Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.311
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 571(7766): 546-549, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31292542

RESUMO

Amide bond formation is one of the most important reactions in both chemistry and biology1-4, but there is currently no chemical method of achieving α-peptide ligation in water that tolerates all of the 20 proteinogenic amino acids at the peptide ligation site. The universal genetic code establishes that the biological role of peptides predates life's last universal common ancestor and that peptides played an essential part in the origins of life5-9. The essential role of sulfur in the citric acid cycle, non-ribosomal peptide synthesis and polyketide biosynthesis point towards thioester-dependent peptide ligations preceding RNA-dependent protein synthesis during the evolution of life5,9-13. However, a robust mechanism for aminoacyl thioester formation has not been demonstrated13. Here we report a chemoselective, high-yielding α-aminonitrile ligation that exploits only prebiotically plausible molecules-hydrogen sulfide, thioacetate12,14 and ferricyanide12,14-17 or cyanoacetylene8,14-to yield α-peptides in water. The ligation is extremely selective for α-aminonitrile coupling and tolerates all of the 20 proteinogenic amino acid residues. Two essential features enable peptide ligation in water: the reactivity and pKaH of α-aminonitriles makes them compatible with ligation at neutral pH and N-acylation stabilizes the peptide product and activates the peptide precursor to (biomimetic) N-to-C peptide ligation. Our model unites prebiotic aminonitrile synthesis and biological α-peptides, suggesting that short N-acyl peptide nitriles were plausible substrates during early evolution.


Assuntos
Evolução Química , Nitrilas/química , Nitrilas/síntese química , Origem da Vida , Peptídeos/química , Peptídeos/síntese química , Água/química , Acetileno/análogos & derivados , Acetileno/química , Dipeptídeos/síntese química , Dipeptídeos/química , Ferricianetos/química , Sulfeto de Hidrogênio/química , Concentração de Íons de Hidrogênio , Oxirredução , Compostos de Sulfidrila/química , Sulfetos/química
2.
Chembiochem ; 25(9): e202300837, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38477021

RESUMO

Dipeptides of a new structure based on ß-triazolalanines and (L)-α-amino acids were synthesized and optimal conditions were developed that ensure both chemical and optical purity of the final products. Molecular docking was carried out and possible intermolecular interactions of dipeptides with potential targets were established. Based on these studies, the analgesic property of chosen dipeptides was studied and it was found that some compounds possess revealed antinociceptive activity in the tail-flick test.


Assuntos
Analgésicos , Dipeptídeos , Simulação de Acoplamento Molecular , Triazóis , Analgésicos/química , Analgésicos/farmacologia , Analgésicos/síntese química , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Dipeptídeos/química , Dipeptídeos/síntese química , Dipeptídeos/farmacologia , Animais , Camundongos , Masculino
3.
Bioorg Med Chem ; 110: 117811, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38959684

RESUMO

Ample biologically active peptides have been found, identified and modified for use in drug discovery to date. However, several factors, such as low metabolic stability due to proteolysis and non-specific interactions with multiple off-target molecules, might limit the therapeutic use of peptides. To enhance the stability and/or bioactivity of peptides, the development of "peptidomimetics," which mimick peptide molecules, is considered to be idealistic. Hence, chloroalkene dipeptide isosteres (CADIs) was designed, and their synthetic methods have been developed by us. Briefly, in a CADI an amide bond in peptides is replaced with a chloroalkene structure. CADIs might be superior mimetics of amide bonds because the Van der Waals radii (VDR) and the electronegativity value of a chlorine atom are close to those of the replaced oxygen atom. By a developed method of the "liner synthesis", N-tert-butylsulfonyl protected CADIs can be synthesized via a key reaction involving diastereoselective allylic alkylation using organocopper reagents. On the other hand, by a developed method of the "convergent synthesis", N-fluorenylmethoxycarbonyl (Fmoc)-protected carboxylic acids can be also constructed based on N- and C-terminal analogues from corresponding amino acid starting materials via an Evans syn aldol reaction and the Ichikawa allylcyanate rearrangement reaction involving a [3.3] sigmatropic rearrangement. Notably, CADIs can also be applied for Fmoc-based solid-phase peptide synthesis and therefore introduced into bioactive peptides including as the Arg-Gly-Asp (RGD) peptide and the amyloid ß fragment Lys-Leu-Val-Phe-Phe (KLVFF) peptide, which are correlated with cell attachment and Alzheimer's disease (AD), respectively. These CADI-containing peptidomimetics stabilized the conformation and enhanced the potency of the cyclic RGD peptide and the cyclic KLVFF peptide.


Assuntos
Dipeptídeos , Desenho de Fármacos , Peptidomiméticos , Peptidomiméticos/síntese química , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Dipeptídeos/química , Dipeptídeos/síntese química , Dipeptídeos/farmacologia , Humanos , Alcenos/química , Alcenos/síntese química
4.
Bioorg Med Chem ; 110: 117814, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38981217

RESUMO

Oligonucleotide therapeutics, particularly antisense oligonucleotides (ASOs), have emerged as promising candidates in drug discovery. However, their effective delivery to the target tissues and cells remains a challenge, necessitating the development of suitable drug delivery technologies for ASOs to enable their practical application. In this study, we synthesized a library of chemically modified dipeptide-ASO conjugates using a recent synthetic method based on the Ugi reaction. We then conducted in vitro screening of this library using luciferase-expressing cell lines to identify ligands capable of enhancing ASO activity. Our findings suggest that N-(4-nitrophenoxycarbonyl)glycine may interact with the thiophosphate moiety of the phosphorothioate-modification in ASO. Through our screening efforts, we identified two ligands that modestly reduced luciferase luminescence in a cell type-selective manner. Furthermore, quantification of luciferase mRNA levels revealed that one of these promising dipeptide-ASO conjugates markedly suppressed luciferase RNA levels through its antisense effect in prostate-derived DU-145 cells compared to the ASOs without ligand modification.


Assuntos
Dipeptídeos , Oligonucleotídeos Antissenso , Dipeptídeos/química , Dipeptídeos/síntese química , Dipeptídeos/farmacologia , Humanos , Ligantes , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/síntese química , Oligonucleotídeos Antissenso/farmacologia , Linhagem Celular Tumoral , Estrutura Molecular , Relação Estrutura-Atividade , Luciferases/metabolismo , Luciferases/genética , Relação Dose-Resposta a Droga
5.
J Pept Sci ; 30(7): e3573, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38471735

RESUMO

Advantages like biocompatibility, biodegradability and tunability allowed the exploitation of peptides and peptidomimetics as versatile therapeutic or diagnostic agents. Because of their selectivity towards transmembrane receptors or cell membranes, peptides have also been identified as suitable molecules able to deliver in vivo macromolecules, proteins or nucleic acids. However, after the identification of the homodimer diphenylalanine (FF) as an aggregative motif inside the Aß1-42 polypeptide, short and ultrashort peptides have been studied as building blocks for the fabrication of supramolecular, ordered nanostructures for applications in biotechnological, biomedical and industrial fields. In this perspective, many hybrid molecules that combine FF with other chemical entities have been synthesized and characterized. Two novel hybrid derivatives (tFaF and cFgF), in which the FF homodimer is alternated with the peptide-nucleic acid (PNA) heterodimer "g-c" (guanine-cytosine) or "a-t" (adenine-thymine) and their dimeric forms (tFaF)2 and (cFgF)2 were synthesized. The structural characterization performed by circular dichroism (CD), Fourier transform infrared (FTIR) and fluorescence spectroscopies highlighted the capability of all the FF-PNA derivatives to self-assemble into ß-sheet structures. As a consequence of this supramolecular organization, the resulting aggregates also exhibit optoelectronic properties already reported for other similar nanostructures. This photoemissive behavior is promising for their potential applications in bioimaging.


Assuntos
Ácidos Nucleicos Peptídicos , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/síntese química , Peptídeos/química , Peptídeos/síntese química , Fenilalanina/química , Fenilalanina/análogos & derivados , Dicroísmo Circular , Dipeptídeos/química , Dipeptídeos/síntese química
6.
Arch Pharm (Weinheim) ; 357(5): e2300636, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38332463

RESUMO

Virtual combinatorial libraries are prevalent in drug discovery due to improvements in the prediction of synthetic reactions that can be performed. This has gone hand in hand with the development of virtual screening capabilities to effectively screen the large chemical spaces spanned by exhaustive enumeration of reaction products. In this study, we generated a small-molecule dipeptide mimic library to target proteins binding small peptides. The library was created based on the general idea of peptide synthesis, that is, amino acid mimics were reacted in silico to form the dipeptide mimics, yielding 2,036,819 unique compounds. After docking calculations, two compounds from the library were synthesized and tested against WD repeat-containing protein 5 (WDR5) and histamine receptors H1-H4 to evaluate whether these molecules are viable in assays. The compounds showed the highest potency at the histamine H3 receptor, with Ki values in the two-digit micromolar range.


Assuntos
Dipeptídeos , Bibliotecas de Moléculas Pequenas , Dipeptídeos/química , Dipeptídeos/síntese química , Dipeptídeos/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/farmacologia , Simulação de Acoplamento Molecular , Humanos , Relação Estrutura-Atividade , Receptores Histamínicos/metabolismo , Descoberta de Drogas , Estrutura Molecular
7.
Molecules ; 27(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35209031

RESUMO

In this report, a synthetic protocol for the preparation of phosphinic dipeptides of type 5 is presented. These compounds serve as valuable building blocks for the development of highly potent phosphinopeptidic inhibitors of medicinally relevant Zn-metalloproteases and aspartyl proteases. The proposed method is based on the tandem esterification of α-aminophosphinic and acrylic acids under silylating conditions in order to subsequently participate in a P-Michael reaction. The scope of the transformation was investigated by using a diverse set of readily available acrylic acids and (R)-α-aminophosphinic acids, and high yields were achieved in all cases. In most examples reported herein, the isolation of biologically relevant (R,S)-diastereoisomers became possible by simple crystallization from the crude products, thus enhancing the operational simplicity of the proposed method. Finally, functional groups corresponding to acidic or basic natural amino acids are also compatible with the reaction conditions. Based on the above, we expect that the practicality of the proposed protocol will facilitate the discovery of pharmacologically useful bioactive phosphinic peptides.


Assuntos
Acrilatos/química , Dipeptídeos , Ácidos Fosfínicos/química , Dipeptídeos/síntese química , Dipeptídeos/química , Esterificação
8.
J Am Chem Soc ; 143(27): 10374-10381, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34191506

RESUMO

Allenone has been identified as a highly effective peptide coupling reagent for the first time. The peptide bond was formed with an α-carbonyl vinyl ester as the key intermediate, the formation and subsequent aminolysis of which proceed spontaneously in a racemization-/epimerization-free manner. The allenone coupling reagent not only is effective for the synthesis of simple amides and dipeptides but is also amenable to peptide fragment condensation and solid-phase peptide synthesis (SPPS). The robustness of the allenone-mediated peptide bond formation was showcased incisively by the synthesis of carfilzomib, which involved a rare racemization-/epimerization-free N to C peptide elongation strategy. Furthermore, the successful synthesis of the model difficult peptide ACP (65-74) on a solid support suggested that this method was compatible with SPPS. This method combines the advantages of conventional active esters and coupling reagents, while overcoming the disadvantages of both strategies. Thus, this allenone-mediated peptide bond formation strategy represents a disruptive innovation in peptide synthesis.


Assuntos
Alcenos/química , Dipeptídeos/síntese química , Oligopeptídeos/síntese química , Catálise , Dipeptídeos/química , Ligação de Hidrogênio , Conformação Proteica
9.
Chem Res Toxicol ; 34(11): 2366-2374, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34672520

RESUMO

Emerging evidence has revealed that oxidative damages of DNA correlate with the pathogenesis of some diseases, and numerous investigations have also suggested that supplementation of antioxidants is beneficial for keeping health by rectifying in vivo redox status. Here, we construct antioxidative dipeptides with the Ugi four-component reaction (comprising p-aminobenzyl alcohol, benzaldehyde, or vanillin, a series of antioxidative carboxylic acids and isocyanides as reagents) and then attempt to attach the dipeptides to [60]fullerene by the Bingel reaction. However, this endeavor does not lead to the amelioration of the radical-scavenging property because abilities of fullerenyl dipeptides to trap 2,2'-diphenyl-1-picrylhydrazyl and galvinoxyl radicals are still dependent upon the phenolic hydroxyl group in the dipeptide scaffold rather than upon the fullerenyl group. Alternatively, when the obtained fullerenyl dipeptides are evaluated in a peroxyl radical-induced oxidation of DNA, it is found that introducing a fullerene moiety into dipeptide enables antioxidative effect to be enhanced 20-30% because the fullerene moiety facilitates the corresponding dipeptide to intercalate with DNA strands, and thus, to increase the antioxidative efficacy. Our results suggest that connecting an antioxidative skeleton with the hydrophobic fullerene moiety might lead to a series of novel antioxidant hybrids applied for the inhibition of DNA oxidation.


Assuntos
Antioxidantes/farmacologia , DNA/antagonistas & inibidores , Dipeptídeos/farmacologia , Fulerenos/farmacologia , Antioxidantes/química , Compostos de Bifenilo/antagonistas & inibidores , DNA/metabolismo , Dipeptídeos/síntese química , Dipeptídeos/química , Fulerenos/química , Estrutura Molecular , Oxirredução , Picratos/antagonistas & inibidores
10.
Amino Acids ; 53(3): 407-415, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33599833

RESUMO

The synthesis of purine conjugates with natural amino acids is one of the promising directions in search for novel therapeutic agents, including antimycobacterial agents. The purpose of this study was to synthesize N-(purin-6-yl)dipeptides containing the terminal fragment of (S)-glutamic acid. To obtain the target compounds, two synthetic routes were tested. The first of them is based on coupling of N-(purin-6-yl)-(S)-amino acids to dimethyl (S)-glutamate in the presence of carbodiimide coupling agent followed by the removal of ester groups. However, it turned out that this coupling process was accompanied by racemization of the chiral center of N-(purin-6-yl)-α-amino acids and in all cases led to mixtures of (S,S)- and (R,S)-diastereomers (6:4). Individual (S,S)-diastereomers were obtained using an alternative approach based on the nucleophilic substitution of chlorine in 6-chloropurine or 2-amino-6-chloropurine with corresponding dipeptides as nucleophiles. The enantiomeric purity of the target compounds was confirmed by chiral HPLC. To test the assumption that racemization of the chiral center of N-(purin-6-yl)-α-amino acids occurs with the participation of nitrogen atoms of the imidazole ring via the stage of formation of a chirally labile intermediate, we obtained such structural analogs of N-(purin-6-yl)-(S)-alanine as N-(9-benzylpurin-6-yl)-(S)-alanine and N-(7-deazapurin-6-yl)-(S)-alanine. It was found that coupling of these compounds to dimethyl (S)-glutamate was also accompanied by racemization. This indicates that the imidazole fragment does not play a crucial role in this process. When testing the antimycobacterial activity of some of the obtained compounds, conjugates with moderate activity against the laboratory Mycobacterium tuberculosis H37Rv strain (MIC 3.1-6.25 µg/mL) were identified.


Assuntos
Antibacterianos/síntese química , Dipeptídeos/química , Purinas/química , Aminoácidos/química , Antibacterianos/química , Antibacterianos/farmacologia , Dipeptídeos/síntese química , Dipeptídeos/farmacologia , Estrutura Molecular , Estereoisomerismo
11.
Bioorg Med Chem Lett ; 42: 128044, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33865971

RESUMO

Glutamate carboxypeptidase II (GCP(II)), also known as the prostate-specific membrane antigen (PSMA), is a transmembrane zinc(II) metalloenzyme overexpressed in prostate cancer. Inhibitors of this receptor are used to target molecular imaging agents and molecular radiotherapy agents to prostate cancer and if the affinity of inhibitors for GCP(II)/PSMA could be improved, targeting might also improve. Compounds containing the dipeptide OH-Lys-C(O)-Glu-OH (compound 3), incorporating a urea motif, have high affinity for GCP(II)/PSMA. We hypothesized that substituting the zinc-coordinating urea group for a thiourea group, thus incorporating a sulfur atom, could facilitate stronger binding to zinc(II) within the active site, and thus improve affinity for GCP(II)/PSMA. A structurally analogous urea and thiourea pair (HO-Glu-C(O)-Glu-OH - compound 5 and HO-Glu-C(S)-Glu-OH - compound 6) were synthesized and the inhibitory concentration (IC50) of each compound measured with a cell-based assay, allowing us to refute the hypothesis: the thiourea analogue showed 100-fold weaker binding to PSMA than the urea analogue.


Assuntos
Dipeptídeos/farmacologia , Inibidores Enzimáticos/farmacologia , Glutamato Carboxipeptidase II/antagonistas & inibidores , Ureia/farmacologia , Antígenos de Superfície/metabolismo , Dipeptídeos/síntese química , Dipeptídeos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Glutamato Carboxipeptidase II/metabolismo , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Ureia/análogos & derivados , Ureia/química
12.
Inorg Chem ; 60(5): 2976-2982, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33550804

RESUMO

Based on the supramolecular interaction between vancomycin (Van), an antibiotic glycopeptide, and D-Ala-D-Ala (DADA) dipeptides, a novel class of artificial metalloenzymes was synthesized and characterized. The presence of an iridium(III) ligand at the N-terminus of DADA allowed the use of the metalloenzyme as a catalyst in the asymmetric transfer hydrogenation of cyclic imines. In particular, the type of link between DADA and the metal-chelating moiety was found to be fundamental for inducing asymmetry in the reaction outcome, as highlighted by both computational studies and catalytic results. Using the [IrCp*(m-I)Cl]Cl ⊂ Van complex in 0.1 M CH3COONa buffer at pH 5, a significant 70% (S) e.e. was obtained in the reduction of quinaldine B.


Assuntos
Complexos de Coordenação/química , Dipeptídeos/química , Iminas/química , Vancomicina/química , Catálise , Complexos de Coordenação/síntese química , Dipeptídeos/síntese química , Hidrogenação , Irídio/química , Oxirredução , Vancomicina/síntese química
13.
Bioorg Chem ; 109: 104662, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33626452

RESUMO

Two new series of hitherto unknown dipeptides, containing an electrophilic nitrile or a non-electrophilic 2-amino-1,3,4-oxadiazole moiety were synthesized and evaluated in vitro as Cathepsin K (Cat K) inhibitors. From 14 compounds obtained, the oxadiazole derivatives 10a, 10b, 10e, and 10g acted as enzymatic competitive inhibitors with Ki values between 2.13 and 7.33 µM. Molecular docking calculations were carried out and demonstrated that all inhibitors performed hydrogen bonds with residues from the enzyme active site, such as Asn18. The best inhibitors (10a, 10b, 10g) could also perform these bonds with Cys25, and 10a showed the most stabilizing interaction energy (-134.36 kcal mol-1) with the active cavity. For the first time, derivatives based in 2-amino-1,3,4-oxadiazole scaffolds were evaluated, and the results suggested that this core displays a remarkable potential as a building block for Cat K inhibitors.


Assuntos
Catepsina K/antagonistas & inibidores , Dipeptídeos/farmacologia , Oxidiazóis/farmacologia , Sítios de Ligação , Sobrevivência Celular/efeitos dos fármacos , Simulação por Computador , Dipeptídeos/síntese química , Dipeptídeos/química , Desenho de Fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Modelos Moleculares , Estrutura Molecular , Oxidiazóis/síntese química , Oxidiazóis/química , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
14.
Int J Mol Sci ; 22(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671589

RESUMO

BACKGROUND: Dehydropeptides are analogs of peptides containing at least one conjugate double bond between α,ß-carbon atoms. Its presence provides unique structural properties and reaction centre for chemical modification. In this study, the series of new class of dipeptides containing S-substituted dehydrocysteine with variety of heterocyclic moieties was prepared. The compounds were designed as the building blocks for the construction of artificial metalloenzymes (artzymes). Therefore, the complexing properties of representative compounds were also evaluated. Furthermore, the acknowledged biological activity of natural dehydropeptides was the reason to extend the study for antiproliferative action of against several cancer cell lines. METHODS: The synthetic strategy involves glycyl and phenylalanyl-(Z)-ß-bromodehydroalanine as a substrate in one pot addition/elimination reaction of thiols. After deprotection of N-terminal amino group the compounds with triazole ring were tested as complexones for copper(II) ions using potentiometric titration and spectroscopic techniques (UV-Vis, CD, EPR). Finally, the antiproliferative activity was evaluated by sulforhodamine B assay. RESULTS AND CONCLUSIONS: A simple and efficient procedure for preparation of dipeptides containing S-substituded dehydrocysteine was provided. The peptides containing triazole appeared to be strong complexones of copper(II) ions. Some of the peptides exhibited promising antiproliferative activities against number of cancer cell lines, including cell lines resistant to widely used anticancer agent.


Assuntos
Antineoplásicos/farmacologia , Dipeptídeos/química , Dipeptídeos/farmacologia , Animais , Antineoplásicos/química , Células 3T3 BALB , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cobre/química , Cisteína/química , Dipeptídeos/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Enzimas/química , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Relação Estrutura-Atividade
15.
Molecules ; 26(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34641525

RESUMO

2,5-diketopiperazines (DKPs) are cyclic dipeptides ubiquitously found in nature. In particular, cyclo(Phe-Pro), cyclo(Leu-Pro), and cyclo(Val-Pro) are frequently detected in many microbial cultures. Each of these DKPs has four possible stereoisomers due to the presence of two chirality centers. However, absolute configurations of natural DKPs are often ambiguous due to the lack of a simple, sensitive, and reproducible method for stereochemical assignment. This is an important problem because stereochemistry is a key determinant of biological activity. Here, we report a synthetic DKP library containing all stereoisomers of cyclo(Phe-Pro), cyclo(Leu-Pro), and cyclo(Val-Pro). The library was subjected to spectroscopic characterization using mass spectrometry, NMR, and electronic circular dichroism (ECD). It turned out that ECD can clearly differentiate DKP stereoisomers. Thus, our ECD dataset can serve as a reference for unambiguous stereochemical assignment of cyclo(Phe-Pro), cyclo(Leu-Pro), and cyclo(Val-Pro) samples from natural sources. The DKP library was also subjected to a biological screening using assays for E. coli growth and biofilm formation, which revealed distinct biological effects of cyclo(D-Phe-L-Pro).


Assuntos
Dipeptídeos/química , Peptídeos Cíclicos/química , Dicroísmo Circular , Dicetopiperazinas/química , Dipeptídeos/síntese química , Dipeptídeos/farmacologia , Escherichia coli/efeitos dos fármacos , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/farmacologia , Estereoisomerismo , Relação Estrutura-Atividade
16.
Molecules ; 26(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671801

RESUMO

Several derivatives containing morpholine/piperidine, anilines, and dipeptides as pending moieties were prepared using s-triazine as a scaffold. These compounds were evaluated for their anticancer activity against two human breast cancer cell lines (MCF-7 and MDA-MB-231), a colon cancer cell line (HCT-116), and a non-tumorigenic cell line (HEK 293). Tamoxifen was used as a reference. Animal toxicity tests were carried out in zebrafish embryos. Most of these compounds showed a higher activity against breast cancer than colon cancer. Compound 3a-which contains morpholine, aniline, and glycylglycinate methyl ester-showed a high level of cytotoxicity against MCF-7 cells with IC50 values of less than 1 µM. This compound showed a much lower level of toxicity against the non-tumorigenic HEK-293 cell line, and in the in vivo studies using zebrafish embryos. Furthermore, it induced cell cycle arrest at the G2/M phase, and apoptosis in MCF-7 cells. On the basis of our results, 3a emerges as a potential candidate for further development as a therapeutic drug to treat hormone receptor-positive breast cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Dipeptídeos/farmacologia , Triazinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dipeptídeos/síntese química , Dipeptídeos/química , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Triazinas/síntese química , Triazinas/química , Peixe-Zebra/embriologia
17.
J Am Chem Soc ; 142(18): 8203-8210, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32290655

RESUMO

Chemists have been interested in the N-alkylation of a peptide bond because such a modification alters the conformation of the amide bond, interferes with hydrogen bond formation, and changes other properties of the peptide (e.g., solubility). This modification also opens the door for attaching functional groups for various applications. Nonetheless, the irreversibility of some of these modifications and the harsh conditions required for their removal currently limits the wide utility of this approach. Herein, we report applying a propargyl group for peptide bond modification at diverse junctions, which can be removed under mild and aqueous conditions via treatment with gold(I). Considering the straightforward conditions for both the installation and removal of this group, the propargyl group provides access to the benefits of backbone N-alkylation, while preserving the ability for on-demand depropargylation and full recovery of the native amide bond. This reversible modification was found to improve solid-phase peptide synthesis as demonstrated in the chemical synthesis of NEDD8 protein, without the use of special dipeptide analogues. Also, the reported approach was found to be useful in decaging a broad range of propargyl-based protecting groups used in chemical protein synthesis. Remarkably, reversing the order of the two residues in the propargylation site resulted in rapid amide bond cleavage, which extends the applicability of this approach beyond a removable backbone modification to a cleavable linker. The easy attach/detach of this functionality was also examined in loading and releasing of biotinylated peptides from streptavidin beads.


Assuntos
Dipeptídeos/química , Ouro/química , Proteína NEDD8/síntese química , Dipeptídeos/síntese química , Humanos , Ligação de Hidrogênio , Estrutura Molecular , Proteína NEDD8/química , Água/química
18.
Chemistry ; 26(39): 8541-8545, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32160344

RESUMO

A straightforward multicomponent Knoevenagel-aza-Michael-cyclocondensation reaction involving readily available hydroxamic acid-derived from naturally occurring α-amino acids allows a diversity-oriented synthesis of novel isoxazolidin-5-ones possessing an N-protected α-amino acid pendant with good to high diastereoselectivities thanks to a match effect with a chiral organocatalyst. These diversely substituted heterocycles, easily isolated as a single diastereoisomer, proved to be versatile platforms for the formation of an array of α/ß-dipeptide fragments.


Assuntos
Aminoácidos/química , Dipeptídeos/síntese química , Dipeptídeos/química , Estrutura Molecular , Estereoisomerismo
19.
Chemistry ; 26(14): 3049-3053, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-31961029

RESUMO

A general and powerful method for the stereo-controlled Pd-catalyzed N-allylation of amino acid esters is reported, as a previously largely unsolved synthetic challenge. Employing a new class of tartaric acid-derived C2 -symmetric chiral diphosphane ligands the developed asymmetric amination protocol allows the conversion of various amino acid esters to the N-allylated products with highest levels of enantio- or diastereoselectivity in a fully catalyst-controlled fashion and predictable configuration. Remarkably, the in situ generated catalysts also exhibit outstanding levels of activity (ligand acceleration). The usefulness of the method was demonstrated in the stereo-divergent synthesis of a set of new conformationally defined dipeptide mimetics, which represent new modular building blocks for the development of peptide-inspired bioactive compounds.


Assuntos
Aminoácidos/química , Dipeptídeos/síntese química , Ésteres/química , Paládio/química , Alanina/química , Catálise , Cristalografia por Raios X , Reação de Cicloadição , Ligantes , Modelos Moleculares , Estrutura Molecular , Oxirredução , Prolina/química , Estereoisomerismo
20.
Anal Biochem ; 595: 113612, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32045569

RESUMO

A reliable solution-phase synthesis of the water-soluble dipeptidic fluorogenic transglutaminase substrate Z-Glu(HMC)-Gly-OH is presented. The route started from Z-Glu-OH, which was converted into the corresponding cyclic anhydride. This building block was transformed into the regioisomeric α- and γ-dipeptides. The key step was the esterification of Z-Glu-Gly-OtBu with 4-methylumbelliferone. The final substrate compound was obtained in an acceptable yield and excellent purity without the need of purification by RP-HPLC. The advantage of this acyl donor substrate for the kinetic characterisation of inhibitors and amine-type acyl acceptor substrates is demonstrated by evaluating commercially available or literature-known irreversible inhibitors and the biogenic amines serotonin, histamine and dopamine, respectively.


Assuntos
Aminas/antagonistas & inibidores , Dipeptídeos/farmacologia , Corantes Fluorescentes/farmacologia , Proteínas de Ligação ao GTP/antagonistas & inibidores , Transglutaminases/antagonistas & inibidores , Aminas/metabolismo , Dipeptídeos/síntese química , Dipeptídeos/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Proteínas de Ligação ao GTP/metabolismo , Humanos , Estrutura Molecular , Proteína 2 Glutamina gama-Glutamiltransferase , Soluções , Especificidade por Substrato , Transglutaminases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA