Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 293(39): 14962-14972, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30104413

RESUMO

The genomes of the malaria-causing Plasmodium parasites encode a protein fused of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) and dihydropteroate synthase (DHPS) domains that catalyze sequential reactions in the folate biosynthetic pathway. Whereas higher organisms derive folate from their diet and lack the enzymes for its synthesis, most eubacteria and a number of lower eukaryotes including malaria parasites synthesize tetrahydrofolate via DHPS. Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) HPPK-DHPSs are currently targets of drugs like sulfadoxine (SDX). The SDX effectiveness as an antimalarial drug is increasingly diminished by the rise and spread of drug-resistant mutations. Here, we present the crystal structure of PvHPPK-DHPS in complex with four substrates/analogs, revealing the bifunctional PvHPPK-DHPS architecture in an unprecedented state of enzymatic activation. SDX's effect on HPPK-DHPS is due to 4-amino benzoic acid (pABA) mimicry, and the PvHPPK-DHPS structure sheds light on the SDX-binding cavity, as well as on mutations that effect SDX potency. We mapped five dominant drug resistance mutations in PvHPPK-DHPS: S382A, A383G, K512E/D, A553G, and V585A, most of which occur individually or in clusters proximal to the pABA-binding site. We found that these resistance mutations subtly alter the intricate enzyme/pABA/SDX interactions such that DHPS affinity for pABA is diminished only moderately, but its affinity for SDX is changed substantially. In conclusion, the PvHPPK-DHPS structure rationalizes and unravels the structural bases for SDX resistance mutations and highlights architectural features in HPPK-DHPSs from malaria parasites that can form the basis for developing next-generation anti-folate agents to combat malaria parasites.


Assuntos
Di-Hidropteroato Sintase/química , Difosfotransferases/química , Malária Vivax/tratamento farmacológico , Plasmodium vivax/química , Sulfadoxina/química , Aminoácidos/química , Aminoácidos/genética , Cristalografia por Raios X , Di-Hidropteroato Sintase/genética , Difosfotransferases/genética , Resistência a Medicamentos/genética , Humanos , Malária Vivax/parasitologia , Mutação , Plasmodium falciparum , Plasmodium vivax/genética , Plasmodium vivax/patogenicidade , Sulfadoxina/uso terapêutico , Tetra-Hidrofolatos/química
2.
Biochemistry ; 54(44): 6734-42, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26492157

RESUMO

6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the first reaction in the folate biosynthetic pathway. Comparison of its X-ray and nuclear magnetic resonance structures suggests that the enzyme undergoes significant conformational change upon binding to its substrates, especially in three catalytic loops. Experimental research has shown that even when confined by crystal contacts, loops 2 and 3 remain rather flexible when the enzyme is in its apo form, raising questions about the putative large-scale induced-fit conformational change of HPPK. To investigate the loop dynamics in a crystal-free environment, we performed conventional molecular dynamics simulations of the apo-enzyme at two different temperatures (300 and 350 K). Our simulations show that the crystallographic B-factors considerably underestimate the loop dynamics; multiple conformations of loops 2 and 3, including the open, semi-open, and closed conformations that an enzyme must adopt throughout its catalytic cycle, are all accessible to the apo-enzyme. These results revise our previous view of the functional mechanism of conformational change upon MgATP binding and offer valuable structural insights into the workings of HPPK. In this paper, conformational network analysis and principal component analysis related to the loops are discussed to support the presented conclusions.


Assuntos
Difosfotransferases/química , Escherichia coli/enzimologia , Trifosfato de Adenosina/metabolismo , Cristalografia por Raios X , Difosfotransferases/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Análise de Componente Principal , Conformação Proteica , Estabilidade Proteica , Termodinâmica
3.
Phys Chem Chem Phys ; 16(26): 13052-8, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24853252

RESUMO

Enzyme-substrate interaction plays a critical role in enzymatic reactions, forming the active enzyme-substrate complex, the transition state ready to react. Studying the enzyme-substrate interaction will help in the ultimate molecular-level characterization of the enzymatic transition state that defines the reaction pathway, energetics, and the dynamics. In our initial effort to experimentally investigate the enzyme-substrate interactions and the related conformational fluctuations, we have developed a new approach to manipulate the enzymatic conformation and enzyme-substrate interaction at a single-molecule level by using a combined magnetic tweezers and simultaneous fluorescence resonance energy transfer (FRET) spectroscopic microscopy. By a repetitive pulling-releasing manipulation of a Cy3-Cy5 dye labeled 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) molecule under the conditions with and without enzymatic substrates, we have probed and analyzed the enzymatic conformational dynamics. Our results indicate that the enzyme conformational flexibility can be regulated by enzyme-substrate interactions: (1) enzyme at its conformation-perturbed state has less flexibility when binding substrates, and (2) substrate binding to enzyme significantly changes the enzyme conformational flexibility, an experimental evidence of so called entropy trapping in the enzyme-substrate reactive transition state. Furthermore, our results provide a significant experimental analysis of the folding-binding enzyme-substrate interactions, a dynamic nature of the enzymatic active transition state formation process.


Assuntos
Difosfotransferases/química , Difosfotransferases/ultraestrutura , Transferência Ressonante de Energia de Fluorescência/métodos , Magnetismo/métodos , Micromanipulação/métodos , Microscopia/métodos , Espectrometria de Fluorescência/métodos , Ativação Enzimática , Técnicas de Sonda Molecular , Conformação Proteica , Especificidade por Substrato
4.
Phys Chem Chem Phys ; 15(3): 770-5, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-23085845

RESUMO

The fluorescence resonant energy transfer (FRET) from a donor to an acceptor via transition dipole-dipole interactions decreases the donor's fluorescent lifetime. The donor's fluorescent lifetime decreases as the FRET efficiency increases, following the equation: E(FRET) = 1 - τ(DA)/τ(D), where τ(D) and τ(DA) are the donor fluorescence lifetime without FRET and with FRET. Accordingly, the FRET time trajectories associated with single-molecule conformational dynamics can be recorded by measuring the donor's lifetime fluctuations. In this article, we report our work on the use of a Cy3/Cy5-labeled enzyme, HPPK to demonstrate probing single-molecule conformational dynamics in an enzymatic reaction by measuring single-molecule FRET donor lifetime time trajectories. Compared with single-molecule fluorescence intensity-based FRET measurements, single-molecule lifetime-based FRET measurements are independent of fluorescence intensity. The latter has an advantage in terms of eliminating the analysis background noise from the acceptor fluorescence detection leak through noise, excitation light intensity noise, or light scattering noise due to local environmental factors, for example, in a AFM-tip correlated single-molecule FRET measurements. Furthermore, lifetime-based FRET also supports simultaneous single-molecule fluorescence anisotropy.


Assuntos
Difosfotransferases/química , Transferência Ressonante de Energia de Fluorescência , Carbocianinas/química , Difosfotransferases/metabolismo , Simulação de Dinâmica Molecular , Fótons , Estrutura Terciária de Proteína
5.
J Am Chem Soc ; 133(36): 14389-95, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21823644

RESUMO

The relationship between protein conformational dynamics and enzymatic reactions has been a fundamental focus in modern enzymology. Using single-molecule fluorescence resonance energy transfer (FRET) with a combined statistical data analysis approach, we have identified the intermittently appearing coherence of the enzymatic conformational state from the recorded single-molecule intensity-time trajectories of enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) in catalytic reaction. The coherent conformational state dynamics suggests that the enzymatic catalysis involves a multistep conformational motion along the coordinates of substrate-enzyme complex formation and product releasing, presenting as an extreme dynamic behavior intrinsically related to the time bunching effect that we have reported previously. The coherence frequency, identified by statistical results of the correlation function analysis from single-molecule FRET trajectories, increases with the increasing substrate concentrations. The intermittent coherence in conformational state changes at the enzymatic reaction active site is likely to be common and exist in other conformation regulated enzymatic reactions. Our results of HPPK interaction with substrate support a multiple-conformational state model, being consistent with a complementary conformation selection and induced-fit enzymatic loop-gated conformational change mechanism in substrate-enzyme active complex formation.


Assuntos
Difosfotransferases/química , Trifosfato de Adenosina/química , Catálise , Domínio Catalítico/genética , Difosfotransferases/genética , Transferência Ressonante de Energia de Fluorescência , Conformação Proteica , Pterinas/química , Especificidade por Substrato
6.
Biophys J ; 98(12): 3025-34, 2010 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-20550915

RESUMO

Protein conformational dynamics, despite its significant anharmonicity, has been widely explored by normal mode analysis (NMA) based on atomic or coarse-grained potential functions. To account for the anharmonic aspects of protein dynamics, this study proposes, and has performed, an anharmonic NMA (ANMA) based on the C(alpha)-only elastic network models, which assume elastic interactions between pairs of residues whose C(alpha) atoms or heavy atoms are within a cutoff distance. The key step of ANMA is to sample an anharmonic potential function along the directions of eigenvectors of the lowest normal modes to determine the mean-squared fluctuations along these directions. ANMA was evaluated based on the modeling of anisotropic displacement parameters (ADPs) from a list of 83 high-resolution protein crystal structures. Significant improvement was found in the modeling of ADPs by ANMA compared with standard NMA. Further improvement in the modeling of ADPs is attained if the interactions between a protein and its crystalline environment are taken into account. In addition, this study has determined the optimal cutoff distances for ADP modeling based on elastic network models, and these agree well with the peaks of the statistical distributions of distances between C(alpha) atoms or heavy atoms derived from a large set of protein crystal structures.


Assuntos
Elasticidade , Modelos Moleculares , Proteínas/química , Anisotropia , Cristalografia por Raios X , Difosfotransferases/química , Difosfotransferases/metabolismo , Elétrons , Escherichia coli/enzimologia , Distribuição Normal , Conformação Proteica , Proteínas/metabolismo , Temperatura
7.
Artigo em Inglês | MEDLINE | ID: mdl-20445263

RESUMO

6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the Mg(2+)-dependent transfer of pyrophosphate from ATP to 6-hydroxymethyl-7,8-dihydropterin (HMDP), forming 6-hydroxymethyl-7,8-dihydropterin pyrophosphate, which is a critical step in the de novo folic acid-biosynthesis pathway. Diffraction-quality crystals of HPPK from the medically relevant species Staphylococcus aureus were grown in the presence of ammonium sulfate or sodium malonate and diffracted to better than 1.65 A resolution. The crystals belonged to space group P2(1), with unit-cell parameters a = 36.8, b = 76.6, c = 51.5 A, alpha = gamma = 90.0, beta = 100.2 degrees . The crystals contained two molecules per asymmetric unit, with a volume per protein weight (V(M)) of 2.04 A(3) Da(-1) and an estimated solvent content of 39.6%.


Assuntos
Difosfotransferases/química , Staphylococcus aureus/enzimologia , Cristalização , Cristalografia por Raios X
8.
FEBS J ; 287(15): 3273-3297, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31883412

RESUMO

The clinical efficacy of sulfa drugs as antimalarials has declined owing to the evolution of resistance in Plasmodium falciparum (Pf) malaria parasites. In order to understand the basis of this resistance and to design more effective antimalarials, we have solved 13 structures of the bifunctional enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK)-dihydropteroate synthase (DHPS) from wild-type (WT) P. falciparum and sulfa-resistant mutants, both as apoenzyme and as complexes with pteroate (PTA) and sulfa derivatives. The structures of these complexes show that PTA, which effectively inhibits both the WT and mutants, stays in active sites without steric constraint. In contrast, parts of the sulfa compounds situated outside of the substrate envelope are in the vicinity of the resistance mutations. Steric conflict between compound and mutant residue along with increased flexibility of loop D2 in the mutants can account for the reduced compound binding affinity to the mutants. Kinetic data show that the mutants have enhanced enzyme activity compared with the WT. These PfDHPS structural insights are critical for the design of novel, substrate envelope-compliant DHPS inhibitors that are less vulnerable to resistance mutations. DATABASES: The data reported in this paper have been deposited in the Protein Data Bank, www.wwpdb.org. PDB ID codes: 6JWQ for apoWT; 6JWR, 6JWS, and 6JWT for PTA complexes of WT, A437G (3D7), and V1/S; 6JWU, 6JWV, and 6JWW for STZ-DHP complexes of WT, 3D7, and V1/S; 6JWX, 6JWY, and 6JWZ for SDX-DHP complexes of WT, 3D7, and W2; 6KCK, 6KCL, and 6KCM for Pterin/pHBA complexes of WT, TN1, and W2.


Assuntos
Di-Hidropteroato Sintase/química , Difosfotransferases/química , Resistência a Medicamentos/genética , Malária Falciparum/tratamento farmacológico , Mutação , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Sequência de Aminoácidos , Antimaláricos/farmacologia , Domínio Catalítico , Cristalografia por Raios X , Di-Hidropteroato Sintase/metabolismo , Difosfotransferases/metabolismo , Humanos , Malária Falciparum/parasitologia , Conformação Proteica , Homologia de Sequência
9.
Biochemistry ; 48(2): 302-12, 2009 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-19108643

RESUMO

6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the transfer of pyrophosphate from ATP to 6-hydroxymethyl-7,8-dihydropterin (HP), which follows an ordered bi-bi kinetic mechanism with ATP binding to the enzyme first. HPPK undergoes dramatic conformational changes during its catalytic cycle as revealed by X-ray crystallography, and the conformational changes are essential for the enzymatic catalysis as shown by site-directed mutagenesis and biochemical and crystallographic analysis of the mutants. However, the dynamic properties of the enzyme have not been measured experimentally. Here, we report a (15)N NMR relaxation study of the dynamic properties of Escherichia coli HPPK from the apo form to the binary substrate complex with MgATP (represented by MgAMPCPP, an ATP analogue) to the Michaelis complex (ternary substrate complex) with MgATP (represented by MgAMPCPP) and HP (represented by 7,7-dimethyl-6-hydroxypterin, an HP analogue). The results show that the binding of the nucleotide to HPPK does not cause major changes in the dynamic properties of the enzyme. Whereas enzymes are often more rigid when bound to the ligand or the substrate, the internal mobility of HPPK is not reduced and is even moderately increased in the binary complex, particularly in the catalytic loops. The internal mobility of the catalytic loops is significantly quenched upon the formation of the ternary complex, but some mobility remains. The enhanced motions in the catalytic loops of the binary substrate complex may be required for the assembling of the ternary complex. On the other hand, some degrees of mobility in the catalytic loops of the ternary complex may be required for the optimal stabilization of the transition state, which may need the instantaneous adjustment and alignment of the side-chain positions of catalytic residues. Such dynamic behaviors may be characteristic of bisubstrate enzymes.


Assuntos
Difosfotransferases/metabolismo , Escherichia coli/enzimologia , Conformação Proteica , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Catálise , Cristalografia por Raios X , Difusão , Difosfotransferases/química , Difosfotransferases/isolamento & purificação , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína , Rotação , Especificidade por Substrato/genética , Temperatura
10.
J Phys Chem A ; 113(10): 2025-35, 2009 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-19191740

RESUMO

HPPK (6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase) catalyzes the transfer of pyrophosphate from ATP to HP (6-hydroxymethyl-7,8-dihydropterin). This first reaction in the folate biosynthetic pathway is an important target for potential antimicrobial agents. In this work, the mechanism by which HPPK traps and binds ATP is studied by molecular dynamics (MD)-based methods. Based on the ternary crystal structure of HPPK with an ATP mimic and HP, a complex of ATPMg(2) and HPPK is simulated and found to undergo small conformational changes with conventional MD, as does also conventional MD when started from the apo crystal structure. The introduction of restraints in the MD that serve to move HPPK-ATP from its ternary complex (closed) to apo-like (open) forms shows that throughout the restraint path ATP remains bound to HPPK. That ATP remains bound suggests that there is an ensemble of conformations with ATP bound to HPPK that span the apo to more ligand-bound-like conformations, consistent with the pre-existing equilibrium hypothesis of ligand binding, whereby a ligand can select from and bind to a broad range of protein conformations. In the apo-like conformations, ATPMg(2) remains bound to HPPK through a number of mainly salt-bridge-like interactions between several negatively charged residues and the two magnesium cations. The introduction of a reweight method that enhances the sampling of MD by targeting explicit terms in the force field helps define the interactions that bind ATP to HPPK. Using the reweight method, conformational and center of mass motions of ATP, driven by the breaking and making of hydrogen bonds and salt bridges, are identified that lead to ATP separating from HPPK. An elastic normal mode (ENM) approach to opening the ternary complex and closing the apo crystal structures was carried out. The ENM analysis of the apo structure analysis shows one mode that does have a closing motion of HPPK loops, but the direction does not correlate strongly with the loop motions that are required for forming the ternary complex.


Assuntos
Trifosfato de Adenosina/química , Difosfotransferases/química , Simulação de Dinâmica Molecular , Catálise , Cristalografia por Raios X , Ácido Fólico/biossíntese , Ligação de Hidrogênio , Conformação Proteica , Pterinas/química , Especificidade por Substrato
11.
ACS Nano ; 12(3): 2448-2454, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29462552

RESUMO

Manipulating protein conformations for exploring protein structure-function relationship has shown great promise. Although protein conformational changes under pulling force manipulation have been extensively studied, protein conformation changes under a compressive force have not been explored quantitatively. The latter is even more biologically significant and relevant in revealing protein functions in living cells associated with protein crowdedness, distribution fluctuations, and cell osmotic stress. Here we report our experimental observations on abrupt ruptures of protein native structures under compressive force, demonstrated and studied by single-molecule AFM-FRET spectroscopic nanoscopy. Our results show that the protein ruptures are abrupt and spontaneous events occurred when the compressive force reaches a threshold of 12-75 pN, a force amplitude accessible from thermal fluctuations in a living cell. The abrupt ruptures are sensitive to local environment, likely a general and important pathway of protein unfolding in living cells.


Assuntos
Desdobramento de Proteína , Proteínas/química , Estresse Mecânico , Difosfotransferases/química , Desenho de Equipamento , Transferência Ressonante de Energia de Fluorescência/instrumentação , Proteínas Imobilizadas/química , Microscopia de Força Atômica/instrumentação , Conformação Proteica , Termodinâmica
12.
J Phys Chem B ; 122(6): 1885-1897, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29385349

RESUMO

HPPK (6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase) is a monomeric protein with 158 residues, which undergoes large-scale conformational changes between apo, open, and holo states responding to ligand binding for its function. It has been explored widely as an excellent target for potential antibacterial drug development. However, little is known about how conformational dynamics between the native states influences the substrate recognition and the functionality of enzymatic catalysis. Here, we report a coarse-grained triple-basin structure-based model upon ligand binding to describe such multiple-state system by the molecular dynamics simulation. With our model, we have made theoretical predictions that are in good agreement with the experimental measurements. Our results revealed the intrinsic conformational fluctuations between apo and open states without ligand binding. We found that HPPK can switch to the activated holo state upon the ordered binding of the two ligands (ATP and HP). We uncovered the underlying mechanism by which major induced fit and minor population shift pathways coexist upon ligand binding by quantitative flux analysis. Additionally, we pointed out the structural origin for the conformational changes and identified the key residues as well as contact interactions. We further explored the temperature effect on the conformational distributions and pathway weights. It gave strong support that higher temperatures promote population shift, while the induced fit pathway is always the predominant activation route of the HPPK system. These findings will provide significant insights of the mechanisms of the multistate conformational dynamics of HPPK upon ligand binding.


Assuntos
Trifosfato de Adenosina/metabolismo , Difosfotransferases/metabolismo , Simulação de Dinâmica Molecular , Pterinas/metabolismo , Trifosfato de Adenosina/química , Sítios de Ligação , Difosfotransferases/química , Ligantes , Conformação Proteica , Pterinas/química
13.
J Mol Biol ; 360(3): 644-53, 2006 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-16781731

RESUMO

The enzymes dihydroneopterin aldolase (DHNA) and 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyse two consecutive steps in the biosynthesis of folic acid. Neither of these enzymes has a counterpart in mammals, and they have therefore been suggested as ideal targets for antimicrobial drugs. Some of the enzymes within the folate pathway can occur as bi- or trifunctional complexes in bacteria and parasites, but the way in which bifunctional DHNA-HPPK enzymes are assembled is unclear. Here, we report the determination of the structure at 2.9 A resolution of the DHNA-HPPK (SulD) bifunctional enzyme complex from the respiratory pathogen Streptococcus pneumoniae. In the crystal, DHNA is assembled as a core octamer, with 422 point group symmetry, although the enzyme is active as a tetramer in solution. Individual HPPK monomers are arranged at the ends of the DHNA octamer, making relatively few contacts with the DHNA domain, but more extensive interactions with adjacent HPPK domains. As a result, the structure forms an elongated cylinder, with the HPPK domains forming two tetramers at each end. The active sites of both enzymes face outward, and there is no clear channel between them that could be used for channelling substrates. The HPPK-HPPK interface accounts for about one-third of the total area between adjacent monomers in SulD, and has levels of surface complementarity comparable to that of the DHNA-DHNA interfaces. There is no "linker" polypeptide between DHNA and HPPK, reducing the conformational flexibility of the HPPK domain relative to the DHNA domain. The implications for the organisation of bi- and trifunctional enzyme complexes within the folate biosynthesis pathway are discussed.


Assuntos
Aldeído Liases/química , Difosfotransferases/química , Streptococcus pneumoniae/enzimologia , Aldeído Liases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Cristalografia por Raios X , Difosfotransferases/metabolismo , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
14.
J Biomol Struct Dyn ; 35(16): 3507-3521, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27844507

RESUMO

6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) is a promising antimicrobial target involved in the folate biosynthesis pathway. Although, the results from crystallographic studies of HPPK have attracted a great interest in the design of novel HPPK inhibitors, the mechanism of action of HPPK due to inhibitor binding remains questionable. Recently, mercaptoguanine derivatives were reported to inhibit the pyrophosphoryl transfer mechanism of Staphylococcus aureus HPPK (SaHPPK). The present study is an attempt to understand the SaHPPK-inhibitors binding mechanism and to highlight the key residues that possibly involve in the complex formation. To decipher these questions, we used the state-of-the-art advanced insilico approach such as molecular docking, molecular dynamics (MD), molecular mechanics-generalized Born surface area approach. Domain cross correlation and principle component analysis were applied to the snapshots obtained from MD revealed that the compounds with high binding affinity stabilize the conformational dynamics of SaHPPK. The binding free energy estimation showed that the van der Waals and electrostatic interactions played a vital role for the binding mechanism. Additionally, the predicted binding free energy was in good agreement with the experimental values (R2 = .78). Moreover, the free energy decomposition on per-residue confirms the key residues that significantly contribute to the complex formation. These results are expected to be useful for rational design of novel SaHPPK inhibitors.


Assuntos
Antibacterianos/química , Proteínas de Bactérias/química , Difosfotransferases/química , Guanina/análogos & derivados , Mercaptopurina/análogos & derivados , Staphylococcus aureus/química , Motivos de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Domínio Catalítico , Cristalografia por Raios X , Difosfotransferases/antagonistas & inibidores , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Análise de Componente Principal , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Staphylococcus aureus/enzimologia , Relação Estrutura-Atividade , Especificidade por Substrato , Termodinâmica
15.
J Mol Biol ; 348(3): 655-70, 2005 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-15826662

RESUMO

In Saccharomyces cerevisiae and other fungi, the enzymes dihydroneopterin aldolase, 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) and dihydropteroate synthase (DHPS) are encoded by a polycistronic gene that is translated into a single polypeptide having all three functions. These enzymatic functions are essential to both prokaryotes and lower eukaryotes, and catalyse sequential reactions in folate biosynthesis. Deletion or disruption of either function leads to cell death. These enzymes are absent from mammals and thus make ideal antimicrobial targets. DHPS is currently the target of antifolate therapy for a number of infectious diseases, and its activity is inhibited by sulfonamides and sulfones. These drugs are typically used as part of a synergistic cocktail with the 2,4-diaminopyrimidines that inhibit dihydrofolate reductase. A gene encoding the S.cerevisiae HPPK and DHPS enzymes has been cloned and expressed in Escherichia coli. A complex of the purified bifunctional polypeptide with a pterin monophosphate substrate analogue has been crystallized, and its structure solved by molecular replacement and refined to 2.3A resolution. The polypeptide consists of two structural domains, each of which closely resembles its respective monofunctional bacterial HPPK and DHPS counterpart. The mode of ligand binding is similar to that observed in the bacterial enzymes. The association between the domains within the polypeptide as well as the quaternary association of the polypeptide via its constituent DHPS domains provide insight into the assembly of the trifunctional enzyme in S.cerevisiae and probably other fungal species.


Assuntos
Di-Hidropteroato Sintase/química , Difosfotransferases/química , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Di-Hidropteroato Sintase/genética , Difosfotransferases/genética , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência
16.
Structure ; 12(3): 467-75, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15016362

RESUMO

6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the Mg(2+)-dependent pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin (HP). The reaction follows a bi-bi mechanism with ATP as the first substrate and AMP and HP pyrophosphate (HPPP) as the two products. HPPK is a key enzyme in the folate biosynthetic pathway and is essential for microorganisms but absent from mammals. For the HPPK-catalyzed pyrophosphoryl transfer, a reaction coordinate is constructed on the basis of the thermodynamic and transient kinetic data we reported previously, and the reaction trajectory is mapped out with five three-dimensional structures of the enzyme at various liganded states. The five structures are apo-HPPK (ligand-free enzyme), HPPK.MgATP(analog) (binary complex of HPPK with its first substrate) and HPPK.MgATP(analog).HP (ternary complex of HPPK with both substrates), which we reported previously, and HPPK.AMP.HPPP (ternary complex of HPPK with both product molecules) and HPPK.HPPP (binary complex of HPPK with one product), which we present in this study.


Assuntos
Difosfotransferases/metabolismo , Monofosfato de Adenosina/metabolismo , Cristalografia por Raios X , Difosfotransferases/química , Escherichia coli/enzimologia , Cinética , Modelos Moleculares , Estrutura Terciária de Proteína , Termodinâmica
17.
Structure ; 8(10): 1049-58, 2000 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-11080626

RESUMO

BACKGROUND: Folates are essential for life. Unlike mammals, most microorganisms must synthesize folates de novo. 6-Hydroxymethyl-7, 8-dihydropterin pyrophosphokinase (HPPK) catalyzes pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin (HP), the first reaction in the folate pathway, and therefore is an ideal target for developing novel antimicrobial agents. HPPK from Escherichia coli is a 158-residue thermostable protein that provides a convenient model system for mechanistic studies. Crystal structures have been reported for HPPK without bound ligand, containing an HP analog, and complexed with an HP analog, two Mg(2+) ions, and ATP. RESULTS: We present the 1.25 A crystal structure of HPPK in complex with HP, two Mg(2+) ions, and AMPCPP (an ATP analog that inhibits the enzymatic reaction). This structure demonstrates that the enzyme seals the active center where the reaction occurs. The comparison with unligated HPPK reveals dramatic conformational changes of three flexible loops and many sidechains. The coordination of Mg(2+) ions has been defined and the roles of 26 residues have been derived. CONCLUSIONS: HPPK-HP-MgAMPCPP mimics most closely the natural ternary complex of HPPK and provides details of protein-substrate interactions. The coordination of the two Mg(2+) ions helps create the correct geometry for the one-step reaction of pyrophosphoryl transfer, for which we suggest an in-line single displacement mechanism with some associative character in the transition state. The rigidity of the adenine-binding pocket and hydrogen bonds are responsible for adenosine specificity. The nonconserved residues that interact with the substrate might be responsible for the species-dependent properties of an isozyme.


Assuntos
Difosfotransferases/química , Difosfotransferases/metabolismo , Escherichia coli/enzimologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Difosfotransferases/antagonistas & inibidores , Inibidores Enzimáticos/metabolismo , Ácido Fólico/biossíntese , Ligação de Hidrogênio , Magnésio/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Pterinas/química , Pterinas/metabolismo , Proteínas Recombinantes/química
18.
Structure ; 7(5): 489-96, 1999 May.
Artigo em Inglês | MEDLINE | ID: mdl-10378268

RESUMO

BACKGROUND: Folate cofactors are essential for life. Mammals derive folates from their diet, whereas most microorganisms must synthesize folates de novo. Enzymes of the folate pathway therefore provide ideal targets for the development of antimicrobial agents. 6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the transfer of pyrophosphate from ATP to 6-hydroxymethyl-7,8-dihydropterin (HP), the first reaction in the folate biosynthetic pathway. RESULTS: The crystal structure of HPPK from Escherichia coli has been determined at 1.5 A resolution with a crystallographic R factor of 0.182. The HPPK molecule has a novel three-layered alpha beta alpha fold that creates a valley approximately 26 A long, 10 A wide and 10 A deep. The active center of HPPK is located in the valley and the substrate-binding sites have been identified with the aid of NMR spectroscopy. The HP-binding site is located at one end of the valley, near Asn55, and is sandwiched between two aromatic sidechains. The ATP-binding site is located at the other end of the valley. The adenine base of ATP is positioned near Leu111 and the ribose and the triphosphate extend across and reach the vicinity of HP. CONCLUSIONS: The HPPK structure provides a framework to elucidate structure/function relationships of the enzyme and to analyze mechanisms of pyrophosphoryl transfer. Furthermore, this work may prove useful in the structure-based design of new antimicrobial agents.


Assuntos
Antibacterianos/metabolismo , Difosfotransferases/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Difosfotransferases/metabolismo , Escherichia coli/enzimologia , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
19.
Biochim Biophys Acta ; 1478(2): 289-99, 2000 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-10825540

RESUMO

6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the transfer of pyrophosphate from ATP to 6-hydroxymethyl-7, 8-dihydropterin, the first reaction in the folate biosynthetic pathway. Like other enzymes in the folate pathway, HPPK is an ideal target for development of antimicrobial agents because the enzyme is essential for microorganisms but is absent from humans and animals. Using 3'(2')-o-anthraniloyladenosine 5'-triphosphate as a fluorescent probe, a fluorometric competitive binding assay has been developed for measuring the dissociation constants of various compounds that bind to the ATP site of HPPK. The fluorometric assay has been used to determine the nucleotide specificity and dissect the energetics of the binding of MgATP. The order of affinity of various nucleoside triphosphates for HPPK is MgATP>MgGTP>MgITP>MgXTP approximately MgUTP approximately MgCTP. The affinity of MgATP for HPPK (K(d)=2.6+/-0.06 microM) is 260-fold higher than that of MgGTP and more than 1000-fold higher than those of the other nucleoside triphosphates, indicating that HPPK is highly specific with respect to the base moiety of the nucleotide. The affinity of ATP for HPPK in the presence of Mg(2+) is 15 times that in the absence of Mg(2+), indicating that the metal ion is important for the binding of the nucleotide. Removal of the gamma-phosphate from MgATP reduces its affinity for HPPK by a factor of approximately 21. The affinity of AMP for HPPK is about one third that of ADP and almost the same as that of adenosine. The result suggests that among the three phosphoryl groups of MgATP, the gamma-phosphoryl group is most critical for binding to HPPK and the alpha-phosphoryl group contributes little to the binding of the nucleotide. The affinity of MgATP is 18 times that of MgdATP, indicating that the 2'-hydroxyl group of MgATP is also important for binding. van't Hoff analysis suggests that binding of MgATP is mainly driven by enthalpy at 25 degrees C and the entropy of binding is also in favor of the formation of the HPPK.MgATP complex.


Assuntos
Difosfotransferases/metabolismo , Escherichia coli/enzimologia , Nucleotídeos/metabolismo , Ligação Competitiva , Clonagem Molecular , Difosfotransferases/química , Fluorometria , Expressão Gênica , Estrutura Molecular , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Relação Estrutura-Atividade , Termodinâmica
20.
J Mol Biol ; 287(2): 211-9, 1999 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-10080886

RESUMO

The gene encoding the 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase of Haemophilus influenzae has been cloned and expressed in Escherichia coli. A complex of the purified protein with a substrate analog has been crystallized and its structure solved by multiple anomalous dispersion using phase information obtained from a single crystal of selenomethione-labeled protein. The enzyme folds into a four-stranded antiparallel beta-sheet flanked on one side by two alpha-helices and on the other by three consecutive alpha-helices, giving a novel beta1alpha1beta2beta3alpha2beta4alpha3alpha4alpha5 polypeptide topology. The three-dimensional structure of a binary complex has been refined at 2.1 A resolution. The location of the substrate analog and a sulfate ion gives important insight into the molecular mechanism of the enzyme.


Assuntos
Difosfotransferases/genética , Haemophilus influenzae/enzimologia , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Sítios de Ligação/genética , Varredura Diferencial de Calorimetria , Clonagem Molecular , Cristalografia por Raios X , Difosfotransferases/química , Inibidores Enzimáticos/química , Escherichia coli/genética , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Pterinas/química , Proteínas Recombinantes/genética , Selenometionina/química , Alinhamento de Sequência , Análise de Sequência de DNA , Espectrometria de Fluorescência , Ultracentrifugação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA