Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.548
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(12): e2322453121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38470919

RESUMO

The phlebotomine sandfly, Lutzomyia longipalpis, a major vector of the Leishmania parasite, uses terpene pheromones to attract conspecifics for mating. Examination of the L. longipalpis genome revealed a putative terpene synthase (TPS), which-upon heterologous expression in, and purification from, Escherichia coli-yielded a functional enzyme. The TPS, termed LlTPS, converted geranyl diphosphate (GPP) into a mixture of monoterpenes with low efficiency, of which ß-ocimene was the major product. (E,E)-farnesyl diphosphate (FPP) principally produced small amounts of (E)-ß-farnesene, while (Z,E)- and (Z,Z)-FPP yielded a mixture of bisabolene isomers. None of these mono- and sesquiterpenes are known volatiles of L. longipalpis. Notably, however, when provided with (E,E,E)-geranylgeranyl diphosphate (GGPP), LlTPS gave sobralene as its major product. This diterpene pheromone is released by certain chemotypes of L. longipalpis, in particular those found in the Ceará state of Brazil. Minor diterpene components were also seen as products of the enzyme that matched those seen in a sandfly pheromone extract.


Assuntos
Diterpenos , Psychodidae , Animais , Feromônios/metabolismo , Psychodidae/metabolismo , Diterpenos/metabolismo , Terpenos , Monoterpenos
2.
Proc Natl Acad Sci U S A ; 121(41): e2408064121, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39365814

RESUMO

Fusicoccadiene synthase from Phomopsis amygdala (PaFS) is a bifunctional terpene synthase. It contains a prenyltransferase (PT) domain that generates geranylgeranyl diphosphate (GGPP) from dimethylallyl diphosphate and three equivalents of isopentenyl diphosphate, and a cyclase domain that converts GGPP into fusicoccadiene, a precursor of the diterpene glycoside Fusicoccin A. The two catalytic domains are connected by a flexible 69-residue linker. The PT domain mediates oligomerization to form predominantly octamers, with cyclase domains randomly splayed out around the PT core. Surprisingly, despite the random positioning of cyclase domains, substrate channeling is operative in catalysis since most of the GGPP generated by the PT remains on the enzyme for cyclization. Here, we demonstrate that covalent linkage of the PT and cyclase domains is not required for GGPP channeling, although covalent linkage may improve channeling efficiency. Moreover, GGPP competition experiments with other diterpene cyclases indicate that the PaFS PT and cyclase domains are preferential partners regardless of whether they are covalently linked or not. The cryoelectron microscopy structure of the 600-kD "linkerless" construct, in which the 69-residue linker is spliced out and replaced with the tripeptide PTQ, reveals that cyclase pairs associate with all four sides of the PT octamer and exhibit fascinating quaternary structural flexibility. These results suggest that optimal substrate channeling is achieved when a cyclase domain associates with the side of the PT octamer, regardless of whether the two domains are covalently linked and regardless of whether this interaction is transient or locked in place.


Assuntos
Alquil e Aril Transferases , Alquil e Aril Transferases/metabolismo , Alquil e Aril Transferases/química , Alquil e Aril Transferases/genética , Especificidade por Substrato , Fosfatos de Poli-Isoprenil/metabolismo , Fosfatos de Poli-Isoprenil/química , Engenharia de Proteínas , Domínio Catalítico , Diterpenos/metabolismo , Diterpenos/química
3.
Plant Cell ; 35(6): 2293-2315, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-36929908

RESUMO

Terpenoids constitute the largest class of plant primary and secondary metabolites with a broad range of biological and ecological functions. They are synthesized from isopentenyl diphosphate and dimethylallyl diphosphate, which in plastids are condensed by geranylgeranyl diphosphate synthases (GGPPSs) to produce GGPP (C20) for diterpene biosynthesis and by geranyl diphosphate synthases (GPPSs) to form GPP (C10) for monoterpene production. Depending on the plant species, unlike homomeric GGPPSs, GPPSs exist as homo- and heteromers, the latter of which contain catalytically inactive GGPPS-homologous small subunits (SSUs) that can interact with GGPPSs. By combining phylogenetic analysis with functional characterization of GGPPS homologs from a wide range of photosynthetic organisms, we investigated how different GPPS architectures have evolved within the GGPPS protein family. Our results reveal that GGPPS gene family expansion and functional divergence began early in nonvascular plants, and that independent parallel evolutionary processes gave rise to homomeric and heteromeric GPPSs. By site-directed mutagenesis and molecular dynamics simulations, we also discovered that Leu-Val/Val-Ala pairs of amino acid residues were pivotal in the functional divergence of homomeric GPPSs and GGPPSs. Overall, our study elucidated an evolutionary path for the formation of GPPSs with different architectures from GGPPSs and uncovered the molecular mechanisms involved in this differentiation.


Assuntos
Dimetilaliltranstransferase , Diterpenos , Farnesiltranstransferase/genética , Farnesiltranstransferase/metabolismo , Filogenia , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/metabolismo , Diterpenos/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(20): e2301013120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155841

RESUMO

Transient receptor potential vanilloid member 1 (TRPV1) is a heat and capsaicin receptor that allows cations to permeate and cause pain. As the molecular basis for temperature sensing, the heat capacity (ΔCp) model [D. E. Clapham, C. Miller, Proc. Natl. Acad. Sci. U.S.A. 108, 19492-19497 (2011).] has been proposed and experimentally supported. Theoretically, heat capacity is proportional to a variance in enthalpy, presumably related to structural fluctuation; however, the fluctuation of TRPV1 has not been directly visualized. In this study, we directly visualized single-molecule structural fluctuations of the TRPV1 channels in a lipid bilayer with the ligands resiniferatoxin (agonist, 1,000 times hotter than capsaicin) and capsazepine (antagonist) by high-speed atomic force microscopy. We observed the structural fluctuations of TRPV1 in an apo state and found that RTX binding enhances structural fluctuations, while CPZ binding suppresses fluctuations. These ligand-dependent differences in structural fluctuation would play a key role in the gating of TRPV1.


Assuntos
Diterpenos , Canais de Potencial de Receptor Transitório , Capsaicina/farmacologia , Capsaicina/metabolismo , Canais de Cátion TRPV/metabolismo , Temperatura Alta , Cátions/metabolismo , Diterpenos/metabolismo
5.
Plant J ; 118(2): 358-372, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38194491

RESUMO

The natural variation of plant-specialized metabolites represents the evolutionary adaptation of plants to their environments. However, the molecular mechanisms that account for the diversification of the metabolic pathways have not been fully clarified. Rice plants resist attacks from pathogens by accumulating diterpenoid phytoalexins. It has been confirmed that the composition of rice phytoalexins exhibits numerous natural variations. Major rice phytoalexins (momilactones and phytocassanes) are accumulated in most cultivars, although oryzalactone is a cultivar-specific compound. Here, we attempted to reveal the evolutionary trajectory of the diversification of phytoalexins by analyzing the oryzalactone biosynthetic gene in Oryza species. The candidate gene, KSLX-OL, which accounts for oryzalactone biosynthesis, was found around the single-nucleotide polymorphisms specific to the oryzalactone-accumulating cultivars in the long arm of chromosome 11. The metabolite analyses in Nicotiana benthamiana and rice plants overexpressing KSLX-OL indicated that KSLX-OL is responsible for the oryzalactone biosynthesis. KSLX-OL is an allele of KSL8 that is involved in the biosynthesis of another diterpenoid phytoalexin, oryzalexin S and is specifically distributed in the AA genome species. KSLX-NOL and KSLX-bar, which encode similar enzymes but are not involved in oryzalactone biosynthesis, were also found in AA genome species. The phylogenetic analyses of KSLXs, KSL8s, and related pseudogenes (KSL9s) indicated that KSLX-OL was generated from a common ancestor with KSL8 and KSL9 via gene duplication, functional differentiation, and gene fusion. The wide distributions of KSLX-OL and KSL8 in AA genome species demonstrate their long-term coexistence beyond species differentiation, suggesting a balancing selection between the genes.


Assuntos
Diterpenos , Oryza , Sesquiterpenos , Oryza/genética , Oryza/metabolismo , Fitoalexinas , Sesquiterpenos/metabolismo , Filogenia , Diterpenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Biochem J ; 481(12): 779-791, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38829839

RESUMO

ent-Kaurene is a biosynthetic intermediate diterpene of phytohormone gibberellins, and is biosynthesized from geranylgeranyl diphosphate via ent-copalyl diphosphate (ent-CDP). The successive cyclization is catalyzed by two distinct diterpene synthases, ent-CDP synthase (ent-CPS) and ent-kaurene synthase (KS). Homologs of these diterpene synthase genes have been reported to be involved in the biosynthesis of specialized-metabolic diterpenoids for defense in several plant species, including rice (Oryza sativa). These diterpene synthases consist of three domains, αßγ domains. Active sites of ent-CPS exist at the interface of ß and γ domain, while those of KS are located within the α domain. We herein carried out domain-deletion experiments using several KSs and KS like enzymes (KSLs) to obtain insights into the roles of domains other than active-site domains. As previously reported in taxadiene synthase, deletion of γ or ßγ domains drastically decreased activities of specialized-metabolic OsKSL5, OsKSL8, OsKSL7 and OsKSL10 in O. sativa. However, unexpectedly, only α domains of several gibberellin-biosynthetic KSs, including OsKS1 in O. sativa, AtKS in Arabidopsis thaliana, TaKS in wheat (Triticum aestivum) and BdKS1 in Brachypodium distachyon, retained their original functions. Additionally, the specialized-metabolic OsKSL4, which is closely related to OsKS1, also functioned without its ßγ domains. Domain-swapping experiments showed that replacing ßγ domains in OsKSL7 with those from other KS/KSLs retained the OsKSL7 activity. Moreover, deletion of ßγ domains of bifunctional PpCPS/KS in moss (Physcomitrella patens) drastically impaired its KS-related activity. Thus, we demonstrate that monofunctional gibberellin-biosynthetic KSs are the unique diterpene synthases that retain their functions without ßγ domains.


Assuntos
Alquil e Aril Transferases , Giberelinas , Oryza , Proteínas de Plantas , Giberelinas/metabolismo , Alquil e Aril Transferases/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/química , Oryza/enzimologia , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Domínio Catalítico , Diterpenos do Tipo Caurano/metabolismo , Diterpenos do Tipo Caurano/química , Arabidopsis/genética , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Diterpenos/metabolismo , Diterpenos/química , Domínios Proteicos , Catálise
7.
J Biol Chem ; 299(6): 104828, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37196769

RESUMO

Capsaicin receptor TRPV1 is a nociceptor for vanilloid molecules, such as capsaicin and resiniferatoxin (RTX). Even though cryo-EM structures of TRPV1 in complex with these molecules are available, how their binding energetically favors the open conformation is not known. Here, we report an approach to control the number of bound RTX molecules (0-4) in functional rat TRPV1. The approach allowed direct measurements of each of the intermediate open states under equilibrium conditions at both macroscopic and single-molecule levels. We found that RTX binding to each of the four subunits contributes virtually the same activation energy, which we estimated to be 1.70 to 1.86 kcal/mol and found to arise predominately from destabilizing the closed conformation. We further showed that sequential bindings of RTX increase open probability without altering single-channel conductance, confirming that there is likely a single open-pore conformation for TRPV1 activated by RTX.


Assuntos
Diterpenos , Canais de Cátion TRPV , Animais , Ratos , Capsaicina/farmacologia , Diterpenos/metabolismo , Canais de Cátion TRPV/metabolismo
8.
Plant J ; 114(5): 1178-1201, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36891828

RESUMO

From the perspectives of pathway evolution, discovery and engineering of plant specialized metabolism, the nature of the biosynthetic routes represents a critical aspect. Classical models depict biosynthesis typically from an end-point angle and as linear, for example, connecting central and specialized metabolism. As the number of functionally elucidated routes increased, the enzymatic foundation of complex plant chemistries became increasingly well understood. The perception of linear pathway models has been severely challenged. With a focus on plant terpenoid specialized metabolism, we review here illustrative examples supporting that plants have evolved complex networks driving chemical diversification. The completion of several diterpene, sesquiterpene and monoterpene routes shows complex formation of scaffolds and their subsequent functionalization. These networks show that branch points, including multiple sub-routes, mean that metabolic grids are the rule rather than the exception. This concept presents significant implications for biotechnological production.


Assuntos
Alquil e Aril Transferases , Diterpenos , Sesquiterpenos , Filogenia , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Diterpenos/metabolismo , Plantas/genética , Plantas/metabolismo , Sesquiterpenos/metabolismo , Terpenos/metabolismo , Proteínas de Plantas/metabolismo
9.
Plant J ; 115(3): 758-771, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37186469

RESUMO

Phytoalexin is the main chemical weapon against pathogens in plants. Rice (Oryza sativa L.) produces a number of phytoalexins to defend against pathogens, most of which belong to the class of diterpenoid phytoalexins. Three biosynthetic gene clusters (BGCs) and a few non-BGC genes are responsible for rice diterpenoid phytoalexin biosynthesis. The corresponding regulatory mechanism of these phytoalexins in response to pathogen challenges still remains unclear. Here we identified a transcription factor, OsWRKY10, which positively regulates rice diterpenoid phytoalexin biosynthesis. Knockout mutants of OsWRKY10 obtained by CRISPR/Cas9 technology are more susceptible to Magnaporthe oryzae infection, while overexpression of OsWRKY10 enhances resistance to rice blast. Further analysis revealed that overexpression of OsWRKY10 increases accumulation of multiple rice diterpenoid phytoalexins and expression of genes in three BGCs and non-BGC genes in response to M. oryzae infection. Knockout of OsWRKY10 impairs upregulation of rice diterpenoid phytoalexin biosynthesis gene expression by blast pathogen and CuCl2 treatment. OsWRKY10 directly binds to the W-boxes or W-box-like elements (WLEs) of rice diterpenoid phytoalexin biosynthesis gene promoters to regulate gene expression. This study identified an extensive regulator (OsWRKY10) with broad transcriptional regulatory effects on rice diterpenoid phytoalexin biosynthesis genes, providing insight into the regulation of chemical defense to improve disease resistance in rice.


Assuntos
Diterpenos , Oryza , Sesquiterpenos , Fitoalexinas , Sesquiterpenos/metabolismo , Diterpenos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima , Resistência à Doença/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas
10.
Plant J ; 113(4): 819-832, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36579923

RESUMO

Rosemary (Salvia rosmarinus) is considered a sacred plant because of its special fragrance and is commonly used in cooking and traditional medicine. Here, we report a high-quality chromosome-level assembly of the S. rosmarinus genome of 1.11 Gb in size; the genome has a scaffold N50 value of 95.5 Mb and contains 40 701 protein-coding genes. In contrast to other diploid Labiataceae, an independent whole-genome duplication event occurred in S. rosmarinus at approximately 15 million years ago. Transcriptomic comparison of two S. rosmarinus cultivars with contrasting carnosic acid (CA) content revealed 842 genes significantly positively associated with CA biosynthesis in S. rosmarinus. Many of these genes have been reported to be involved in CA biosynthesis previously, such as genes involved in the mevalonate/methylerythritol phosphate pathways and CYP71-coding genes. Based on the genomes and these genes, we propose a model of CA biosynthesis in S. rosmarinus. Further, comparative genome analysis of the congeneric species revealed the species-specific evolution of CA biosynthesis genes. The genes encoding diterpene synthase and the cytochrome P450 (CYP450) family of CA synthesis-associated genes form a biosynthetic gene cluster (CPSs-KSLs-CYP76AHs) responsible for the synthesis of leaf and root diterpenoids, which are located on S. rosmarinus chromosomes 1 and 2, respectively. Such clustering is also observed in other sage (Salvia) plants, thus suggesting that genes involved in diterpenoid synthesis are conserved in the Labiataceae family. These findings provide new insights into the synthesis of aromatic terpenoids and their regulation.


Assuntos
Diterpenos , Rosmarinus , Salvia , Rosmarinus/genética , Rosmarinus/metabolismo , Salvia/genética , Salvia/metabolismo , Abietanos/metabolismo , Diterpenos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Cromossomos
11.
BMC Genomics ; 25(1): 618, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38890562

RESUMO

Cyathus olla, belonging to the genus Cyathus within the order Agaricales, is renowned for its bird's nest-like fruiting bodies and has been utilized in folk medicine. However, its genome remains poorly understood. To investigate genomic diversity within the genus Cyathus and elucidate biosynthetic pathways for medicinal compounds, we generated a high-quality genome assembly of C. olla with fourteen chromosomes. The comparative genome analysis revealed variations in both genomes and specific functional genes within the genus Cyathus. Phylogenomic and gene family variation analyses provided insights into evolutionary divergence, as well as genome expansion and contraction in individual Cyathus species and 36 typical Basidiomycota. Furthermore, analysis of LTR-RT and Ka/Ks revealed apparent whole-genome duplication (WGD) events its genome. Through genome mining and metabolite profiling, we identified the biosynthetic gene cluster (BGC) for cyathane diterpenes from C. olla. Furthermore, we predicted 32 BGCs, containing 41 core genes, involved in other bioactive metabolites. These findings represent a valuable genomic resource that will enhance our understanding of Cyathus species genetic diversity. The genome analysis of C. olla provides insights into the biosynthesis of medicinal compounds and establishes a fundamental basis for future investigations into the genetic basis of chemodiversity in this significant medicinal fungus.


Assuntos
Genoma Fúngico , Família Multigênica , Filogenia , Vias Biossintéticas/genética , Agaricales/genética , Agaricales/metabolismo , Diterpenos/metabolismo , Genômica , Metaboloma
12.
Nat Prod Rep ; 41(7): 1152-1179, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38482919

RESUMO

Covering: up to the end of 2023Cephalotane diterpenoids are a unique class of natural products exclusive to the genus Cephalotaxus, featuring a rigid 7,6,5,6-fused tetracyclic architecture. The study of cephalotanes dates back to the 1970s, when harringtonolide (1), a Cephalotaxus troponoid with a peculiar norditerpenoid carbon skeleton, was first discovered. In recent years, prototype C20 diterpenoids proposed as cephalotane were disclosed, which triggered intense studies on this diterpenoid family. To date, a cumulative total of 105 cephalotane diterpenoids with great structural diversity and biological importance have been isolated. In addition, significant advances have been made in the field of total synthesis and biosynthesis of cephalotanes in recent years. This review provides a complete overview of the chemical structures, bioactivities, biosynthetic aspects, and completed total synthesis of all the isolated cephalotane diterpenoids, which will help guide future research on this class of compounds.


Assuntos
Produtos Biológicos , Diterpenos , Diterpenos/química , Diterpenos/farmacologia , Diterpenos/metabolismo , Estrutura Molecular , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/metabolismo , Cephalotaxus/química , Cephalotaxus/metabolismo
13.
Planta ; 259(4): 87, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38460012

RESUMO

MAIN CONCLUSION: Protein modeling, carbocation docking, and molecular dynamics along with structure-based mutability landscapes provided insight into taxadiene synthase catalysis (first step of the anticancer Taxol biosynthesis), protein structure-function correlations, and promiscuity. Plant terpenes belong to one of the largest and most diverse classes of natural products. This diversity is driven by the terpene synthase enzyme family which comprises numerous different synthases, several of which are promiscuous. Taxadiene synthase (TXS) is a class I diterpene synthase that catalyzes the first step in the biosynthesis pathway of the diterpene Taxol, an anticancer natural product produced by the Taxus plant. Exploring the molecular basis of TXS catalysis and its promiscuous potential garnered interest as a necessary means for understanding enzyme evolution and engineering possibilities to improve Taxol biosynthesis. A catalytically active closed conformation TXS model was designed using the artificial intelligence system, AlphaFold, accompanied by docking and molecular dynamics simulations. In addition, a mutability landscape of TXS including 14 residues was created to probe for structure-function relations. The mutability landscape revealed no mutants with improved catalytic activity compared to wild-type TXS. However, mutations of residues V584, Q609, V610, and Y688 showed high degree of promiscuity producing cembranoid-type and/or verticillene-type major products instead of taxanes. Mechanistic insights into V610F, V584M, Q609A, and Y688C mutants compared to the wild type revealed the trigger(s) for product profile change. Several mutants spanning residues V584, Q609, Y688, Y762, Q770, and F834 increased production of taxa-4(20),11(12)-diene which is a more favorable substrate for Taxol production compared to taxa-4(5),11(12)-diene. Finally, molecular dynamics simulations of the TXS reaction cascade revealed residues involved in ionization, carbocation stabilization, and cyclization ushering deeper understanding of the enzyme catalysis mechanism.


Assuntos
Diterpenos , Isomerases , Simulação de Dinâmica Molecular , Inteligência Artificial , Paclitaxel , Diterpenos/metabolismo , Catálise
14.
Metab Eng ; 83: 183-192, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631459

RESUMO

Monoterpenes and monoterpenoids such as (S)-limonene and geraniol are valuable chemicals with a wide range of applications, including cosmetics, pharmaceuticals, and biofuels. Saccharomyces cerevisiae has proven to be an effective host to produce various terpenes and terpenoids. (S)-limonene and geraniol are produced from geranyl pyrophosphate (GPP) through the enzymatic actions of limonene synthase (LS) and geraniol synthase (GES), respectively. However, a major hurdle in their production arises from the dual functionality of the Erg20, a farnesyl pyrophosphate (FPP) synthase, responsible for generating GPP. Erg20 not only synthesizes GPP by condensing isopentenyl pyrophosphate (IPP) with dimethylallyl pyrophosphate but also catalyzes further condensation of IPP with GPP to produce FPP. In this study, we have tackled this issue by harnessing previously developed Erg20 mutants, Erg20K197G (Erg20G) and Erg20F96W, N127W (Erg20WW), which enhance GPP accumulation. Through a combination of these mutants, we generated a novel Erg20WWG mutant with over four times higher GPP accumulating capability than Erg20WW, as observed through geraniol production levels. The Erg20WWG mutant was fused to the LS from Mentha spicata or the GES from Catharanthus roseus for efficient conversion of GPP to (S)-limonene and geraniol, respectively. Further improvements were achieved by localizing the entire mevalonate pathway and the Erg20WWG-fused enzymes in peroxisomes, while simultaneously downregulating the essential ERG20 gene using the glucose-sensing HXT1 promoter. In the case of (S)-limonene production, additional Erg20WWG-LS was expressed in the cytosol. As a result, the final strains produced 1063 mg/L of (S)-limonene and 1234 mg/L of geraniol by fed-batch biphasic fermentations with ethanol feeding. The newly identified Erg20WWG mutant opens doors for the efficient production of various other GPP-derived chemicals including monoterpene derivatives and cannabinoids.


Assuntos
Monoterpenos Acíclicos , Limoneno , Saccharomyces cerevisiae , Terpenos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Limoneno/metabolismo , Terpenos/metabolismo , Monoterpenos Acíclicos/metabolismo , Engenharia Metabólica , Mutação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Diterpenos/metabolismo , Difosfatos
15.
Plant Physiol ; 192(2): 1338-1358, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36896653

RESUMO

Two major groups of specialized metabolites in maize (Zea mays), termed kauralexins and dolabralexins, serve as known or predicted diterpenoid defenses against pathogens, herbivores, and other environmental stressors. To consider the physiological roles of the recently discovered dolabralexin pathway, we examined dolabralexin structural diversity, tissue-specificity, and stress-elicited production in a defined biosynthetic pathway mutant. Metabolomics analyses support a larger number of dolabralexin pathway products than previously known. We identified dolabradienol as a previously undetected pathway metabolite and characterized its enzymatic production. Transcript and metabolite profiling showed that dolabralexin biosynthesis and accumulation predominantly occur in primary roots and show quantitative variation across genetically diverse inbred lines. Generation and analysis of CRISPR-Cas9-derived loss-of-function Kaurene Synthase-Like 4 (Zmksl4) mutants demonstrated dolabralexin production deficiency, thus supporting ZmKSL4 as the diterpene synthase responsible for the conversion of geranylgeranyl pyrophosphate precursors into dolabradiene and downstream pathway products. Zmksl4 mutants further display altered root-to-shoot ratios and root architecture in response to water deficit. Collectively, these results demonstrate dolabralexin biosynthesis via ZmKSL4 as a committed pathway node biochemically separating kauralexin and dolabralexin metabolism, and suggest an interactive role of maize dolabralexins in plant vigor during abiotic stress.


Assuntos
Diterpenos , Zea mays , Zea mays/metabolismo , Diterpenos/metabolismo , Vias Biossintéticas , Metabolismo dos Lipídeos
16.
Plant Cell Environ ; 47(4): 1300-1318, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38221803

RESUMO

Plants synthesize abundant terpenes through glandular trichomes (GTs), thereby protecting themselves from environmental stresses and increasing the economic value in some medicinal plants. However, the potential mechanisms for simultaneously regulating terpenes synthesis and GTs development remain unclear. Here, we showed that terpenes in Conyza blinii could be synthesized through capitate GTs. By treating with appropriate intensity of UV-B, the density of capitate GTs and diterpene content can be increased. Through analyzing corresponding transcriptome, we identified a MYB transcription factor CbMYB108 as a positive regulator of both diterpene synthesis and capitate GT density. Transiently overexpressing/silencing CbMYB108 on C. blinii leaves could increase diterpene synthesis and capitate GT density. Further verification showed that CbMYB108 upregulated CbDXS and CbGGPPS expression in diterpene synthesis pathway. Moreover, CbMYB108 could also upregulated the expression of CbTTG1, key WD40 protein confirmed in this study to promote GT development, rather than through interaction between CbMYB108 and CbTTG1 proteins. Thus, results showed that the UV-B-induced CbMYB108 owned dual-function of simultaneously improving diterpene synthesis and GT development. Our research lays a theoretical foundation for cultivating C. blinii with high terpene content, and broadens the understanding of the integrated mechanism on terpene synthesis and GT development in plants.


Assuntos
Conyza , Diterpenos , Conyza/metabolismo , Tricomas/metabolismo , Terpenos/metabolismo , Diterpenos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
J Exp Bot ; 75(11): 3431-3451, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38520311

RESUMO

Labdane-related diterpenoids (LRDs), a subgroup of terpenoids, exhibit structural diversity and significant commercial and pharmacological potential. LRDs share the characteristic decalin-labdanic core structure that derives from the cycloisomerization of geranylgeranyl diphosphate (GGPP). Labdanes derive their name from the oleoresin known as 'Labdanum', 'Ladano', or 'Aladano', used since ancient Greek times. Acetylated labdanes, rarely identified in plants, are associated with enhanced biological activities. Chemical analysis of Cistus creticus subsp. creticus revealed labda-7,13(E)-dien-15-yl acetate and labda-7,13(E)-dien-15-ol as major constituents. In addition, novel labdanes such as cis-abienol, neoabienol, ent-copalol, and one as yet unidentified labdane-type diterpenoid were detected for the first time. These compounds exhibit developmental regulation, with higher accumulation observed in young leaves. Using RNA-sequencing (RNA-seq) analysis of young leaf trichomes, it was possible to identify, clone, and eventually functionally characterize labdane-type diterpenoid synthase (diTPS) genes, encoding proteins responsible for the production of labda-7,13(E)-dien-15-yl diphosphate (endo-7,13-CPP), labda-7,13(E)-dien-15-yl acetate, and labda-13(E)-ene-8α-ol-15-yl acetate. Moreover, the reconstitution of labda-7,13(E)-dien-15-yl acetate and labda-13(E)-ene-8α-ol-15-yl acetate production in yeast is presented. Finally, the accumulation of LRDs in different plant tissues showed a correlation with the expression profiles of the corresponding genes.


Assuntos
Vias Biossintéticas , Cistus , Diterpenos , Folhas de Planta , Tricomas , Diterpenos/metabolismo , Tricomas/metabolismo , Tricomas/genética , Folhas de Planta/metabolismo , Folhas de Planta/genética , Cistus/genética , Cistus/metabolismo , Transcriptoma , Acetilação , Perfilação da Expressão Gênica
18.
Plant Cell ; 33(2): 290-305, 2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33793769

RESUMO

Plants can contain biosynthetic gene clusters (BGCs) that nominally resemble those found in microbes. However, while horizontal gene transmission is often observed in microbes, plants are limited to vertical gene transmission, implying that their BGCs may exhibit distinct inheritance patterns. Rice (Oryza sativa) contains two unlinked BGCs involved in diterpenoid phytoalexin metabolism, with one clearly required for momilactone biosynthesis, while the other is associated with production of phytocassanes. Here, in the process of elucidating momilactone biosynthesis, genetic evidence was found demonstrating a role for a cytochrome P450 (CYP) from the other "phytocassane" BGC. This CYP76M8 acts after the CYP99A2/3 from the "momilactone" BGC, producing a hemiacetal intermediate that is oxidized to the eponymous lactone by a short-chain alcohol dehydrogenase also from this BGC. Thus, the "momilactone" BGC is not only incomplete, but also fractured by the need for CYP76M8 to act in between steps catalyzed by enzymes from this BGC. Moreover, as supported by similar activity observed with orthologs from the momilactone-producing wild-rice species Oryza punctata, the presence of CYP76M8 in the other "phytocassane" BGC indicates interdependent evolution of these two BGCs, highlighting the distinct nature of BGC assembly in plants.


Assuntos
Evolução Biológica , Vias Biossintéticas/genética , Diterpenos/metabolismo , Família Multigênica , Oryza/genética , Diterpenos/química , Regulação da Expressão Gênica de Plantas , Oxirredução , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
Plant Cell ; 33(5): 1748-1770, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33561278

RESUMO

The native diploid tobacco Nicotiana attenuata produces abundant, potent anti-herbivore defense metabolites known as 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs) whose glycosylation and malonylation biosynthetic steps are regulated by jasmonate signaling. To characterize the biosynthetic pathway of HGL-DTGs, we conducted a genome-wide analysis of uridine diphosphate glycosyltransferases (UGTs) and identified 107 family-1 UGT members. The transcript levels of three UGTs were highly correlated with the transcript levels two key HGL-DTG biosynthetic genes: geranylgeranyl diphosphate synthase (NaGGPPS) and geranyllinalool synthase (NaGLS). NaGLS's role in HGL-DTG biosynthesis was confirmed by virus-induced gene silencing. Silencing the Uridine diphosphate (UDP)-rhamnosyltransferase gene UGT91T1 demonstrated its role in the rhamnosylation of HGL-DTGs. In vitro enzyme assays revealed that UGT74P3 and UGT74P4 use UDP-glucose for the glucosylation of 17-hydroxygeranyllinalool (17-HGL) to lyciumoside I. Plants with stable silencing of UGT74P3 and UGT74P5 were severely developmentally deformed, pointing to a phytotoxic effect of the aglycone. The application of synthetic 17-HGL and silencing of the UGTs in HGL-DTG-free plants confirmed this phytotoxic effect. Feeding assays with tobacco hornworm (Manduca sexta) larvae revealed the defensive functions of the glucosylation and rhamnosylation steps in HGL-DTG biosynthesis. Glucosylation of 17-HGL is therefore a critical step that contributes to the resulting metabolites' defensive function and solves the autotoxicity problem of this potent chemical defense.


Assuntos
Monoterpenos Acíclicos/metabolismo , Diterpenos/metabolismo , Glicosídeos/metabolismo , Nicotiana/metabolismo , Monoterpenos Acíclicos/química , Animais , Vias Biossintéticas , Inativação Gênica , Glicosilação , Glicosiltransferases/metabolismo , Herbivoria , Larva/fisiologia , Manduca/fisiologia , Metabolômica , Necrose , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes/metabolismo
20.
Microb Cell Fact ; 23(1): 241, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242505

RESUMO

BACKGROUND: Metabolic engineering enables the sustainable and cost-efficient production of complex chemicals. Efficient production of terpenes in Saccharomyces cerevisiae can be achieved by recruiting an intermediate of the mevalonate pathway. The present study aimed to evaluate the engineering strategies of S. cerevisiae for the production of taxadiene, a precursor of taxol, an antineoplastic drug. RESULT: SCIGS22a, a previously engineered strain with modifications in the mevalonate pathway (MVA), was used as a background strain. This strain was engineered to enable a high flux towards farnesyl diphosphate (FPP) and the availability of NADPH. The strain MVA was generated from SCIGS22a by overexpressing all mevalonate pathway genes. Combining the background strains with 16 different episomal plasmids, which included the combination of 4 genes: tHMGR (3-hydroxy-3-methylglutaryl-CoA reductase), ERG20 (farnesyl pyrophosphate synthase), GGPPS (geranyl diphosphate synthase) and TS (taxadiene synthase) resulted in the highest taxadiene production in S. cerevisiae of 528 mg/L. CONCLUSION: Our study highlights the critical role of pathway balance in metabolic engineering, mainly when dealing with toxic molecules like taxadiene. We achieved significant improvements in taxadiene production by employing a combinatorial approach and focusing on balancing the downstream and upstream pathways. These findings emphasize the importance of minor gene expression modification levels to achieve a well-balanced pathway, ultimately leading to enhanced taxadiene accumulation.


Assuntos
Engenharia Metabólica , Ácido Mevalônico , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Engenharia Metabólica/métodos , Ácido Mevalônico/metabolismo , Alcenos/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Diterpenos/metabolismo , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , NADP/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sesquiterpenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA