Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(20): 10806-10817, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32371491

RESUMO

Radiation of the plant pyridoxal 5'-phosphate (PLP)-dependent aromatic l-amino acid decarboxylase (AAAD) family has yielded an array of paralogous enzymes exhibiting divergent substrate preferences and catalytic mechanisms. Plant AAADs catalyze either the decarboxylation or decarboxylation-dependent oxidative deamination of aromatic l-amino acids to produce aromatic monoamines or aromatic acetaldehydes, respectively. These compounds serve as key precursors for the biosynthesis of several important classes of plant natural products, including indole alkaloids, benzylisoquinoline alkaloids, hydroxycinnamic acid amides, phenylacetaldehyde-derived floral volatiles, and tyrosol derivatives. Here, we present the crystal structures of four functionally distinct plant AAAD paralogs. Through structural and functional analyses, we identify variable structural features of the substrate-binding pocket that underlie the divergent evolution of substrate selectivity toward indole, phenyl, or hydroxyphenyl amino acids in plant AAADs. Moreover, we describe two mechanistic classes of independently arising mutations in AAAD paralogs leading to the convergent evolution of the derived aldehyde synthase activity. Applying knowledge learned from this study, we successfully engineered a shortened benzylisoquinoline alkaloid pathway to produce (S)-norcoclaurine in yeast. This work highlights the pliability of the AAAD fold that allows change of substrate selectivity and access to alternative catalytic mechanisms with only a few mutations.


Assuntos
Descarboxilases de Aminoácido-L-Aromático/química , Domínio Catalítico , Evolução Molecular , Proteínas de Plantas/química , Aminoácidos Aromáticos/química , Aminoácidos Aromáticos/metabolismo , Descarboxilases de Aminoácido-L-Aromático/genética , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especificidade por Substrato
2.
Appl Microbiol Biotechnol ; 106(12): 4445-4458, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35763068

RESUMO

Aromatic L-amino acid decarboxylases (AADCs) catalyze the conversion of aromatic L-amino acids into aromatic monoamines that play diverse physiological and biosynthetic roles in living organisms. For example, dopamine and serotonin serve as major neurotransmitters in animals, whereas tryptamine and tyramine are essential building blocks for synthesizing a myriad of secondary metabolites in plants. In contrast to the vital biological roles of AADCs in higher organisms, microbial AADCs are found in rather a limited range of microorganisms. For example, lactic acid bacteria are known to employ AADCs to achieve intracellular pH homeostasis and engender accumulation of tyramine, causing a toxic effect in fermented foods. Owing to the crucial pharmaceutical implications of aromatic monoamines and their derivatives, synthetic applications of AADCs have attracted growing attention. Besides, recent studies have uncovered that AADCs of human gut microbes influence host physiology and are involved in drug availability of Parkinson's disease medication. These findings bring the bacterial AADCs into a new arena of extensive research for biomedical applications. Here, we review catalytic features of AADCs and present microbial applications and challenges for biotechnological exploitation of AADCs. KEY POINTS: • Aromatic monoamines and their derivatives are increasingly important in the drug industry. • Aromatic L-amino acid decarboxylases are the only enzyme for synthesizing aromatic monoamines. • Microbial applications of aromatic L-amino acid decarboxylases have drawn growing attention.


Assuntos
Descarboxilases de Aminoácido-L-Aromático , Carboxiliases , Aminoácidos Aromáticos , Animais , Descarboxilases de Aminoácido-L-Aromático/química , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Serotonina/metabolismo , Tiramina/metabolismo
3.
Biotechnol Appl Biochem ; 68(2): 381-389, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32353164

RESUMO

Tryptophan decarboxylase (TDC, EC 4.1.1.28) catalyzes tryptophan decarboxylation to form tryptamine through the cofactor pyridoxal-5'-phosphate (PLP), a crucial stage in the production of the terpenoid indole alkaloids like camptothecin (CPT). A new gene encoding TDC was identified from the CPT-producing plant Ophiorrhiza pumila by transcriptome analysis, termed OpTDC2. It contained a 1,536 bp open reading frame that encodes a 511 amino acid protein with a molecular mass of 57.01 kDa and an isoelectric point of 6.39. Multiple sequence alignment and phylogenetic tree analysis showed the closest similarity (85%) with the TDC from Mitragyna speciosa. Moreover, the highest expression of OpTDC2 was observed in the O. pumila root. To achieve high-efficiency expression of OpTDC2 in Escherichia coli, we fused the TF tag onto the N-terminal of the OpTDC2. Optimum enzymatic activity was observed at 45 °C, pH 8 and cofactor concentration of 0.1 mM. The catalytic reaction was strongly inhibited by metal ions of Cu2+ , Zn2+ , and Fe2+ . The l-tryptophan was particularly catalyzed compared with d-tryptophan. Besides, the Km and kcat of the OpTDC2 were 1.08 mM and 0.78 Sec-1 , respectively. The results provided information on new functional OpTDC2 that might be used in synthetic biology for the enhanced biosynthesis of CPT in O. pumila.


Assuntos
Descarboxilases de Aminoácido-L-Aromático , Clonagem Molecular , Filogenia , Proteínas de Plantas , Rubiaceae , Descarboxilases de Aminoácido-L-Aromático/química , Descarboxilases de Aminoácido-L-Aromático/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Rubiaceae/enzimologia , Rubiaceae/genética
4.
Int J Mol Sci ; 22(6)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808712

RESUMO

Aromatic amino acid decarboxylase (AADC) deficiency is a rare, autosomal recessive neurometabolic disorder caused by mutations in the DDC gene, leading to a deficit of AADC, a pyridoxal 5'-phosphate requiring enzyme that catalyzes the decarboxylation of L-Dopa and L-5-hydroxytryptophan in dopamine and serotonin, respectively. Although clinical and genetic studies have given the major contribution to the diagnosis and therapy of AADC deficiency, biochemical investigations have also helped the comprehension of this disorder at a molecular level. Here, we reported the steps leading to the elucidation of the functional and structural features of the enzyme that were useful to identify the different molecular defects caused by the mutations, either in homozygosis or in heterozygosis, associated with AADC deficiency. By revisiting the biochemical data available on the characterization of the pathogenic variants in the purified recombinant form, and interpreting them on the basis of the structure-function relationship of AADC, it was possible: (i) to define the enzymatic phenotype of patients harboring pathogenic mutations and at the same time to propose specific therapeutic managements, and (ii) to identify residues and/or regions of the enzyme relevant for catalysis and/or folding of AADC.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/etiologia , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Descarboxilases de Aminoácido-L-Aromático/deficiência , Suscetibilidade a Doenças , Descarboxilases de Aminoácido-L-Aromático/química , Descarboxilases de Aminoácido-L-Aromático/genética , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Biomarcadores , Catálise , Dopamina/metabolismo , Homozigoto , Humanos , Modelos Moleculares , Mutação , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Serotonina/metabolismo , Relação Estrutura-Atividade
5.
J Hum Genet ; 65(9): 759-769, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32409695

RESUMO

Aromatic L-amino acid decarboxylase deficiency (AADCD) is a rare neurotransmitter metabolic disorder caused by DDC gene mutations, which leads to the metabolic disturbance of dopamine and serotonin. Most of the reported cases came from Taiwan China, but patients from mainland China were seldomly reported. The current study was the largest AADCD patient cohort from mainland China. Twenty-three patients with clinical features of AADCD and DDC gene variants were recruited. A total of 16 DDC variants were identified in this study, of which four variants (c.2T>C, c.277A>G, c.1021+1G>A, c.565G>T) were never reported previously. The intronic variant c.714+4A>T was the most common one, with an allele frequency of 45.7%. And patients carried this intronic variant presented with severe clinical manifestations, all of whom were bedridden. In this study, the average onset age was 3.61 ± 1.28 months and the average age of diagnosis was 12.91 ± 5.62 months. Early onset hypotonia, oculogyric crises, and autonomic symptoms such as excessive sweating, nasal congestion and profuse nasal, and oropharyngeal secretions, were common in our patients. Eighteen patients (78.3%) got various degree of improvement after using pyridoxine monotherapy or different combination of pyridoxine, dopamine agonists, and monoamine oxidase (MAO) inhibitors.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/epidemiologia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Descarboxilases de Aminoácido-L-Aromático/deficiência , Predisposição Genética para Doença/genética , Alelos , Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Erros Inatos do Metabolismo dos Aminoácidos/fisiopatologia , Descarboxilases de Aminoácido-L-Aromático/química , Descarboxilases de Aminoácido-L-Aromático/genética , China , Estudos de Coortes , Demografia , Agonistas de Dopamina/uso terapêutico , Éxons , Feminino , Variação Genética , Heterozigoto , Homozigoto , Humanos , Lactente , Íntrons , Masculino , Inibidores da Monoaminoxidase/uso terapêutico , Hipotonia Muscular/complicações , Hipotonia Muscular/genética , Mutação , Piridoxina/uso terapêutico , Sequenciamento do Exoma
6.
Arch Biochem Biophys ; 682: 108263, 2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-31953134

RESUMO

AADC deficiency is a rare genetic disease caused by mutations in the gene of aromatic amino acid decarboxylase, the pyridoxal 5'-phosphate dependent enzyme responsible for the synthesis of dopamine and serotonin. Here, following a biochemical approach together with an in silico bioinformatic analysis, we present a structural and functional characterization of 13 new variants of AADC. The amino acid substitutions are spread over the entire protein from the N-terminal (V60A), to its loop1 (H70Y and F77L), to the large domain (G96R) and its various motifs, i.e. loop2 (A110E), or a core ß-barrel either on the surface (P210L, F251S and E283A) or in a more hydrophobic milieu (L222P, F237S and W267R) or loop3 (L353P), and to the C-terminal domain (R453C). Results show that the ß-barrel variants exhibit a low solubility and those belonging to the surface tend to aggregate in their apo form, leading to the identification of a new enzymatic phenotype for AADC deficiency. Moreover, five variants of residues belonging to the large interface of AADC (V60A, G96R, A110E, L353P and R453C) are characterized by a decreased catalytic efficiency. The remaining ones (H70Y and F77L) present features typical of apo-to-holo impaired transition. Thus, defects in catalysis or in the acquirement of the correct holo structure are due not only to specific local domain effects but also to long-range effects at either the protein surface or the subunit interface. Altogether, the new characterized enzymatic phenotypes represent a further step in the elucidation of the molecular basis for the disease.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Descarboxilases de Aminoácido-L-Aromático/deficiência , Fenótipo , Algoritmos , Motivos de Aminoácidos , Descarboxilases de Aminoácido-L-Aromático/química , Descarboxilases de Aminoácido-L-Aromático/genética , Catálise , Biologia Computacional , Escherichia coli , Variação Genética , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Mutagênese Sítio-Dirigida , Mutação , Domínios Proteicos , Espalhamento de Radiação , Solubilidade , Espectrofotometria , Relação Estrutura-Atividade , Temperatura
7.
Plant Cell Rep ; 39(11): 1443-1465, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32789542

RESUMO

KEY MESSAGE: WsWRKY1-mediated transcriptional modulation of Withania somnifera tryptophan decarboxylase gene (WsTDC) helps to regulate fruit-specific tryptamine generation for production of withanamides. Withania somnifera is a highly valued medicinal plant. Recent demonstration of novel indolyl metabolites called withanamides in its fruits (berries) prompted us to investigate its tryptophan decarboxylase (TDC), as tryptophan is invariably a precursor for indole moiety. TDC catalyzes conversion of tryptophan into tryptamine, and the catalytic reaction constitutes a committed metabolic step for synthesis of an array of indolyl metabolites. The TDC gene (WsTDC) was cloned from berries of the plant and expressed in E. coli. The recombinant enzyme was purified and characterized for its catalytic attributes. Catalytic and structural aspects of the enzyme indicated its regulatory/rate-limiting significance in generation of the indolyl metabolites. Novel tissue-wise and developmentally differential abundance of WsTDC transcripts reflected its preeminent role in withanamide biogenesis in the fruits. Transgenic lines overexpressing WsTDC gene showed accumulation of tryptamine at significantly higher levels, while lines silenced for WsTDC exhibited considerably depleted levels of tryptamine. Cloning and sequence analysis of promoter of WsTDC revealed the presence of W-box in it. Follow-up studies on isolation of WsWRKY1 transcription factor and its overexpression in W. somnifera revealed that WsTDC expression was substantially induced by WsWRKY1 resulting in overproduction of tryptamine. The study invokes a key role of TDC in regulating the indolyl secondary metabolites through enabling elevated flux/supply of tryptamine at multiple levels from gene expression to catalytic attributes overall coordinated by WsWRKY1. This is the first biochemical, molecular, structural, physiological and regulatory description of a fruit-functional TDC.


Assuntos
Descarboxilases de Aminoácido-L-Aromático/genética , Proteínas de Plantas/genética , Triptaminas/biossíntese , Withania/genética , Withania/metabolismo , Descarboxilases de Aminoácido-L-Aromático/química , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Clonagem Molecular , Dissacarídeos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica de Plantas , Indóis/metabolismo , Modelos Moleculares , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triptaminas/metabolismo
8.
J Recept Signal Transduct Res ; 39(5-6): 392-398, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31829066

RESUMO

Schizophrenia is a major debilitating disorder worldwide. Schizophrenia is a result of multi-gene mutation and psycho-social factors. Mutated amino acid sequences in genes of DOPA such as TH, DDC, DBH, VMAT2, and NMDA (SET-1) have been implicated as major factors causing schizophrenia. In addition mutations in genes other than the DOPA genes such as RGS4, NRG1, COMT, AKT1 and DTNBP1 (SET 2) have also been implicated in the pathogenesis of schizophrenia. Several medicinal herbs and their bioactive constituents have been reported to be involved in ameliorating different neurological disorders including schizophrenia. The present study is mainly focused to study the effect of bioactive compound isolated from the celastrus panuculatus on DOPA and other related genes of schizophrenia using in silico approach. Moledular docking study was carriedout aginast all the selected targets with the lingds i.e. compound and clozapine using the autodock vina 4.0 module implemented in Pyrx 2010.12. The 3 D structures of genes of intrest were retrieved from the protein data bank (PDB). The bioavailability and pharmacological properties of the ligands were determined using OSIRIS server. The novelty of the compound was determined based on fitness, docking and bioavailability score. From the results it is observed that, the compoud has exhibited best dock score against all the selected targets than the clozapie except DBH and VMAT2 in SET-1 targets of DOPA genes. Where as the compound has shown best pharmacokinetic and biologicl property score than the clozapine. Hence, the compound can be considered for further in vitro and in vivo studies to determine the therapeutic efficacy and drug candidacy of the compound in future.


Assuntos
Di-Hidroxifenilalanina/antagonistas & inibidores , Cetonas/farmacocinética , Extratos Vegetais/química , Propano/farmacologia , Esquizofrenia/genética , Descarboxilases de Aminoácido-L-Aromático/química , Descarboxilases de Aminoácido-L-Aromático/efeitos dos fármacos , Disponibilidade Biológica , Celastrus/química , Chalconas , Clozapina/química , Simulação por Computador , Bases de Dados de Proteínas , Di-Hidroxifenilalanina/genética , Humanos , Cetonas/uso terapêutico , Ligantes , Conformação Molecular , Simulação de Acoplamento Molecular/métodos , Mutação/genética , N-Metilaspartato/antagonistas & inibidores , N-Metilaspartato/química , Extratos Vegetais/farmacologia , Propano/análogos & derivados , Esquizofrenia/tratamento farmacológico
9.
Int J Mol Sci ; 20(4)2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30791398

RESUMO

Kiwifruit (Actinidia deliciosa cv. Hayward) is a commercially important crop with highly nutritional green fleshy fruits. The post-harvest maturation of the fruits is well characterized, but little is known about the metabolic changes that occur during fruit development. Here we used untargeted metabolomics to characterize the non-volatile metabolite profile of kiwifruits collected at different time points after anthesis, revealing profound metabolic changes before the onset of ripening including the depletion of many classes of phenolic compounds. In contrast, the phytohormone abscisic acid accumulated during development and ripening, along with two indolamines (serotonin and its precursor tryptamine), and these were monitored in greater detail by targeted metabolomics. The role of indolamines in kiwifruit development is completely unknown, so we also characterized the identity of genes encoding tryptophan decarboxylase in A. deliciosa and its close relative A. chinensis to provide insight into the corresponding biological processes. Our results indicate that abscisic acid and indolamines fulfill unrecognized functions in the development and ripening of kiwifruits.


Assuntos
Actinidia/metabolismo , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Metaboloma , Metabolômica , Desenvolvimento Vegetal , Actinidia/classificação , Actinidia/genética , Sequência de Aminoácidos , Descarboxilases de Aminoácido-L-Aromático/química , Descarboxilases de Aminoácido-L-Aromático/genética , Cromatografia Líquida , Biologia Computacional/métodos , Frutas/metabolismo , Espectrometria de Massas , Metabolômica/métodos , Filogenia , Desenvolvimento Vegetal/genética , Serotonina/metabolismo , Triptaminas/metabolismo
10.
IUBMB Life ; 70(3): 215-223, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29356298

RESUMO

Aromatic amino acid or Dopa decarboxylase (AADC or DDC) is a homodimeric pyridoxal 5'-phosphate (PLP) enzyme responsible for the generation of the neurotransmitters dopamine and serotonin. AADC deficiency is a rare inborn disease caused by mutations of the AADC gene leading to a defect of AADC enzyme and resulting in impaired dopamine and serotonin synthesis. Until now, only the molecular effects of homozygous mutations were analyzed. However, although heterozygous carriers of AADC deficiency were identified, the molecular aspects of their enzymatic phenotypes are not yet investigated. Here, we focus our attention on the R347Q/R358H and R347Q/R160W heterozygous mutations, and report for the first time the isolation and characterization, in the purified recombinant form, of the R347Q/R358H heterodimer and of the R358H homodimer. The results, integrated with those already known of the R347Q homodimeric variant, provide evidence that (i) the R358H mutation strongly reduces the PLP-binding affinity and the catalytic activity, and (ii) a positive interallelic complementation exists between the R347Q and the R358H mutations. Bioinformatics analyses provide the structural basis for these data. Unfortunately, the R347Q/R160W heterodimer was not obtained in a sufficient amount to allow its purification and characterization. Nevertheless, the biochemical features of the R160W homodimer give a contribution to the enzymatic phenotype of the heterozygous R347Q/R160W and suggest the possible relevance of Arg160 in the proper folding of human DDC. © 2018 IUBMB Life, 70(3):215-223, 2018.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/embriologia , Descarboxilases de Aminoácido-L-Aromático/química , Descarboxilases de Aminoácido-L-Aromático/deficiência , Multimerização Proteica/genética , Proteínas Recombinantes/química , Erros Inatos do Metabolismo dos Aminoácidos/enzimologia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Descarboxilases de Aminoácido-L-Aromático/genética , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Catálise , Dopamina/biossíntese , Heterozigoto , Humanos , Mutação , Dobramento de Proteína , Proteínas Recombinantes/genética , Serotonina/biossíntese
11.
Molecules ; 23(5)2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29695104

RESUMO

Melatonin plays an important role in plant growth, development, and environmental stress. In this study, a systematic analysis of tomato tryptophan decarboxylase (SlTrpDC), which is the first enzyme of melatonin biosynthesis, was conducted by integrating structural features, phylogenetic relationships, an exon/intron feature, and a divergent expression profile. The results determined that the tomato genome encoded five members (SlTrpDC1-SlTrpDC5). The phylogenetic relationships indicated that gene expansion was proposed as the major mode of evolution of the TrpDC genes from the different plant algae species to the higher plants species. The analyses of the exon/intron configurations revealed that the intron loss events occurred during the structural evolution of the TrpDCs in plants. Additionally, the RNA-seq and qRT-PCR analysis revealed that the expression of the SlTrpDC3 was high in all of the tested tissues, while the SlTrpDC4 and SlTrpDC5 were not expressed. The expression patterns of the remaining two (SlTrpDC1 and SlTrpDC2) were tissue-specific, which indicated that these genes may play important roles within the different tissues. No expression difference was observed in the tomato plants in response to the biotic stresses. This study will expand the current knowledge of the roles of the TrpDC genes in tomato growth and development.


Assuntos
Descarboxilases de Aminoácido-L-Aromático/genética , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Sequência de Aminoácidos , Descarboxilases de Aminoácido-L-Aromático/química , Biologia Computacional/métodos , Ativação Enzimática , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Solanum lycopersicum/classificação , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformação Proteica , Análise de Sequência de DNA , Relação Estrutura-Atividade
12.
Hum Mol Genet ; 23(20): 5429-40, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24865461

RESUMO

Dopa decarboxylase (DDC), or aromatic amino acid decarboxylase (AADC), is a pyridoxal 5'-phosphate enzyme responsible for the production of the neurotransmitters dopamine and serotonin. Deficit of this enzyme causes AADC deficiency, an inherited neurometabolic disorder. To date, 18 missense homozygous mutations have been identified through genetic screening in ∼80 patients. However, little is known about the mechanism(s) by which mutations cause disease. Here we investigated the impact of these pathogenic mutations and of an artificial one on the conformation and the activity of wild-type DDC by a combined approach of bioinformatic, spectroscopic and kinetic analyses. All mutations reduce the kcat value, and, except the mutation R347Q, alter the tertiary structure, as revealed by an increased hydrophobic surface and a decreased near-UV circular dichroism signal. The integrated analysis of the structural and functional consequences of each mutation strongly suggests that the reason underlying the pathogenicity of the majority of disease-causing mutations is the incorrect apo-holo conversion. In fact, the most remarkable effects are seen upon mutation of residues His70, His72, Tyr79, Phe80, Pro81, Arg462 and Arg447 mapping to or directly interacting with loop1, a structural key element involved in the apo-holo switch. Instead, different mechanisms are responsible for the pathogenicity of R347Q, a mere catalytic mutation, and of L38P and A110Q mutations causing structural-functional defects. These are due to local perturbation transmitted to the active site, as predicted by molecular dynamic analyses. Overall, the results not only give comprehensive molecular insights into AADC deficiency, but also provide an experimental framework to suggest appropriate therapeutic treatments.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Descarboxilases de Aminoácido-L-Aromático/química , Descarboxilases de Aminoácido-L-Aromático/deficiência , Descarboxilases de Aminoácido-L-Aromático/genética , Mutação de Sentido Incorreto , Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Animais , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Domínio Catalítico , Dicroísmo Circular , Cristalografia por Raios X , Humanos , Rim/metabolismo , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Suínos
13.
Chembiochem ; 17(2): 132-6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26632772

RESUMO

Aromatic L-amino acid decarboxylases (AADCs) catalyze the release of CO2 from proteinogenic and non-proteinogenic L-amino acid substrates and are involved in pathways that biosynthesize neurotransmitters or bioactive natural products. In contrast to AADCs from animals and plants, fungal AADCs have received very little attention. Here, we report on the in vitro characterization of heterologously produced Ceriporiopsis subvermispora AADC, now referred to as CsTDC, which is the first characterized basidiomycete AADC. This study identified the enzyme as a decarboxylase that is strictly specific for L-tryptophan and 5-hydroxy-L-tryptophan. The tdc gene was subjected to saturation mutagenesis so as to vary the key active site residue, Gly351. Aliphatic amino acid residues, L-serine, or L-threonine at position 351 added L-tyrosine and 3,4-dihydroxy-L-phenylalanine (L-DOPA) decarboxylase activity while retaining stereospecificity and L-tryptophan decarboxylase activity.


Assuntos
Descarboxilases de Aminoácido-L-Aromático/química , Basidiomycota/enzimologia , Engenharia de Proteínas , Descarboxilases de Aminoácido-L-Aromático/genética , Domínio Catalítico , Cromatografia Líquida de Alta Pressão , Variação Genética , Estrutura Molecular , Especificidade por Substrato
14.
Pharmacol Res ; 114: 90-102, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27769832

RESUMO

Human histidine decarboxylase (HDC) and dopa decarboxilase (DDC) are highly homologous enzymes responsible for the synthesis of biogenic amines (BA) like histamine, and serotonin and dopamine, respectively. The enzymes share many structural and functional analogies, while their product metabolisms also follow similar patterns that are confluent in some metabolic steps. They are involved in common physiological functions, such as neurotransmission, gastrointestinal track function, immunity, cell growth and cell differentiation. As a consequence, metabolic elements of both BA subfamilies are also co-participants in a long list of human diseases. This review summarizes the analogies and differences in their origin (HDC and DDC) as well as their common pathophysiological scenarios. The major gaps of information are also underlined, as they delay the possibility of holistic approaches that would help personalized medicine and pharmacological initiatives for prevalent and rare diseases.


Assuntos
Descarboxilases de Aminoácido-L-Aromático/metabolismo , Histidina Descarboxilase/metabolismo , Animais , Descarboxilases de Aminoácido-L-Aromático/química , Descarboxilases de Aminoácido-L-Aromático/genética , Dopamina/metabolismo , Histamina/metabolismo , Histidina Descarboxilase/química , Histidina Descarboxilase/genética , Humanos , Modelos Moleculares , Doenças Raras/genética , Doenças Raras/metabolismo , Serotonina/metabolismo
15.
J Biol Chem ; 288(4): 2376-87, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23204519

RESUMO

Plant aromatic amino acid decarboxylase (AAAD) enzymes are capable of catalyzing either decarboxylation or decarboxylation-deamination on various combinations of aromatic amino acid substrates. These two different activities result in the production of arylalkylamines and the formation of aromatic acetaldehydes, respectively. Variations in product formation enable individual enzymes to play different physiological functions. Despite these catalytic variations, arylalkylamine and aldehyde synthesizing AAADs are indistinguishable without protein expression and characterization. In this study, extensive biochemical characterization of plant AAADs was performed to identify residues responsible for differentiating decarboxylation AAADs from aldehyde synthase AAADs. Results demonstrated that a tyrosine residue located on a catalytic loop proximal to the active site of plant AAADs is primarily responsible for dictating typical decarboxylase activity, whereas a phenylalanine at the same position is primarily liable for aldehyde synthase activity. Mutagenesis of the active site phenylalanine to tyrosine in Arabidopsis thaliana and Petroselinum crispum aromatic acetaldehyde synthases primarily converts the enzymes activity from decarboxylation-deamination to decarboxylation. The mutation of the active site tyrosine to phenylalanine in the Catharanthus roseus and Papaver somniferum aromatic amino acid decarboxylases changes the enzymes decarboxylation activity to a primarily decarboxylation-deamination activity. Generation of these mutant enzymes enables the production of unusual AAAD enzyme products including indole-3-acetaldehyde, 4-hydroxyphenylacetaldehyde, and phenylethylamine. Our data indicates that the tyrosine and phenylalanine in the catalytic loop region could serve as a signature residue to reliably distinguish plant arylalkylamine and aldehyde synthesizing AAADs. Additionally, the resulting data enables further insights into the mechanistic roles of active site residues.


Assuntos
Descarboxilases de Aminoácido-L-Aromático/química , Descarboxilases de Aminoácido-L-Aromático/fisiologia , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Aldeídos/metabolismo , Sequência de Aminoácidos , Arabidopsis/enzimologia , Domínio Catalítico , Cromatografia Líquida/métodos , DNA Complementar/metabolismo , Desaminação , Descarboxilação , Ácidos Indolacéticos/química , Indóis/química , Cinética , Espectrometria de Massas/métodos , Modelos Químicos , Dados de Sequência Molecular , Mutagênese , Mutação , Triptofano/química
16.
Biochem Biophys Res Commun ; 418(2): 211-6, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22266321

RESUMO

Plant aromatic amino acid decarboxylases (AAADs) are effectively indistinguishable from plant aromatic acetaldehyde syntheses (AASs) through primary sequence comparison. Spectroscopic analyses of several characterized AASs and AAADs were performed to look for absorbance spectral identifiers. Although this limited survey proved inconclusive, the resulting work enabled the reevaluation of several characterized plant AAS and AAAD enzymes. Upon completion, a previously reported parsley AAAD protein was demonstrated to have AAS activity. Substrate specificity tests demonstrate that this novel AAS enzyme has a unique substrate specificity towards tyrosine (km 0.46mM) and dopa (km 1.40mM). Metabolite analysis established the abundance of tyrosine and absence of dopa in parsley extracts. Such analysis indicates that tyrosine is likely to be the sole physiological substrate. The resulting information suggests that this gene is responsible for the in vivo production of 4-hydroxyphenylacetaldehyde (4-HPAA). This is the first reported case of an AAS enzyme utilizing tyrosine as a primary substrate and the first report of a single enzyme capable of producing 4-HPAA from tyrosine.


Assuntos
Acetaldeído/análogos & derivados , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Petroselinum/enzimologia , Tirosina Descarboxilase/metabolismo , Tirosina/metabolismo , Acetaldeído/síntese química , Acetaldeído/metabolismo , Descarboxilases de Aminoácido-L-Aromático/química , Descarboxilases de Aminoácido-L-Aromático/genética , Di-Hidroxifenilalanina/química , Di-Hidroxifenilalanina/metabolismo , Fenol , Thalictrum/enzimologia , Tirosina/química , Tirosina Descarboxilase/química , Tirosina Descarboxilase/genética
17.
Crit Rev Food Sci Nutr ; 52(5): 448-67, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22369263

RESUMO

Tyramine poisoning is caused by the ingestion of food containing high levels of tyramine, a biogenic amine. Any foods containing free tyrosine are subject to tyramine formation if poor sanitation and low quality foods are used or if the food is subject to temperature abuse or extended storage time. Tyramine is generated by decarboxylation of the tyrosine through tyrosine decarboxylase (TDC) enzymes derived from the bacteria present in the food. Bacterial TDC have been only unequivocally identified and characterized in Gram-positive bacteria, especially in lactic acid bacteria. Pyridoxal phosphate (PLP)-dependent TDC encoding genes (tyrDC) appeared flanked by a similar genetic organization in several species of lactic acid bacteria, suggesting a common origin by a single mobile genetic element. Bacterial TDC are also able to decarboxylate phenylalanine to produce phenylethylamine (PEA), another biogenic amine. The molecular knowledge of the genes involved in tyramine production has led to the development of molecular methods for the detection of bacteria able to produce tyramine and PEA. These rapid and simple methods could be used for the analysis of the ability to form tyramine by bacteria in order to evaluate the potential risk of tyramine biosynthesis in food products.


Assuntos
Inibidores da Captação Adrenérgica/metabolismo , Proteínas de Bactérias/metabolismo , Microbiologia de Alimentos , Fenetilaminas/metabolismo , Tiramina/metabolismo , Tirosina Descarboxilase/metabolismo , Vasoconstritores/metabolismo , Inibidores da Captação Adrenérgica/efeitos adversos , Descarboxilases de Aminoácido-L-Aromático/química , Descarboxilases de Aminoácido-L-Aromático/genética , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Técnicas de Tipagem Bacteriana , Inspeção de Alimentos/métodos , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Positivas/enzimologia , Fenetilaminas/efeitos adversos , Tiramina/efeitos adversos , Tirosina Descarboxilase/química , Tirosina Descarboxilase/genética , Tirosina Descarboxilase/isolamento & purificação , Vasoconstritores/efeitos adversos
18.
Mol Genet Genomic Med ; 8(3): e1143, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31975548

RESUMO

BACKGROUND: Aromatic L-amino acid decarboxylase deficiency (AADCD) is a rare, autosomal recessive inherited disorder which is characterized by neurological and vegetative symptoms. To date, only 130 patients with AADCD have been reported worldwide. METHODS: We demonstrated 14 previously undescribed patients together with three reportedly patients in Mainland China. Full clinical information was collected, and disease-causing variants in the DDC gene were detected. RESULTS: The common clinical manifestation of patients, including intermittent oculogyric crises, retarded movement development, and autonomic symptoms. Notably, a patient showed bone-density loss which have not been reported and two mildly phenotype patients improved psychomotor function after being prescribed medication. The most common genotype of Mainland Chinese AADCD is the splice-site variant (IVS6+4A> T; c.714+4A> T), which accounts for 58.8%, followed by c.1234C>T variant. Three novel compound heterozygous variants, c. 565G>T, c.170T>C, and c.1021+1G>A, were firstly reported. It is important to recognize the milder phenotypes of the disease as these patients might respond well to therapy. Besides, we discovered that patients may presented with milder if found to be compound heterozygote or homozygote for one of the following variants c.478C>G, c.853C>T, c.1123C>T, c.387G>A, and c.665T>C. DISCUSSION: The clinical data of the cohort of 17 patients in Mainland China broaden the clinical, molecular, and treatment spectrum of aromatic L-amino acid decarboxylase deficiency.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Descarboxilases de Aminoácido-L-Aromático/deficiência , Descarboxilases de Aminoácido-L-Aromático/genética , Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Descarboxilases de Aminoácido-L-Aromático/química , Feminino , Heterozigoto , Humanos , Lactente , Masculino , Mutação , Fenótipo , Splicing de RNA
19.
J Comput Chem ; 30(7): 1111-5, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-18942733

RESUMO

The biosynthesis of serotonin requires aromatic substrates to be bound in the active sites of the enzymes tryptophan hydroxylase and aromatic amino acid decarboxylase. These aromatic substrates are held in place partially by dispersion and induction interactions with the enzymes' aromatic amino acid residues. Mutations that decrease substrate binding can result in a decrease in serotonin production and thus can lead to depression and related disorders. We use optimized crystal structures of these two enzymes to examine pair-wise electronic interaction energies between aromatic residues in the active sites and the aromatic ligands. We also perform in silico mutations on the aromatic residues to determine the change in interaction energies as mutations occur. Our second-order Moller-Plessett perturbation theory calculations show that drastic changes in interaction energy can occur and, in light of our previous work, we are able to use these data to offer predictions on the loss of protein function and on the possibility of disease upon mutation. We also examine local and gradient corrected density functional theory methods to evaluate their ability to predict these induction/dispersion-dominated interaction energies. We find that the hybrid B3LYP cannot model these interactions well, whereas the GGA HCTH407 offers largely qualitatively correct results, and the local functional SVWN quantitatively mimics the MP2 results rather well.


Assuntos
Descarboxilases de Aminoácido-L-Aromático/química , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Hidrocarbonetos Aromáticos/química , Serotonina/biossíntese , Triptofano Hidroxilase/química , Triptofano Hidroxilase/metabolismo , Domínio Catalítico , Simulação por Computador , Hidrocarbonetos Aromáticos/metabolismo , Ligantes , Modelos Químicos
20.
Biomolecules ; 9(3)2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917613

RESUMO

In a previous work, we in silico annotated protein sequences of Citrus genus plants as putative tryptophan decarboxylase (pTDC). Here, we investigated the structural properties of Citrus pTDCs by using the TDC sequence of Catharanthus roseus as an experimentally annotated reference to carry out comparative modeling and substrate docking analyses. The functional annotation as TDC was verified by combining 3D molecular modeling and docking simulations, evidencing the peculiarities and the structural similarities with C. roseus TDC. Docking with l-tryptophan as a ligand showed specificity of pTDC for this substrate. These combined results confirm our previous in silico annotation of the examined protein sequences of Citrus as TDC and provide support for TDC activity in this plant genus.


Assuntos
Descarboxilases de Aminoácido-L-Aromático/química , Citrus/enzimologia , Modelos Moleculares , Simulação de Acoplamento Molecular , Triptofano/química , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Ligantes , Especificidade por Substrato , Triptofano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA