do Abuso de Substâncias/métodos , Anticorpos/imunologia , Anticorpos/metabolismo , Ligação Competitiva , Cocaína/urina , Dispositivos Lab-On-A-Chip , Morfina/urina , Derivados da Morfina/urina , Oxicodona/urina , Porosidade
19.
Fa Yi Xue Za Zhi ; 26(3): 188-91, 2010 Jun.
Artigo em Zh | MEDLINE | ID: mdl-20707277

RESUMO

OBJECTIVE: To propose a method for simultaneous determination of codeine(COD), 6-monoacetyl-morphine (6-MAM), morphine (MOR), morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G) in human urine by ultra performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS). METHODS: After precipitation of protein by acetonitrile, the urine samples, with added the morphine-d3 (MOR-d3) and morphine-3-Glucuronide-d3 (M3G-d3) as internal standards, were pre-treated by Sirocco protein precipitation plate, and then analyzed by UPLC-MS/MS. RESULTS: The limit of detection was 0.2 ng/mL for both COD and MAM, the limit of quantitation was 0.5 ng/mL for both COD and MAM. The limit of detection was 0.5 ng/mL for MOR, M3G and M6G, the limit of quantitation was 1 ng/mL for them. The linear correlation coefficients were not less than 0.9997, both the inter-day and intra-day precisions were less than 10%, the recoveries were in the range of 70.0% to 98.3%, the matrix effects were about 50.5% to 99.0%. CONCLUSION: This proposed method is simple, rapid and accurate, it could be applied in forensic toxicological analysis.


Assuntos
Cromatografia Líquida/métodos , Derivados da Morfina/urina , Morfina/urina , Detecção do Abuso de Substâncias/métodos , Codeína/urina , Humanos , Limite de Detecção , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem/métodos
20.
J Anal Toxicol ; 44(1): 22-28, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31095707

RESUMO

Heroin abuse is a serious problem that endangers human health and affects social stability. Though often being used as confirmation of heroin use, 6-monoacetylmorphine (6-MAM) has limitations due to its short detection window. To compare the detection windows of heroin metabolites (morphine (MOR), 6-MAM, morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G)) in human urine, an automated online solid phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and fully validated. The limits of detections (LODs) of the four metabolites were in the range of 1.25-5 ng/mL. Intra and inter-day precision for all the metabolites was 0.4-6.7% and 1.8-7.3%, respectively. Accuracy ranged from 92.9 to 101.7%. This method was then applied to the analysis of urine samples of 20 male heroin abusers. M3G was detected 9-11 days after admission to the drug rehabilitation institute in 40% of heroin users while MOR or M6G was not always detected. The detection window of M3G was thus the longest. Furthermore, M3G had a much higher concentration than MOR and M6G. Therefore, M3G could provide diagnostic information with regard to heroin exposure in the combination with other clues (e.g., heroin seizures at the scene).


Assuntos
Dependência de Heroína/urina , Derivados da Morfina/urina , Detecção do Abuso de Substâncias/métodos , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Heroína , Humanos , Limite de Detecção , Extração em Fase Sólida , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA