Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Histochem Cell Biol ; 161(4): 345-357, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38227055

RESUMO

c-Jun NH2-terminal protein kinase (JNK) and p38 are stress-activated mitogen-activated protein kinases (MAPK) that are phosphorylated by various stimuli. It has been reported that the loss of desmoglein (DSG) 3, a desmosomal transmembrane core molecule, in keratinocytes impairs cell-cell adhesion accompanied by p38 MAPK activation. To understand the biological role of DSG3 in desmosomes and its relationship with stress-activated MAPKs, we established DSG3 knockout keratinocytes (KO cells). Wild-type cells showed a linear localization of DSG1 to cell-cell contacts, whereas KO cells showed a remarkable reduction despite the increased protein levels of DSG1. Cell-cell adhesion in KO cells was impaired over time, as demonstrated by dispase-based dissociation assays. The linear localization of DSG1 to cell-cell contacts and the strength of cell-cell adhesion were promoted by the pharmacological inhibition of JNK. Conversely, pharmacological activation of JNK, but not p38 MAPK, in wild-type cells reduced the linear localization of DSG1 in cell-cell contacts. Our data indicate that DSG1 and DSG2 in KO cells cannot compensate for the attenuation of cell-cell adhesion strength caused by DSG3 deficiency and that JNK inhibition restores the strength of cell-cell adhesion by increasing the linear localization of DSG1 in cell-cell contacts in KO cells. Inhibition of JNK signaling may improve cell-cell adhesion in diseases in which DSG3 expression is impaired.


Assuntos
Desmogleína 3 , Queratinócitos , Adesão Celular/genética , Desmogleína 3/genética , Desmogleína 3/metabolismo , Queratinócitos/metabolismo , Sistema de Sinalização das MAP Quinases
2.
Cell Mol Life Sci ; 80(1): 25, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36602635

RESUMO

Desmoglein 3 (Dsg3) is a desmosomal cadherin mediating cell adhesion within desmosomes and is the antigen of the autoimmune blistering skin disease pemphigus vulgaris. Therefore, understanding of the complex desmosome turnover process is of high biomedical relevance. Recently, super resolution microscopy was used to characterize desmosome composition and turnover. However, studies were limited because adhesion measurements on living cells were not possible in parallel. Before desmosomal cadherins are incorporated into nascent desmosomes, they are not bound to intermediate filaments but were suggested to be associated with the actin cytoskeleton. However, direct proof that adhesion of a pool of desmosomal cadherins is dependent on actin is missing. Here, we applied single-molecule force spectroscopy measurements with the novel single molecule hybrid-technique STED/SMFS-AFM to investigate the cytoskeletal anchorage of Dsg3 on living keratinocytes for the first time. By application of pharmacological agents we discriminated two different Dsg3 pools, only one of which is anchored to actin filaments. We applied the actin polymerization inhibitor Latrunculin B to modify the actin cytoskeleton and the PKCα activator PMA to modulate intermediate filament anchorage. On the cellular surface Dsg3 adhesion was actin-dependent. In contrast, at cell-cell contacts, Dsg3 adhesion was independent from actin but rather is regulated by PKC which is well established to control desmosome turn-over via intermediate filament anchorage. Taken together, using the novel STED/SMFS-AFM technique, we demonstrated the existence of two Dsg3 pools with different cytoskeletal anchorage mechanisms.


Assuntos
Doenças Autoimunes , Pênfigo , Humanos , Desmogleína 3/metabolismo , Actinas/metabolismo , Desmossomos/metabolismo , Queratinócitos/metabolismo , Pênfigo/metabolismo , Caderinas/metabolismo , Adesão Celular , Doenças Autoimunes/metabolismo
3.
Cell Mol Life Sci ; 80(8): 203, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37450050

RESUMO

AIMS: Arrhythmogenic cardiomyopathy (AC) is a severe heart disease predisposing to ventricular arrhythmias and sudden cardiac death caused by mutations affecting intercalated disc (ICD) proteins and aggravated by physical exercise. Recently, autoantibodies targeting ICD proteins, including the desmosomal cadherin desmoglein 2 (DSG2), were reported in AC patients and were considered relevant for disease development and progression, particularly in patients without underlying pathogenic mutations. However, it is unclear at present whether these autoantibodies are pathogenic and by which mechanisms show specificity for DSG2 and thus can be used as a diagnostic tool. METHODS AND RESULTS: IgG fractions were purified from 15 AC patients and 4 healthy controls. Immunostainings dissociation assays, atomic force microscopy (AFM), Western blot analysis and Triton X-100 assays were performed utilizing human heart left ventricle tissue, HL-1 cells and murine cardiac slices. Immunostainings revealed that autoantibodies against ICD proteins are prevalent in AC and most autoantibody fractions have catalytic properties and cleave the ICD adhesion molecules DSG2 and N-cadherin, thereby reducing cadherin interactions as revealed by AFM. Furthermore, most of the AC-IgG fractions causing loss of cardiomyocyte cohesion activated p38MAPK, which is known to contribute to a loss of desmosomal adhesion in different cell types, including cardiomyocytes. In addition, p38MAPK inhibition rescued the loss of cardiomyocyte cohesion induced by AC-IgGs. CONCLUSION: Our study demonstrates that catalytic autoantibodies play a pathogenic role by cleaving ICD cadherins and thereby reducing cardiomyocyte cohesion by a mechanism involving p38MAPK activation. Finally, we conclude that DSG2 cleavage by autoantibodies could be used as a diagnostic tool for AC.


Assuntos
Anticorpos Catalíticos , Cardiomiopatias , Humanos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Caderinas/metabolismo , Desmogleína 2/genética , Anticorpos Catalíticos/metabolismo , Adesão Celular/genética , Autoanticorpos/metabolismo , Cardiomiopatias/metabolismo , Imunoglobulina G/metabolismo , Desmogleína 3/metabolismo , Desmossomos/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34848535

RESUMO

Antigen-specific peripheral tolerance is crucial to prevent the development of organ-specific autoimmunity. However, its function decoupled from thymic tolerance remains unclear. We used desmoglein 3 (Dsg3), a pemphigus antigen expressed in keratinocytes, to analyze peripheral tolerance under physiological antigen-expression conditions. Dsg3-deficient thymi were transplanted into athymic mice to create a unique condition in which Dsg3 was expressed only in peripheral tissue but not in the thymus. When bone marrow transfer was conducted from high-avidity Dsg3-specific T cell receptor-transgenic mice to thymus-transplanted mice, Dsg3-specific CD4+ T cells developed in the transplanted thymus but subsequently disappeared in the periphery. Additionally, when Dsg3-specific T cells developed in Dsg3-/- mice were adoptively transferred into Dsg3-sufficient recipients, the T cells disappeared in an antigen-specific manner without inducing autoimmune dermatitis. However, Dsg3-specific T cells overcame this disappearance and thus induced autoimmune dermatitis in Treg-ablated recipients but not in Foxp3-mutant recipients with dysfunctional Tregs. The molecules involved in disappearance were sought by screening the transcriptomes of wild-type and Foxp3-mutant Tregs. OX40 of Tregs was suggested to be responsible. Consistently, when OX40 expression of Tregs was constrained, Dsg3-specific T cells did not disappear. Furthermore, Tregs obtained OX40L from dendritic cells in an OX40-dependent manner in vitro and then suppressed OX40L expression in dendritic cells and Birc5 expression in Dsg3-specific T cells in vivo. Lastly, CRISPR/Cas9-mediated knockout of OX40 signaling in Dsg3-specific T cells restored their disappearance in Treg-ablated recipients. Thus, Treg-mediated peripheral deletion of autoreactive T cells operates as an OX40-dependent regulatory mechanism to avoid undesired autoimmunity besides thymic tolerance.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Desmogleína 3/metabolismo , Pênfigo/imunologia , Abatacepte/farmacologia , Transferência Adotiva , Animais , Técnicas de Cocultura , Proteínas de Ligação a DNA/genética , Desmogleína 3/genética , Antagonistas de Estrogênios/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Masculino , Camundongos , Camundongos Knockout , Linfócitos T Reguladores , Tamoxifeno/farmacologia
5.
BMC Immunol ; 24(1): 43, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940861

RESUMO

BACKGROUND: Glucocorticoids are the first-line treatment for Pemphigus vulgaris (PV), but its serious side effects can be life-threatening for PV patients. Tacrolimus (FK506) has been reported to have an adjuvant treatment effect against PV. However, the mechanism underlying the inhibitory effect of FK506 on PV-IgG-induced acantholysis is unclear. OBJECTIVE: The objective of this study was to explore the effect of FK506 on desmoglein (Dsg) expression and cell adhesion in an immortalized human keratinocyte cell line (HaCaT cells) stimulated with PV sera. METHODS: A cell culture model of PV was established by stimulating HaCaT cells with 5% PV sera with or without FK506 and clobetasol propionate (CP) treatment. The effects of PV sera on intercellular junctions and protein levels of p38 mitogen-activated protein kinase (p38MAPK), heat shock protein 27 (HSP27), and Dsg were assayed using western blot analysis, immunofluorescence staining, and a keratinocyte dissociation assay. RESULTS: PV sera-induced downregulation of Dsg3 was observed in HaCaT cells and was blocked by FK506 and/or CP. Immunofluorescence staining revealed that linear deposits of Dsg3 on the surface of HaCaT cells in the PV sera group disappeared and were replaced by granular and agglomerated fluorescent particles on the cell surface; however, this effect was reversed by FK506 and/or CP treatment. Furthermore, cell dissociation assays showed that FK506 alone or in combination with CP increased cell adhesion in HaCaT cells and ameliorated loss of cell adhesion induced by PV sera. Additionally, FK506 noticeably decreased the PV serum-induced phosphorylation of HSP 27, but had no effect on p38MAPK phosphorylation. CONCLUSION: FK506 reverses PV-IgG induced-Dsg depletion and desmosomal dissociation in HaCaT cells, and this effect may be obtained by inhibiting HSP27 phosphorylation.


Assuntos
Pênfigo , Humanos , Pênfigo/tratamento farmacológico , Pênfigo/metabolismo , Tacrolimo/farmacologia , Tacrolimo/uso terapêutico , Tacrolimo/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP27/farmacologia , Células HaCaT/metabolismo , Fosforilação , Queratinócitos/metabolismo , Desmogleína 3/metabolismo , Desmogleína 3/farmacologia , Imunoglobulina G/metabolismo , Autoanticorpos/metabolismo
6.
Int J Mol Sci ; 24(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37511259

RESUMO

The mucosal-dominant variant of pemphigus vulgaris (MPV) is an autoimmune disease characterized by oral mucosal blistering and circulating pathogenic IgG antibodies against desmoglein 3 (Dsg3), resulting in life-threatening bullae and erosion formation. Recently, microRNAs (miRNAs) have emerged as promising players in the diagnosis and prognosis of several pathological states. For the first time, we have identified a different expression profile of miRNAs isolated from plasma-derived exosomes (P-EVs) of MPV patients positive for antibodies against Dsg3 (Dsg3-positive) compared to healthy controls. Moreover, a dysregulated miRNA profile was confirmed in MPV tissue biopsies. In particular, a strong downregulation of the miR-148a-3p expression level in P-EVs of MPV patients compared to healthy controls was demonstrated. Bioinformatics prediction analysis identifies metalloproteinase-7 (MMP7) as a potential miR-148a-3p target. An in vitro acantholysis model revealed that the miR-148a-3p expression level was dramatically downregulated after treatment with Dsg3 autoantibodies, with a concomitant increase in MMP7 expression. The increased expression of MMP7 leads to the disruption of intercellular and/or extracellular matrix adhesion in an in vitro cellular model of MPV, with subsequent cell dissociation. Overexpression of miR-148a-3p prevented cell dissociation and regressed MMP7 upregulation. Our findings suggest a pivotal role of P-EV cargo in regulating molecular mechanisms involved in MPV pathogenesis and indicate them as potential MPV therapeutic targets.


Assuntos
MicroRNAs , Pênfigo , Humanos , Pênfigo/genética , Pênfigo/diagnóstico , Regulação para Baixo/genética , Metaloproteinase 7 da Matriz/metabolismo , Desmogleína 3/genética , Desmogleína 3/metabolismo , Autoanticorpos , MicroRNAs/genética , MicroRNAs/metabolismo , Vesícula , Mucosa Bucal/metabolismo
7.
J Allergy Clin Immunol ; 146(5): 1070-1079.e8, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32311391

RESUMO

BACKGROUND: Pemphigus vulgaris (PV) is an autoimmune bullous disease mediated by autoantibodies against desmoglein 3 (DSG3). Inducible costimulator (ICOS) is a costimulatory receptor expressed on T cells and influences the activity of T follicular helper (TFH) cells in various autoimmune diseases, but the roles of ICOS and TFH cells in PV remain unclear. OBJECTIVE: We examined the immunological characteristics, antigen specificity, and pathogenicity of CD4+ T-cell subpopulations, as well as the therapeutic effect of anti-ICOS blocking antibodies in PV. METHODS: A mouse model of PV was established by adoptive transfer of immune cells from the skin-draining lymph nodes or spleens of DSG3-expressing skin-grafted Dsg3-/- mice into Rag1-/- mice. The TFH cells and CD4+ T cells in PBMCs from PV patients were examined by flow cytometry. RESULTS: Among CD4+ T cells from the mouse model, ICOS-positive TFH cells were associated with B-cell differentiation and were required for disease induction. Using an MHC class II tetramer, DSG3-specific ICOS+ TFH cells were found to be associated with anti-DSG3 antibody production and expanded in the absence of B cells. In human PV, the frequency of ICOS+CXCR5+PD-1+ memory CD4+ T cells correlated with the autoantibody level. Treatment with anti-ICOS blocking antibodies targeting ICOS+ TFH cells decreased the anti-DSG3 antibody level and delayed disease progression in vivo. CONCLUSIONS: Mouse Dsg3-specific ICOS+ TFH cells and human ICOS+CXCR5+PD-1+ TH cells are associated with the anti-DSG3 antibody response in PV. ICOS expressed on CXCR5+PD-1+ TH cells may be a therapeutic target for PV.


Assuntos
Anti-Inflamatórios/uso terapêutico , Anticorpos Bloqueadores/uso terapêutico , Desmogleína 3/metabolismo , Centro Germinativo/imunologia , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Pênfigo/terapia , Células Th1/metabolismo , Animais , Autoanticorpos/metabolismo , Desmogleína 3/genética , Modelos Animais de Doenças , Progressão da Doença , Citometria de Fluxo , Humanos , Memória Imunológica , Proteína Coestimuladora de Linfócitos T Induzíveis/imunologia , Camundongos , Camundongos Knockout , Pênfigo/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Receptores CXCR5/metabolismo , Células Th1/imunologia
8.
Bull Exp Biol Med ; 171(4): 475-479, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34542752

RESUMO

A method for the analysis of the epitope specificity of auto-reactive antibodies to desmoglein 3 (Dsg3) using competitive ELISA has been developed. It is based on a two-stage solid-phase ELISA with initial "depletion" of auto-reactive antibodies against the studied epitope and subsequent quantitative assessment of antibodies against full-length extracellular domain Dsg3. The proposed approach for assessing the specificity of the autoimmune response in patients with pemphigus vulgaris can provide in the future the possibility to personalize the therapy using plasmapheresis by preliminary selection of the antigenic composition of the extracorporeal immunosorbent.


Assuntos
Autoanticorpos/imunologia , Desmogleína 3/imunologia , Pênfigo/imunologia , Animais , Especificidade de Anticorpos , Autoanticorpos/sangue , Autoanticorpos/metabolismo , Células CHO , Cricetulus , Desmogleína 3/química , Desmogleína 3/metabolismo , Ensaio de Imunoadsorção Enzimática , Mapeamento de Epitopos , Espaço Extracelular , Humanos , Pênfigo/sangue , Pênfigo/patologia , Fragmentos de Peptídeos/imunologia , Domínios Proteicos/imunologia
9.
Cell Mol Life Sci ; 76(17): 3465-3476, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30949721

RESUMO

Plakophilins (Pkp) are desmosomal plaque proteins crucial for desmosomal adhesion and participate in the regulation of desmosomal turnover and signaling. However, direct evidence that Pkps regulate clustering and molecular binding properties of desmosomal cadherins is missing. Here, keratinocytes lacking either Pkp1 or 3 in comparison to wild type (wt) keratinocytes were characterized with regard to their desmoglein (Dsg) 1- and 3-binding properties and their capability to induce Dsg3 clustering. As revealed by atomic force microscopy (AFM), both Pkp-deficient keratinocyte cell lines showed reduced membrane availability and binding frequency of Dsg1 and 3 at cell borders. Extracellular crosslinking and AFM cluster mapping demonstrated that Pkp1 but not Pkp3 is required for Dsg3 clustering. Accordingly, Dsg3 overexpression reconstituted cluster formation in Pkp3- but not Pkp1-deficient keratinocytes as shown by AFM and STED experiments. Taken together, these data demonstrate that both Pkp1 and 3 regulate Dsg membrane availability, whereas Pkp1 but not Pkp3 is required for Dsg3 clustering.


Assuntos
Adesão Celular , Desmogleína 1/metabolismo , Desmogleína 3/metabolismo , Placofilinas/genética , Animais , Anisomicina/farmacologia , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Desmogleína 1/genética , Desmogleína 3/genética , Queratinócitos/citologia , Queratinócitos/metabolismo , Camundongos , Microscopia de Força Atômica , Placofilinas/deficiência , Placofilinas/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Exp Dermatol ; 28(5): 614-617, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30907457

RESUMO

Desmoglein (DSG) 3 is overexpressed in oral squamous cell carcinoma (OSCC). Epidermal growth factor receptor (EGFR) inhibitor cetuximab is widely used for OSCC treatment. Several evidences suggest a correlation between DSG3 and EGFR in epidermal keratinocytes. EGFR inhibition has been shown to enhance cell-cell adhesion and induce terminal differentiation in epidermal cells. Thus, here we investigated the DSG3-EGFR interaction in OSCC and its effect on cetuximab treatment. Cell lines established from the primary tumor and metastatic lymph nodes of four OSCC patients and three commercial OSCC cell lines were used for the experiments. Cells from metastatic lymph nodes of each patient expressed increased DSG3 and EGFR than cells from the primary tumor in the same patient. Cetuximab treatment increased DSG3 expression by up to 3.5-fold in seven of the 11 cell lines. A high calcium concentration increased the expression of DSG3 and EGFR in a dose-dependent manner. Strikingly, a high calcium-associated DSG3 induction enhanced cetuximab efficacy by up to 23% increase in cetuximab-low-sensitive cell lines. Our findings also suggest a correlation between DSG3 and EGFR in OSCC, and this affects cetuximab treatment efficacy.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Cetuximab/farmacologia , Desmogleína 3/metabolismo , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismo , Cálcio/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Neoplásica , Resultado do Tratamento
11.
Int J Mol Sci ; 20(24)2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31835537

RESUMO

Desmoglein 3 (Dsg3) plays a crucial role in cell-cell adhesion and tissue integrity. Increasing evidence suggests that Dsg3 acts as a regulator of cellular mechanotransduction, but little is known about its direct role in mechanical force transmission. The present study investigated the impact of cyclic strain and substrate stiffness on Dsg3 expression and its role in mechanotransduction in keratinocytes. A direct comparison was made with E-cadherin, a well-characterized mechanosensor. Exposure of oral and skin keratinocytes to equiaxial cyclic strain promoted changes in the expression and localization of junction assembly proteins. The knockdown of Dsg3 by siRNA blocked strain-induced junctional remodeling of E-cadherin and Myosin IIa. Importantly, the study demonstrated that Dsg3 regulates the expression and localization of yes-associated protein (YAP), a mechanosensory, and an effector of the Hippo pathway. Furthermore, we showed that Dsg3 formed a complex with phospho-YAP and sequestered it to the plasma membrane, while Dsg3 depletion had an impact on both YAP and phospho-YAP in their response to mechanical forces, increasing the sensitivity of keratinocytes to the strain or substrate rigidity-induced nuclear relocation of YAP and phospho-YAP. Plakophilin 1 (PKP1) seemed to be crucial in recruiting the complex containing Dsg3/phospho-YAP to the cell surface since its silencing affected Dsg3 junctional assembly with concomitant loss of phospho-YAP at the cell periphery. Finally, we demonstrated that this Dsg3/YAP pathway has an influence on the expression of YAP1 target genes and cell proliferation. Together, these findings provide evidence of a novel role for Dsg3 in keratinocyte mechanotransduction.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Desmogleína 3/metabolismo , Desmossomos/metabolismo , Queratinócitos/citologia , Fatores de Transcrição/metabolismo , Antígenos CD/metabolismo , Caderinas/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Proliferação de Células , Desmogleína 3/genética , Técnicas de Silenciamento de Genes , Humanos , Queratinócitos/metabolismo , Mecanotransdução Celular , Miosina não Muscular Tipo IIA/metabolismo , Fosforilação , Transdução de Sinais , Proteínas de Sinalização YAP
12.
Biophys J ; 113(11): 2519-2529, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29212005

RESUMO

Desmosomes are macromolecular cell-cell junctions that provide adhesive strength in epithelial tissue. Desmosome function is inseparably linked to structure, and it is hypothesized that the arrangement, or order, of desmosomal cadherins in the intercellular space is critical for adhesive strength. However, due to desmosome size, molecular complexity, and dynamics, the role that order plays in adhesion is challenging to study. Herein, we present an excitation resolved fluorescence polarization microscopy approach to measure the spatiotemporal dynamics of order and disorder of the desmosomal cadherin desmoglein 3 (Dsg3) in living cells. Simulations were used to establish order factor as a robust metric for quantifying the spatiotemporal dynamics of order and disorder. Order factor measurements in keratinocytes showed the Dsg3 extracellular domain is ordered at the individual desmosome, single cell, and cell population levels compared to a series of disordered controls. Desmosomal adhesion is Ca2+ dependent, and reduction of extracellular Ca2+ leads to a loss of adhesion measured by dispase fragmentation assay (λ = 15.1 min). Live cell imaging revealed Dsg3 order decreased more rapidly (λ = 5.5 min), indicating that cadherin order is not required for adhesion. Our results suggest that rapid disordering of cadherins can communicate a change in extracellular Ca2+ concentration to the cell, leading to a downstream loss of adhesion. Fluorescence polarization is an effective bridge between protein structure and complex dynamics and the approach presented here is broadly applicable to studying order in macromolecular structures.


Assuntos
Desmogleína 3/metabolismo , Desmossomos/metabolismo , Sobrevivência Celular , Desmogleína 3/química , Humanos , Queratinócitos/citologia , Microscopia de Fluorescência , Microscopia de Polarização , Modelos Moleculares , Conformação Proteica
13.
BMC Med Genet ; 18(1): 88, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28821283

RESUMO

BACKGROUND: Chronic fibrosing idiopathic interstitial pneumonia (IIP) is characterized by alveolar epithelial damage, activation of fibroblast proliferation, and loss of normal pulmonary architecture and function. This study aims to investigate the genetic backgrounds of IIP through gene expression profiling and pathway analysis, and to identify potential biomarkers that can aid in diagnosis and serve as novel therapeutic targets. METHODS: RNA extracted from lung specimens of 12 patients with chronic fibrosing IIP was profiled using Illumina Human WG-6 v3 BeadChips, and Ingenuity Pathway Analysis was performed to identify altered functional and canonical signaling pathways. For validating the results from gene expression analysis, immunohistochemical staining of 10 patients with chronic fibrosing IIP was performed. RESULTS: Ninety-eight genes were upregulated in IIP patients relative to control subjects. Some of the upregulated genes, namely desmoglein 3 (DSG3), protocadherin gamma-A9 (PCDHGA9) and discoidin domain-containing receptor 1 (DDR1) are implicated in cell-cell interaction and/or adhesion; some, namely collagen type VII, alpha 1 (COL7A1), contactin-associated protein-like 3B (CNTNAP3B) and mucin-1 (MUC1) are encoding the extracellular matrix molecule or the molecules involved in cell-matrix interactions; and the others, namely CDC25C and growth factor independent protein 1B (GFI1B) are known to affect cell proliferation by affecting the progression of cell cycle or regulating transcription. According to pathway analysis, alternated pathways in IIP were related to cell death and survival and cellular growth and proliferation, which are more similar to cancer than to inflammatory response and immunological diseases. Using immunohistochemistry, we further validate that DSG3, the most highly upregulated gene, shows higher expression in chronic fibrosing IIP lung as compared to control lung. CONCLUSION: We identified several genes upregulated in chronic fibrosing IIP patients as compared to control, and found genes and pathways implicated in cancer, rather than in inflammatory or immunological disease to play important roles in the pathogenesis of IIPs. Moreover, DSG3 is a novel potential biomarker for chronic fibrosing IIP with its significantly high expression in IIP lung.


Assuntos
Biomarcadores/metabolismo , Pneumonias Intersticiais Idiopáticas/genética , Adulto , Estudos de Casos e Controles , Análise por Conglomerados , Desmogleína 3/genética , Desmogleína 3/metabolismo , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Humanos , Pneumonias Intersticiais Idiopáticas/diagnóstico , Pneumonias Intersticiais Idiopáticas/patologia , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Regulação para Cima
14.
Australas J Dermatol ; 58(3): 171-173, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28211055

RESUMO

Autoantibodies to the desmosomal proteins desmoglein 1 and 3 cause pemphigus foliaceus and pemphigus vulgaris, which are characterised by keratinocyte dissociation (acantholysis) and intraepidermal blister formation. The passive transfer of pathogenic anti-desmoglein antibodies induces blisters in mice in vivo and the loss of keratinocyte adhesion in vitro. The pathogenetic mechanisms of acantholysis due to anti-desmoglein autoantibodies are not fully understood. However, recent studies have revealed that signalling-dependent and signalling-independent pathways are operative in the loss of cell adhesion. In this review, we focus on the pathomechanism of acantholysis due to autoantibodies to desmogleins and recent therapeutic approaches.


Assuntos
Acantólise/imunologia , Autoanticorpos/imunologia , Desmogleína 1/metabolismo , Desmogleína 3/metabolismo , Pênfigo/complicações , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Desmogleína 1/imunologia , Desmogleína 3/imunologia , Humanos , Sistema de Sinalização das MAP Quinases
15.
Am J Pathol ; 185(3): 617-30, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25542773

RESUMO

Desmoglein 3 is a transmembrane component of desmosome complexes that mediate epidermal cell-to-cell adhesion and tissue integrity. Antibody blockade of desmoglein 3 function in pemphigus vulgaris patients leads to skin blistering (acantholysis) and oral mucosa lesions. Desmoglein 3 deficiency in mice leads to a phenotype characterized by cyclic alopecia in addition to the dramatic skin and mucocutaneous acantholysis observed in pemphigus patients. In this study, mice that developed an overt squeaky (sqk) phenotype were identified with obstructed airways, cyclic hair loss, and severe immunodeficiency subsequent to the development of oral lesions and malnutrition. Single-nucleotide polymorphism-based quantitative trait loci mapping revealed a genetic deletion that resulted in expression of a hypomorphic desmoglein 3 protein with a truncation of an extracellular cadherin domain. Because hypomorphic expression of a truncated desmoglein 3 protein led to a spectrum of severe pathology not observed in mice deficient in desmoglein 3, similar human genetic alterations may also disrupt desmosome function and induce a disease course distinct from pathogenesis of pemphigus vulgaris.


Assuntos
Alopecia/genética , Desmogleína 3/genética , Síndromes de Imunodeficiência/genética , Desnutrição/genética , Alopecia/imunologia , Alopecia/metabolismo , Animais , Desmogleína 3/metabolismo , Síndromes de Imunodeficiência/imunologia , Síndromes de Imunodeficiência/metabolismo , Queratinócitos/imunologia , Queratinócitos/metabolismo , Queratinócitos/patologia , Masculino , Desnutrição/imunologia , Desnutrição/metabolismo , Camundongos , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Deleção de Sequência , Pele/imunologia , Pele/metabolismo , Pele/patologia
16.
Cell Mol Life Sci ; 72(24): 4885-97, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26115704

RESUMO

Desmosomes provide strong intercellular cohesion essential for the integrity of cells and tissues exposed to continuous mechanical stress. For desmosome assembly, constitutively synthesized desmosomal cadherins translocate to the cell-cell border, cluster and mature in the presence of Ca(2+) to stable cell contacts. As adherens junctions precede the formation of desmosomes, we investigated in this study the relationship between the classical cadherin E-cadherin and the desmosomal cadherin Desmoglein 3 (Dsg3), the latter of which is indispensable for cell-cell adhesion in keratinocytes. By using autoantibodies from patients with the blistering skin disease pemphigus vulgaris (PV), we showed in loss of function studies that E-cadherin compensates for effects of desmosomal disassembly. Overexpression of E-cadherin reduced the loss of cell cohesion induced by PV autoantibodies and attenuated activation of p38 MAPK. Silencing of E-cadherin abolished the localization of Dsg3 at the membrane and resulted in a shift of Dsg3 from the cytoskeletal to the non-cytoskeletal protein pool which conforms to the notion that E-cadherin regulates desmosome assembly. Mechanistically, we identified a complex consisting of extradesmosomal Dsg3, E-cadherin, ß-catenin and Src and that the stability of this complex is regulated by Src. Moreover, Dsg3 and E-cadherin are phosphorylated on tyrosine residues in a Src-dependent manner and Src activity is required for recruiting Dsg3 to the cytoskeletal pool as well as for desmosome maturation towards a Ca(2+)-insensitive state. Our data provide new insights into the role of E-cadherin and the contribution of Src signaling for formation and maintenance of desmosomal junctions.


Assuntos
Caderinas/metabolismo , Desmogleína 3/metabolismo , Desmossomos/fisiologia , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Caderinas/genética , Caderinas/fisiologia , Adesão Celular/genética , Linhagem Celular , Desmogleína 3/análise , Desmogleína 3/fisiologia , Desmossomos/metabolismo , Inativação Gênica , Queratinócitos/citologia , Queratinócitos/metabolismo , Modelos Moleculares , Proteínas Proto-Oncogênicas pp60(c-src)/genética , Proteínas Proto-Oncogênicas pp60(c-src)/fisiologia
17.
J Biol Chem ; 289(24): 17043-53, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24782306

RESUMO

Desmosomal cadherins are transmembrane adhesion molecules that provide cell adhesion by interacting in the intercellular space of adjacent cells. In keratinocytes, several desmoglein (Dsg1-4) and desmocollin (Dsc1-3) isoforms are coexpressed. We have shown previously that Dsg2 is less important for keratinocyte cohesion compared with Dsg3 and that the latter forms a complex with p38 MAPK. In this study, we compared the involvement of Dsg2 and Dsg3 in the p38 MAPK-dependent regulation of keratinocyte cohesion. We show that loss of cell adhesion and keratin filament retraction induced by Dsg3 depletion is ameliorated by specific p38 MAPK inhibition. Furthermore, in contrast to depletion of Dsg2, siRNA-mediated silencing of Dsg3 induced p38 MAPK activation, which is in line with immunoprecipitation experiments demonstrating the interaction of activated p38 MAPK with Dsg3 but not with Dsg2. Cell fractionation into a cytoskeleton-unbound and a cytoskeleton-anchored desmosome-containing pool revealed that Dsg3, in contrast to Dsg2, is present in relevant amounts in the unbound pool in which activated p38 MAPK is predominantly detectable. Moreover, because loss of cell adhesion by Dsg3 depletion was partially rescued by p38 MAPK inhibition, we conclude that, besides its function as an adhesion molecule, Dsg3 is strengthening cell cohesion via modulation of p38 MAPK-dependent keratin filament reorganization. Nevertheless, because subsequent targeting of Dsg3 in Dsg2-depleted cells led to drastically enhanced keratinocyte dissociation and Dsg2 was enhanced at the membrane in Dsg3 knockout cells, we conclude that Dsg2 compensates for Dsg3 loss of function.


Assuntos
Desmogleína 2/metabolismo , Desmogleína 3/metabolismo , Queratinócitos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Adesão Celular , Linhagem Celular , Citoesqueleto/metabolismo , Desmogleína 2/genética , Desmogleína 3/genética , Desmossomos/metabolismo , Humanos , Queratinócitos/fisiologia , Camundongos
18.
J Biol Chem ; 289(21): 14925-40, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24711455

RESUMO

Adducin is a protein organizing the cortical actin cytoskeleton and a target of RhoA and PKC signaling. However, the role for intercellular cohesion is unknown. We found that adducin silencing induced disruption of the actin cytoskeleton, reduced intercellular adhesion of human keratinocytes, and decreased the levels of the desmosomal adhesion molecule desmoglein (Dsg)3 by reducing its membrane incorporation. Because loss of cell cohesion and Dsg3 depletion is observed in the autoantibody-mediated blistering skin disease pemphigus vulgaris (PV), we applied antibody fractions of PV patients. A rapid phosphorylation of adducin at serine 726 was detected in response to these autoantibodies. To mechanistically link autoantibody binding and adducin phosphorylation, we evaluated the role of several disease-relevant signaling molecules. Adducin phosphorylation at serine 726 was dependent on Ca(2+) influx and PKC but occurred independent of p38 MAPK and PKA. Adducin phosphorylation is protective, because phosphorylation-deficient mutants resulted in loss of cell cohesion and Dsg3 fragmentation. Thus, PKC elicits both positive and negative effects on cell adhesion, since its contribution to cell dissociation in pemphigus is well established. We additionally evaluated the effect of RhoA on adducin phosphorylation because RhoA activation was shown to block pemphigus autoantibody-induced cell dissociation. Our data demonstrate that the protective effect of RhoA activation was dependent on the presence of adducin and its phosphorylation at serine 726. These experiments provide novel mechanisms for regulation of desmosomal adhesion by RhoA- and PKC-mediated adducin phosphorylation in keratinocytes.


Assuntos
Proteínas de Ligação a Calmodulina/imunologia , Proteínas do Citoesqueleto/imunologia , Desmossomos/imunologia , Queratinócitos/imunologia , Autoanticorpos/imunologia , Autoanticorpos/farmacologia , Western Blotting , Cálcio/imunologia , Cálcio/metabolismo , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Adesão Celular/genética , Adesão Celular/imunologia , Linhagem Celular , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Desmogleína 3/genética , Desmogleína 3/imunologia , Desmogleína 3/metabolismo , Desmossomos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Pênfigo/imunologia , Fosforilação/efeitos dos fármacos , Fosforilação/imunologia , Proteína Quinase C/imunologia , Proteína Quinase C/metabolismo , Interferência de RNA , Serina/imunologia , Serina/metabolismo , Proteína rhoA de Ligação ao GTP/imunologia , Proteína rhoA de Ligação ao GTP/metabolismo
19.
Br J Cancer ; 113(10): 1460-6, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26469831

RESUMO

BACKGROUND: Frequent disease relapse and a lack of effective therapies result in a very poor outcome in pancreatic ductal adenocarcinoma (PDAC) patients. Thus, identification of prognostic biomarkers and possible therapeutic targets is essential. Besides their function in cell-cell adhesion, desmogleins may play a role in tumour progression and invasion that has not been investigated in PDAC to date. This study evaluated desmoglein expression as a biomarker in PDAC. METHODS: Using immunohistochemistry, we examined desmoglein 1 (DSG1), desmoglein 2 (DSG2) and desmoglein 3 (DSG3) expression in the tumour tissue of 165 resected PDAC cases. Expression levels were correlated to the patients' clinicopathological parameters and postoperative survival times. We confirmed these results in two independent gene expression data sets. RESULTS: A total of 36% of the tumours showed high DSG3 expression that correlated significantly with shorter patient survival (P=0.011) and poor tumour differentiation (P<0.001), whereas no such association was detected for DSG1 or DSG2. In RNA-Seq data and in microarray expression data, high DSG3 expression correlated significantly with poor survival (P=0.000356 and P=0.00499). CONCLUSIONS: We identify DSG3 as a negative prognostic biomarker in resected PDAC, as high DSG3 expression is associated with poor overall survival and poor tumour-specific survival. These findings suggest DSG3 and its downstream signalling pathways as possible therapeutic targets in DSG3-expressing PDAC.


Assuntos
Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/cirurgia , Desmogleína 1/genética , Desmogleína 1/metabolismo , Neoplasias Pancreáticas/cirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Desmogleína 2/genética , Desmogleína 2/metabolismo , Desmogleína 3/genética , Desmogleína 3/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Prognóstico , Análise de Sequência de RNA , Análise de Sobrevida , Regulação para Cima
20.
Am J Pathol ; 184(9): 2528-36, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25010392

RESUMO

Desmoplakin (DP) serves to anchor intermediate filaments in desmosomal complexes. Recent data suggest that a specific DP point mutation (S2849G) exhibits increased keratin filament association and fosters Ca(2+) insensitivity of desmosomes in keratinocytes, presumably by rendering DP inaccessible for protein kinase C (PKC) phosphorylation. Previously, we have reported that depletion of the desmosomal adhesion molecule desmoglein (Dsg)3 induced by autoantibodies from patients with the blistering skin disease pemphigus vulgaris (PV) IgG is reduced in maturated desmosomes and dependent on PKC signaling. We investigated the role of DP-S2849G for loss of cell cohesion mediated by PV-IgG. In cell dissociation assays, expression of green fluorescent protein-tagged DP-S2849G (DP-S2849G-GFP) increased cell cohesion in two different human keratinocyte cell lines and ameliorated loss of cell adhesion induced by pemphigus autoantibodies. Depletion of Dsg3 was inhibited by DP-S2849G-GFP in the cytoskeletal (Triton X-100 insoluble) fraction, and keratin filament retraction, a hallmark of PV, was efficiently blocked similar to treatment with the PKC inhibitor Bim-X. We found that DP is phosphorylated after incubation with PV-IgG in a PKC-dependent manner and that DP-S2849G-GFP expression prevents DP phosphorylation and increases association of PKC-α with PKC scaffold receptor for activated C-kinase 1. Taken together, our data indicate that DP phosphorylation at S2849 represents an important mechanism in pemphigus pathogenesis, which, by reversing Ca(2+) insensitivity, promotes Dsg3 depletion.


Assuntos
Adesão Celular/genética , Desmoplaquinas/genética , Pênfigo/genética , Autoanticorpos/imunologia , Autoantígenos/imunologia , Western Blotting , Adesão Celular/imunologia , Linhagem Celular , Desmogleína 3/metabolismo , Desmoplaquinas/metabolismo , Imunofluorescência , Humanos , Imunoprecipitação , Queratinas/metabolismo , Pênfigo/imunologia , Pênfigo/metabolismo , Mutação Puntual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA