Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1009: 1-10, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29218550

RESUMO

Small angle scattering (SAS) is a powerful and versatile tool to elucidate the structure of matter at the nanometer scale. Recently, the technique has seen a tremendous growth of applications in the field of structural molecular biology. Its origins however date back to almost a century ago and even though the methods potential for studying biological macromolecules was realized already early on, it was only during the last two decades that SAS gradually became a major experimental technique for the structural biologist. This rise in popularity and application was driven by the concurrence of different key factors such as the increased accessibility to high quality SAS instruments enabled by the growing number of synchrotron facilities and neutron sources established around the world, the emerging need of the structural biology community to study large multi-domain complexes and flexible systems that are hard to crystalize, and in particular the development and availability of data analysis software together with the overall access to computational resources powerful enough to run them. Today, SAS is an established and widely used tool for structural studies on bio-macromolecules. Given the potential offered by the next generation X-ray and neutron sources as well as the development of new, innovative approaches to collect and analyze solution scattering data, the application of SAS in the field of structural molecular biology will certainly continue to thrive in the years to come.


Assuntos
Biologia Molecular/história , Difração de Nêutrons/história , Espalhamento a Baixo Ângulo , Difração de Raios X/história , História do Século XX , História do Século XXI , Humanos , Biologia Molecular/instrumentação , Biologia Molecular/métodos , Biologia Molecular/tendências , Difração de Nêutrons/instrumentação , Difração de Nêutrons/métodos , Síncrotrons/história , Síncrotrons/instrumentação , Difração de Raios X/instrumentação , Difração de Raios X/métodos
2.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 11): 1262-8, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21041948

RESUMO

The first neutron diffraction data were collected from crystals of myoglobin almost 42 years ago using a step-scan diffractometer with a single detector. Since then, major advances have been made in neutron sources, instrumentation and data collection and analysis, and in biochemistry. Fundamental discoveries about enzyme mechanisms, biological complex structures, protein hydration and H-atom positions have been and continue to be made using neutron diffraction. The promise of neutrons has not changed since the first crystal diffraction data were collected. Today, with the developments of beamlines at spallation neutron sources and the use of the Laue method for data collection, the field of neutrons in structural biology has renewed vitality.


Assuntos
Biologia/história , Difração de Nêutrons/história , Nêutrons , Proteínas/química , Animais , História do Século XIX , História do Século XX , Humanos , Modelos Moleculares , Difração de Nêutrons/instrumentação , Difração de Nêutrons/métodos
3.
Acta Crystallogr D Struct Biol ; 74(Pt 8): 792-799, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30082515

RESUMO

The use of boiled-off liquid nitrogen to maintain protein crystals at 100 K during X-ray data collection has become almost universal. Applying this to neutron protein crystallography offers the opportunity to significantly broaden the scope of biochemical problems that can be addressed, although care must be taken in assuming that direct extrapolation to room temperature is always valid. Here, the history to date of neutron protein cryo-crystallography and the particular problems and solutions associated with the mounting and cryocooling of the larger crystals needed for neutron crystallography are reviewed. Finally, the outlook for further cryogenic neutron studies using existing and future neutron instrumentation is discussed.


Assuntos
Temperatura Baixa , Difração de Nêutrons/métodos , Proteínas/química , Cristalografia , História do Século XX , História do Século XXI , Difração de Nêutrons/história
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA