Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 549
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(42): e2406009121, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39388267

RESUMO

Glucocerebrosidase (GCase) is implicated in both a rare, monogenic disorder (Gaucher disease, GD) and a common, multifactorial condition (Parkinson's disease, PD); hence, it is an urgent therapeutic target. To identify correctors of severe protein misfolding and trafficking obstruction manifested by the pathogenic L444P-variant of GCase, we developed a suite of quantitative, high-throughput, cell-based assays. First, we labeled GCase with a small proluminescent HiBiT peptide reporter tag, enabling quantitation of protein stabilization in cells while faithfully maintaining target biology. TALEN-based gene editing allowed for stable integration of a single HiBiT-GBA1 transgene into an intragenic safe-harbor locus in GBA1-knockout H4 (neuroglioma) cells. This GD cell model was amenable to lead discovery via titration-based quantitative high-throughput screening and lead optimization via structure-activity relationships. A primary screen of 10,779 compounds from the NCATS bioactive collections identified 140 stabilizers of HiBiT-GCase-L444P, including both pharmacological chaperones (ambroxol and noninhibitory chaperone NCGC326) and proteostasis regulators (panobinostat, trans-ISRIB, and pladienolide B). Two complementary high-content imaging-based assays were deployed to triage hits: The fluorescence-quenched substrate LysoFix-GBA captured functional lysosomal GCase activity, while an immunofluorescence assay featuring antibody hGCase-1/23 directly visualized GCase lysosomal translocation. NCGC326 was active in both secondary assays and completely reversed pathological glucosylsphingosine accumulation. Finally, we tested the concept of combination therapy by demonstrating synergistic actions of NCGC326 with proteostasis regulators in enhancing GCase-L444P levels. Looking forward, these physiologically relevant assays can facilitate the identification, pharmacological validation, and medicinal chemistry optimization of small molecules targeting GCase, ultimately leading to a viable therapeutic for GD and PD.


Assuntos
Doença de Gaucher , Glucosilceramidase , Ensaios de Triagem em Larga Escala , Doença de Parkinson , Dobramento de Proteína , Glucosilceramidase/metabolismo , Glucosilceramidase/genética , Humanos , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Doença de Gaucher/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Ensaios de Triagem em Larga Escala/métodos , Dobramento de Proteína/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Linhagem Celular Tumoral
2.
Proc Natl Acad Sci U S A ; 121(34): e2320257121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39150784

RESUMO

Lysosomal degradation pathways coordinate the clearance of superfluous and damaged cellular components. Compromised lysosomal degradation is a hallmark of many degenerative diseases, including lysosomal storage diseases (LSDs), which are caused by loss-of-function mutations within both alleles of a lysosomal hydrolase, leading to lysosomal substrate accumulation. Gaucher's disease, characterized by <15% of normal glucocerebrosidase function, is the most common LSD and is a prominent risk factor for developing Parkinson's disease. Here, we show that either of two structurally distinct small molecules that modulate PIKfyve activity, identified in a high-throughput cellular lipid droplet clearance screen, can improve glucocerebrosidase function in Gaucher patient-derived fibroblasts through an MiT/TFE transcription factor that promotes lysosomal gene translation. An integrated stress response (ISR) antagonist used in combination with a PIKfyve modulator further improves cellular glucocerebrosidase activity, likely because ISR signaling appears to also be slightly activated by treatment by either small molecule at the higher doses employed. This strategy of combining a PIKfyve modulator with an ISR inhibitor improves mutant lysosomal hydrolase function in cellular models of additional LSD.


Assuntos
Fibroblastos , Glucosilceramidase , Doenças por Armazenamento dos Lisossomos , Lisossomos , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Glucosilceramidase/metabolismo , Glucosilceramidase/genética , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/metabolismo , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Doença de Gaucher/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia
3.
Cell ; 146(1): 37-52, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21700325

RESUMO

Parkinson's disease (PD), an adult neurodegenerative disorder, has been clinically linked to the lysosomal storage disorder Gaucher disease (GD), but the mechanistic connection is not known. Here, we show that functional loss of GD-linked glucocerebrosidase (GCase) in primary cultures or human iPS neurons compromises lysosomal protein degradation, causes accumulation of α-synuclein (α-syn), and results in neurotoxicity through aggregation-dependent mechanisms. Glucosylceramide (GlcCer), the GCase substrate, directly influenced amyloid formation of purified α-syn by stabilizing soluble oligomeric intermediates. We further demonstrate that α-syn inhibits the lysosomal activity of normal GCase in neurons and idiopathic PD brain, suggesting that GCase depletion contributes to the pathogenesis of sporadic synucleinopathies. These findings suggest that the bidirectional effect of α-syn and GCase forms a positive feedback loop that may lead to a self-propagating disease. Therefore, improved targeting of GCase to lysosomes may represent a specific therapeutic approach for PD and other synucleinopathies.


Assuntos
Doença de Gaucher/metabolismo , Glucosilceramidase/metabolismo , alfa-Sinucleína/metabolismo , Animais , Encéfalo/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Retroalimentação Fisiológica , Doença de Gaucher/patologia , Glucosilceramidas/metabolismo , Humanos , Lisossomos/metabolismo , Camundongos , Neurônios/metabolismo
4.
PLoS Genet ; 19(12): e1011063, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38127816

RESUMO

Mutations in the GBA1 gene cause the lysosomal storage disorder Gaucher disease (GD) and are the greatest known genetic risk factors for Parkinson's disease (PD). Communication between the gut and brain and immune dysregulation are increasingly being implicated in neurodegenerative disorders such as PD. Here, we show that flies lacking the Gba1b gene, the main fly orthologue of GBA1, display widespread NF-kB signalling activation, including gut inflammation, and brain glial activation. We also demonstrate intestinal autophagic defects, gut dysfunction, and microbiome dysbiosis. Remarkably, modulating the microbiome of Gba1b knockout flies, by raising them under germ-free conditions, partially ameliorates lifespan, locomotor and immune phenotypes. Moreover, we show that modulation of the immune deficiency (IMD) pathway is detrimental to the survival of Gba1 deficient flies. We also reveal that direct stimulation of autophagy by rapamycin treatment achieves similar benefits to germ-free conditions independent of gut bacterial load. Consistent with this, we show that pharmacologically blocking autophagosomal-lysosomal fusion, mimicking the autophagy defects of Gba1 depleted cells, is sufficient to stimulate intestinal immune activation. Overall, our data elucidate a mechanism whereby an altered microbiome, coupled with defects in autophagy, drive chronic activation of NF-kB signaling in a Gba1 loss-of-function model. It also highlights that elimination of the microbiota or stimulation of autophagy to remove immune mediators, rather than prolonged immunosuppression, may represent effective therapeutic avenues for GBA1-associated disorders.


Assuntos
Microbioma Gastrointestinal , Doença de Gaucher , Doença de Parkinson , Animais , Doença de Gaucher/genética , Doença de Gaucher/metabolismo , Glucosilceramidase/genética , Drosophila/genética , Drosophila/metabolismo , Microbioma Gastrointestinal/genética , NF-kappa B/genética , Disbiose/genética , Doença de Parkinson/genética , Autofagia/genética
5.
Traffic ; 24(7): 254-269, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37198709

RESUMO

Pseudophosphatases are catalytically inactive but share sequence and structural similarities with classical phosphatases. STYXL1 is a pseudophosphatase that belongs to the family of dual-specificity phosphatases and is known to regulate stress granule formation, neurite formation and apoptosis in different cell types. However, the role of STYXL1 in regulating cellular trafficking or the lysosome function has not been elucidated. Here, we show that the knockdown of STYXL1 enhances the trafficking of ß-glucocerebrosidase (ß-GC) and its lysosomal activity in HeLa cells. Importantly, the STYXL1-depleted cells display enhanced distribution of endoplasmic reticulum (ER), late endosome and lysosome compartments. Further, knockdown of STYXL1 causes the nuclear translocation of unfolded protein response (UPR) and lysosomal biogenesis transcription factors. However, the upregulated ß-GC activity in the lysosomes is independent of TFEB/TFE3 nuclear localization in STYXL1 knockdown cells. The treatment of STYXL1 knockdown cells with 4-PBA (ER stress attenuator) significantly reduces the ß-GC activity equivalent to control cells but not additive with thapsigargin, an ER stress activator. Additionally, STYXL1-depleted cells show the enhanced contact of lysosomes with ER, possibly via increased UPR. The depletion of STYXL1 in human primary fibroblasts derived from Gaucher patients showed moderately enhanced lysosomal enzyme activity. Overall, these studies illustrated the unique role of pseudophosphatase STYXL1 in modulating the lysosome function both in normal and lysosome-storage disorder cell types. Thus, designing small molecules against STYXL1 possibly can restore the lysosome activity by enhancing ER stress in Gaucher disease.


Assuntos
Proteínas Reguladoras de Apoptose , Doença de Gaucher , Glucosilceramidase , Humanos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Estresse do Retículo Endoplasmático , Doença de Gaucher/metabolismo , Doença de Gaucher/terapia , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Células HeLa , Lisossomos/metabolismo , Proteínas Reguladoras de Apoptose/genética
6.
Hum Mol Genet ; 32(11): 1888-1900, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-36752535

RESUMO

Bi-allelic mutations in GBA1, the gene that encodes ß-glucocerebrosidase (GCase), cause Gaucher disease (GD), whereas mono-allelic mutations do not cause overt pathology. Yet mono- or bi-allelic GBA1 mutations are the highest known risk factor for Parkinson's disease (PD). GCase deficiency results in the accumulation of glucosylceramide (GluCer) and its deacylated metabolite glucosylsphingosine (GluSph). Brains from patients with neuronopathic GD have high levels of GluSph, and elevation of this lipid in GBA1-associated PD has been reported. To uncover the mechanisms involved in GBA1-associated PD, we used human induced pluripotent stem cell-derived dopaminergic (DA) neurons from patients harboring heterozygote mutations in GBA1 (GBA1/PD-DA neurons). We found that compared with gene-edited isogenic controls, GBA1/PD-DA neurons exhibit mammalian target of rapamycin complex 1 (mTORC1) hyperactivity, a block in autophagy, an increase in the levels of phosphorylated α-synuclein (129) and α-synuclein aggregation. These alterations were prevented by incubation with mTOR inhibitors. Inhibition of acid ceramidase, the lysosomal enzyme that deacylates GluCer to GluSph, prevented mTOR hyperactivity, restored autophagic flux and lowered α-synuclein levels, suggesting that GluSph was responsible for these alterations. Incubation of gene-edited wild type (WT) controls with exogenous GluSph recapitulated the mTOR/α-synuclein abnormalities of GBA1/PD neurons, and these phenotypic alterations were prevented when GluSph treatment was in the presence of mTOR inhibitors. We conclude that GluSph causes an aberrant activation of mTORC1, suppressing normal lysosomal functions, including the clearance of pathogenic α-synuclein species. Our results implicate acid ceramidase in the pathogenesis of GBA1-associated PD, suggesting that this enzyme is a potential therapeutic target for treating synucleinopathies caused by GCase deficiency.


Assuntos
Doença de Gaucher , Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Inibidores de MTOR , Ceramidase Ácida/genética , Ceramidase Ácida/metabolismo , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Doença de Gaucher/metabolismo , Neurônios Dopaminérgicos/metabolismo , Serina-Treonina Quinases TOR/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Mutação , Lisossomos/metabolismo
7.
Cell Struct Funct ; 49(1): 1-10, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38072450

RESUMO

Gaucher disease (GD) is a recessively inherited lysosomal storage disorder characterized by a deficiency of lysosomal glucocerebrosidase (GBA1). This deficiency results in the accumulation of its substrate, glucosylceramide (GlcCer), within lysosomes. Here, we investigated lysosomal abnormalities in fibroblasts derived from patients with GD. It is noteworthy that the cellular distribution of lysosomes and lysosomal proteolytic activity remained largely unaffected in GD fibroblasts. However, we found that lysosomal membranes of GD fibroblasts were susceptible to damage when exposed to a lysosomotropic agent. Moreover, the susceptibility of lysosomal membranes to a lysosomotropic agent could be partly restored by exogenous expression of wild-type GBA1. Here, we report that the lysosomal membrane integrity is altered in GD fibroblasts, but lysosomal distribution and proteolytic activity is not significantly altered.Key words: glucosylceramide, lysosome, Gaucher disease, lysosomotropic agent.


Assuntos
Doença de Gaucher , Humanos , Doença de Gaucher/metabolismo , Glucosilceramidas/metabolismo , Fibroblastos/metabolismo , Lisossomos/metabolismo , Membranas Intracelulares/metabolismo
8.
J Neurochem ; 168(1): 52-65, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38071490

RESUMO

Gaucher disease (GD) is a lysosomal storage disorder (LSD) caused by the defective activity of acid ß-glucosidase (GCase) which results from mutations in GBA1. Neurological forms of GD (nGD) can be generated in mice by intra-peritoneal injection of conduritol B-epoxide (CBE) which irreversibly inhibits GCase. Using this approach, a number of pathological pathways have been identified in mouse brain by RNAseq. However, unlike transcriptomics, proteomics gives direct information about protein expression which is more likely to provide insight into which cellular pathways are impacted in disease. We now perform non-targeted, mass spectrometry-based quantitative proteomics on brains from mice injected with 50 mg/kg body weight CBE for 13 days. Of the 5038 detected proteins, 472 were differentially expressed between control and CBE-injected mice of which 104 were selected for further analysis based on higher stringency criteria. We also compared these proteins with differentially expressed genes (DEGs) identified by RNAseq. Some lysosomal proteins were up-regulated as was interferon signaling, whereas levels of ion channel related proteins and some proteins associated with neurotransmitter signaling were reduced, as was cholesterol metabolism. One protein, transglutaminase 1 (TGM1), which is elevated in a number of neurodegenerative diseases, was absent from the control group but was found at high levels in CBE-injected mice, and located in the extracellular matrix (ECM) in layer V of the cortex and intracellularly in Purkinje cells in the cerebellum. Together, the proteomics data confirm previous RNAseq data and add additional mechanistic understanding about cellular pathways that may play a role in nGD pathology.


Assuntos
Doença de Gaucher , Animais , Camundongos , Doença de Gaucher/metabolismo , Proteômica , Glucosilceramidase/genética , Encéfalo/metabolismo , Transglutaminases/genética , Transglutaminases/metabolismo
9.
Chem Biodivers ; 21(8): e202401104, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38847390

RESUMO

A remarkable enhancer of human glucocerebrosidase enzyme (GCase) was identified among a set of dihydroazulene-tagged iminosugars. An unprecedented 3.9-fold increase in GCase activity was detected on fibroblasts bearing the homozygous L444P mutation, which is frequently associated with neuronopathic Gaucher forms, and which commonly results refractory to chaperone-induced refolding.


Assuntos
Glucosilceramidase , Mutação , Humanos , Glucosilceramidase/metabolismo , Glucosilceramidase/genética , Glucosilceramidase/antagonistas & inibidores , Imino Açúcares/química , Imino Açúcares/farmacologia , Imino Açúcares/síntese química , Imino Açúcares/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Doença de Gaucher/genética , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/metabolismo , Estrutura Molecular
10.
Int J Mol Sci ; 25(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38928321

RESUMO

Glucocerebrosidase (GCase) is a lysosomal enzyme that catalyzes the breakdown of glucosylceramide in the presence of its activator saposin C (SapC). SapC arises from the proteolytical cleavage of prosaposin (encoded by PSAP gene), which gives rise to four saposins. GCase is targeted to the lysosomes by LIMP-2, encoded by SCARB2 gene. GCase deficiency causes Gaucher Disease (GD), which is mainly due to biallelic pathogenetic variants in the GCase-encoding gene, GBA1. However, impairment of GCase activity can be rarely caused by SapC or LIMP-2 deficiencies. We report a new case of LIMP-2 deficiency and a new case of SapC deficiency (missing all four saposins, PSAP deficiency), and measured common biomarkers of GD and GCase activity. Glucosylsphingosine and chitotriosidase activity in plasma were increased in GCase deficiencies caused by PSAP and GBA1 mutations, whereas SCARB2-linked deficiency showed only Glucosylsphingosine elevation. GCase activity was reduced in fibroblasts and leukocytes: the decrease was sharper in GBA1- and SCARB2-mutant fibroblasts than PSAP-mutant ones; LIMP-2-deficient leukocytes displayed higher residual GCase activity than GBA1-mutant ones. Finally, we demonstrated that GCase mainly undergoes proteasomal degradation in LIMP-2-deficient fibroblasts and lysosomal degradation in PSAP-deficient fibroblasts. Thus, we analyzed the differential biochemical profile of GCase deficiencies due to the ultra-rare PSAP and SCARB2 biallelic pathogenic variants in comparison with the profile observed in GBA1-linked GCase deficiency.


Assuntos
Doença de Gaucher , Glucosilceramidase , Proteínas de Membrana Lisossomal , Receptores Depuradores , Saposinas , Glucosilceramidase/genética , Glucosilceramidase/deficiência , Glucosilceramidase/metabolismo , Humanos , Doença de Gaucher/genética , Doença de Gaucher/metabolismo , Saposinas/deficiência , Saposinas/genética , Saposinas/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Proteínas de Membrana Lisossomal/genética , Receptores Depuradores/genética , Receptores Depuradores/metabolismo , Fibroblastos/metabolismo , Mutação , Lisossomos/metabolismo , Lisossomos/enzimologia , Hexosaminidases/metabolismo , Hexosaminidases/genética , Hexosaminidases/deficiência , Masculino , Feminino
11.
Int J Mol Sci ; 25(16)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39201273

RESUMO

Type 1 Gaucher disease (GD1) is a rare, autosomal recessive disorder caused by glucocerebrosidase deficiency. Skeletal manifestations represent one of the most debilitating and potentially irreversible complications of GD1. Although imaging studies are the gold standard, early diagnostic/prognostic tools, such as molecular biomarkers, are needed for the rapid management of skeletal complications. This study aimed to identify potential protein biomarkers capable of predicting the early diagnosis of bone skeletal complications in GD1 patients using artificial intelligence. An in silico study was performed using the novel Therapeutic Performance Mapping System methodology to construct mathematical models of GD1-associated complications at the protein level. Pathophysiological characterization was performed before modeling, and a data science strategy was applied to the predicted protein activity for each protein in the models to identify classifiers. Statistical criteria were used to prioritize the most promising candidates, and 18 candidates were identified. Among them, PDGFB, IL1R2, PTH and CCL3 (MIP-1α) were highlighted due to their ease of measurement in blood. This study proposes a validated novel tool to discover new protein biomarkers to support clinician decision-making in an area where medical needs have not yet been met. However, confirming the results using in vitro and/or in vivo studies is necessary.


Assuntos
Biomarcadores , Quimiocina CCL3 , Doença de Gaucher , Aprendizado de Máquina , Doença de Gaucher/metabolismo , Doença de Gaucher/diagnóstico , Doença de Gaucher/complicações , Humanos , Biomarcadores/sangue , Quimiocina CCL3/sangue , Quimiocina CCL3/metabolismo , Doenças Ósseas/etiologia , Doenças Ósseas/diagnóstico
12.
Blood Cells Mol Dis ; 100: 102728, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36738539

RESUMO

BACKGROUND: Gaucher disease (GD) is the most common autosomal recessive lipid storage disease. In this study, the changes in TFH cells and IL-4 and IL-21 cytokines in blood samples of GD patients, carriers and healthy volunteers were investigated. METHODS: Two pretreatment type 1 GD patients, 20 currently treated type 1 GD patients, 6 carriers, and 27 healthy volunteers were enrolled in the study. TFH cell (CD45RA-CD4+CXCR5+) number, phenotype (PD1, ICOS expression), and cytokine production (IL-21, IL-4) were assessed via flow cytometric assays. RESULTS: No significant differences were found between the groups with respect to the number, frequency and PD1 or ICOS expression of TFH cells between healthy controls, patients and carriers. However, IL-4+ TFH cells were significantly reduced both in percent and number in the treated GD patients compared with healthy controls (p < 0.05). Interestingly, the IL-21+ TFH cell number was increased in treated GD patients. When TFH cells were examined based on CXCR3 expression, the frequency of the PD1+Th17-Th2-like fraction (CXCR3-) was found to be significantly increased in treated GD patients. CONCLUSION: To our knowledge, this is the first study to assess TFH cells in GD patients, and to show that the production of IL-4 and IL-21 by TFH cells and their subsets may be altered in type 1 GD patients.


Assuntos
Doença de Gaucher , Células T Auxiliares Foliculares , Humanos , Linfócitos T Auxiliares-Indutores/metabolismo , Doença de Gaucher/metabolismo , Interleucina-4 , Interleucinas , Linfócitos T CD4-Positivos
13.
Cell ; 134(5): 769-81, 2008 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-18775310

RESUMO

Loss-of-function diseases are often caused by a mutation in a protein traversing the secretory pathway that compromises the normal balance between protein folding, trafficking, and degradation. We demonstrate that the innate cellular protein homeostasis, or proteostasis, capacity can be enhanced to fold mutated enzymes that would otherwise misfold and be degraded, using small molecule proteostasis regulators. Two proteostasis regulators are reported that alter the composition of the proteostasis network in the endoplasmic reticulum through the unfolded protein response, increasing the mutant folded protein concentration that can engage the trafficking machinery, restoring function to two nonhomologous mutant enzymes associated with distinct lysosomal storage diseases. Coapplication of a pharmacologic chaperone and a proteostasis regulator exhibits synergy because of the former's ability to further increase the concentration of trafficking-competent mutant folded enzymes. It may be possible to ameliorate loss-of-function diseases by using proteostasis regulators alone or in combination with a pharmacologic chaperone.


Assuntos
Doenças por Armazenamento dos Lisossomos/metabolismo , Dobramento de Proteína , Proteínas/metabolismo , Linhagem Celular , Fibroblastos/metabolismo , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/metabolismo , Humanos , Leupeptinas/farmacologia , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Chaperonas Moleculares/farmacologia , Triterpenos Pentacíclicos , Doença de Tay-Sachs/tratamento farmacológico , Doença de Tay-Sachs/metabolismo , Triterpenos/farmacologia
14.
Nature ; 543(7643): 108-112, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28225753

RESUMO

Gaucher disease is caused by mutations in GBA1, which encodes the lysosomal enzyme glucocerebrosidase (GCase). GBA1 mutations drive extensive accumulation of glucosylceramide (GC) in multiple innate and adaptive immune cells in the spleen, liver, lung and bone marrow, often leading to chronic inflammation. The mechanisms that connect excess GC to tissue inflammation remain unknown. Here we show that activation of complement C5a and C5a receptor 1 (C5aR1) controls GC accumulation and the inflammatory response in experimental and clinical Gaucher disease. Marked local and systemic complement activation occurred in GCase-deficient mice or after pharmacological inhibition of GCase and was associated with GC storage, tissue inflammation and proinflammatory cytokine production. Whereas all GCase-inhibited mice died within 4-5 weeks, mice deficient in both GCase and C5aR1, and wild-type mice in which GCase and C5aR were pharmacologically inhibited, were protected from these adverse effects and consequently survived. In mice and humans, GCase deficiency was associated with strong formation of complement-activating GC-specific IgG autoantibodies, leading to complement activation and C5a generation. Subsequent C5aR1 activation controlled UDP-glucose ceramide glucosyltransferase production, thereby tipping the balance between GC formation and degradation. Thus, extensive GC storage induces complement-activating IgG autoantibodies that drive a pathway of C5a generation and C5aR1 activation that fuels a cycle of cellular GC accumulation, innate and adaptive immune cell recruitment and activation in Gaucher disease. As enzyme replacement and substrate reduction therapies are expensive and still associated with inflammation, increased risk of cancer and Parkinson disease, targeting C5aR1 may serve as a treatment option for patients with Gaucher disease and, possibly, other lysosomal storage diseases.


Assuntos
Proteínas do Sistema Complemento/imunologia , Doença de Gaucher/imunologia , Doença de Gaucher/patologia , Glucosilceramidas/imunologia , Glucosilceramidas/metabolismo , Inflamação/imunologia , Inflamação/patologia , Animais , Células Apresentadoras de Antígenos/citologia , Células Apresentadoras de Antígenos/imunologia , Autoanticorpos/imunologia , Ativação do Complemento , Complemento C5a/biossíntese , Complemento C5a/imunologia , Proteínas do Sistema Complemento/biossíntese , Citocinas/biossíntese , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Doença de Gaucher/metabolismo , Doença de Gaucher/prevenção & controle , Glucosilceramidase/antagonistas & inibidores , Glucosilceramidase/deficiência , Glucosilceramidase/genética , Glucosiltransferases/biossíntese , Glucosiltransferases/metabolismo , Humanos , Imunoglobulina G/imunologia , Inflamação/metabolismo , Inflamação/prevenção & controle , Masculino , Camundongos , Receptor da Anafilatoxina C5a/deficiência , Receptor da Anafilatoxina C5a/imunologia , Receptor da Anafilatoxina C5a/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia
15.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38003227

RESUMO

In Gaucher disease (GD), a relatively common sphingolipidosis, the mutant lysosomal enzyme acid ß-glucocerebrosidase (GCase), encoded by the GBA1 gene, fails to properly hydrolyze the sphingolipid glucosylceramide (GlcCer) in lysosomes, particularly of tissue macrophages. As a result, GlcCer accumulates, which, to a certain extent, is converted to its deacylated form, glucosylsphingosine (GlcSph), by lysosomal acid ceramidase. The inability of mutant GCase to degrade GlcSph further promotes its accumulation. The amount of mutant GCase in lysosomes depends on the amount of mutant ER enzyme that shuttles to them. In the case of many mutant GCase forms, the enzyme is largely misfolded in the ER. Only a fraction correctly folds and is subsequently trafficked to the lysosomes, while the rest of the misfolded mutant GCase protein undergoes ER-associated degradation (ERAD). The retention of misfolded mutant GCase in the ER induces ER stress, which evokes a stress response known as the unfolded protein response (UPR). GD is remarkably heterogeneous in clinical manifestation, including the variant without CNS involvement (type 1), and acute and subacute neuronopathic variants (types 2 and 3). The present review discusses animal models developed to study the molecular and cellular mechanisms underlying GD.


Assuntos
Doença de Gaucher , Animais , Doença de Gaucher/metabolismo , Psicosina , Resposta a Proteínas não Dobradas , Modelos Animais , Mutação
16.
J Cell Biochem ; 123(5): 893-905, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35312102

RESUMO

Glucocerebrosidase (GCase), encoded by the GBA gene, degrades the ubiquitous glycosphingolipid glucosylceramide. Inherited GCase deficiency causes Gaucher disease (GD). In addition, carriers of an abnormal GBA allele are at increased risk for Parkinson's disease. GCase undergoes extensive modification of its four N-glycans en route to and inside the lysosome that is reflected in changes in molecular weight as detected with sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Fluorescent activity-based probes (ABPs) that covalently label GCase in reaction-based manner in vivo and in vitro allow sensitive visualization of GCase molecules. Using these ABPs, we studied the life cycle of GCase in cultured fibroblasts and macrophage-like RAW264.7 cells. Specific attention was paid to the impact of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) supplementation to bicarbonate-buffered medium. Here, we report how HEPES-buffered medium markedly influences processing of GCase, its lysosomal degradation, and the total cellular enzyme level. HEPES-containing medium was also found to reduce maturation of other lysosomal enzymes (α-glucosidase and ß-glucuronidase) in cells. The presence of HEPES in bicarbonate containing medium increases GCase activity in GD-patient derived fibroblasts, illustrating how the supplementation of HEPES complicates the use of cultured cells for diagnosing GD.


Assuntos
Doença de Gaucher , Glucosilceramidase , Bicarbonatos/metabolismo , Doença de Gaucher/genética , Doença de Gaucher/metabolismo , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , HEPES/metabolismo , Humanos , Lisossomos/metabolismo
17.
Hum Mol Genet ; 29(10): 1716-1728, 2020 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-32391886

RESUMO

Mutations in the GBA gene, which encodes the lysosomal enzyme glucocerebrosidase (GCase), are the most important genetic risk factor for Parkinson disease (PD). GCase activity is also decreased in sporadic PD brains and with normal ageing. Loss of GCase activity impairs the autophagy lysosomal pathway resulting in increased α-synuclein (α-syn) levels. Furthermore, elevated α-syn results in decreased GCase activity. Although the role of α-syn in PD remains unclear, evidence indicates that aggregated α-syn fibrils are a pathogenic species in PD, passing between neurons and inducing endogenous native α-syn to aggregate; spreading pathology through the brain. We have investigated if preformed α-syn fibrils (PFFs) impair GCase activity in mouse cortical neurons and differentiated dopaminergic cells, and whether GCase deficiency in these models increased the transfer of α-syn pathology to naïve cells. Neurons treated with PFFs induced endogenous α-syn to become insoluble and phosphorylated at Ser129 to a greater extent than monomeric α-syn-treatment. PFFs, but not monomeric α-syn, inhibited lysosomal GCase activity in these cells and induced the unfolded protein response. Neurons in which GCase was inhibited by conduritol ß-epoxide did not increase the amount of insoluble monomeric α-syn or its phosphorylation status. Instead the release of α-syn fibrils from GCase deficient cells was significantly increased. Co-culture studies showed that the transfer of α-syn pathology to naïve cells was greater from GCase deficient cells. This study suggests that GCase deficiency increases the spread of α-syn pathology and likely contributes to the earlier age of onset and increased cognitive decline associated with GBA-PD.


Assuntos
Doença de Gaucher/genética , Glucosilceramidase/genética , Doença de Parkinson/genética , Sinucleinopatias/genética , alfa-Sinucleína/genética , Envelhecimento/genética , Envelhecimento/patologia , Animais , Autofagia/genética , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Doença de Gaucher/metabolismo , Doença de Gaucher/patologia , Humanos , Lisossomos/genética , Camundongos , Mutação/genética , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Fosforilação/genética , Sinucleinopatias/metabolismo , Sinucleinopatias/patologia
18.
Hum Mol Genet ; 29(2): 274-285, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31816052

RESUMO

Bone differentiation defects have been recently tied to Wnt signaling alterations occurring in vitro and in vivo Gaucher disease (GD) models. In this work, we provide evidence that the Wnt signaling multi-domain intracellular transducers Dishevelled 1 and 2 (DVL1 and DVL2) may be potential upstream targets of impaired beta glucosidase (GBA1) activity by showing their misexpression in different type 1 GD in vitro models. We also show that in Gba mutant fish a miR-221 upregulation is associated with reduced dvl2 expression levels and that in type I Gaucher patients single-nucleotide variants in the DVL2 3' untranslated region are related to variable canonical Wnt pathway activity. Thus, we strengthen the recently outlined relation between bone differentiation defects and Wnt/ß-catenin dysregulation in type I GD and further propose novel mechanistic insights of the Wnt pathway impairment caused by glucocerebrosidase loss of function.


Assuntos
Proteínas Desgrenhadas/metabolismo , Doença de Gaucher/metabolismo , Glucosilceramidase/metabolismo , Via de Sinalização Wnt/genética , Peixe-Zebra/metabolismo , Regiões 3' não Traduzidas , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem Celular , Modelos Animais de Doenças , Proteínas Desgrenhadas/genética , Doença de Gaucher/enzimologia , Doença de Gaucher/genética , Glucosilceramidase/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoblastos/enzimologia , Osteoblastos/metabolismo , Osteoblastos/patologia , Transcrição Gênica , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
19.
Pediatr Res ; 91(5): 1121-1129, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34155339

RESUMO

BACKGROUND: Shiga toxin-producing Escherichia coli is responsible for post-diarrheal (D+) hemolytic uremic syndrome (HUS), which is a cause of acute renal failure in children. The glycolipid globotriaosylceramide (Gb3) is the main receptor for Shiga toxin (Stx) in kidney target cells. Eliglustat (EG) is a specific and potent inhibitor of glucosylceramide synthase, first step of glycosphingolipid biosynthesis, actually used for the treatment of Gaucher's disease. The aim of the present work was to evaluate the efficiency of EG in preventing the damage caused by Stx2 in human renal epithelial cells. METHODS: Human renal tubular epithelial cell (HRTEC) primary cultures were pre-treated with different dilutions of EG followed by co-incubation with EG and Stx2 at different times, and cell viability, proliferation, apoptosis, tubulogenesis, and Gb3 expression were assessed. RESULTS: In HRTEC, pre-treatments with 50 nmol/L EG for 24 h, or 500 nmol/L EG for 6 h, reduced Gb3 expression and totally prevented the effects of Stx2 on cell viability, proliferation, and apoptosis. EG treatment also allowed the development of tubulogenesis in 3D-HRTEC exposed to Stx2. CONCLUSIONS: EG could be a potential therapeutic drug for the prevention of acute kidney injury caused by Stx2. IMPACT: For the first time, we have demonstrated that Eliglustat prevents Shiga toxin 2 cytotoxic effects on human renal epithelia, by reducing the expression of the toxin receptor globotriaosylceramide. The present work also shows that Eliglustat prevents Shiga toxin 2 effects on tubulogenesis of renal epithelial cells. Eliglustat, actually used for the treatment of patients with Gaucher's disease, could be a therapeutic strategy to prevent the renal damage caused by Shiga toxin.


Assuntos
Doença de Gaucher , Toxina Shiga II , Células Cultivadas , Criança , Células Epiteliais/metabolismo , Doença de Gaucher/metabolismo , Humanos , Pirrolidinas , Toxina Shiga/metabolismo , Toxina Shiga II/metabolismo , Toxina Shiga II/toxicidade
20.
PLoS Comput Biol ; 17(9): e1009370, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34529671

RESUMO

Three-dimensional structures of proteins can provide important clues into the efficacy of personalized treatment. We perform a structural analysis of variants within three inherited lysosomal storage disorders, comparing variants responsive to pharmacological chaperone treatment to those unresponsive to such treatment. We find that predicted ΔΔG of mutation is higher on average for variants unresponsive to treatment, in the case of datasets for both Fabry disease and Pompe disease, in line with previous findings. Using both a single decision tree and an advanced machine learning approach based on the larger Fabry dataset, we correctly predict responsiveness of three Gaucher disease variants, and we provide predictions for untested variants. Many variants are predicted to be responsive to treatment, suggesting that drug-based treatments may be effective for a number of variants in Gaucher disease. In our analysis, we observe dependence on a topological feature reporting on contact arrangements which is likely connected to the order of folding of protein residues, and we provide a potential justification for this observation based on steady-state cellular kinetics.


Assuntos
Doença de Fabry/tratamento farmacológico , Doença de Gaucher/tratamento farmacológico , Doença de Depósito de Glicogênio Tipo II/tratamento farmacológico , Biologia Computacional , Árvores de Decisões , Doença de Fabry/genética , Doença de Fabry/metabolismo , Doença de Gaucher/genética , Doença de Gaucher/metabolismo , Doença de Depósito de Glicogênio Tipo II/genética , Doença de Depósito de Glicogênio Tipo II/metabolismo , Humanos , Cinética , Aprendizado de Máquina , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/efeitos dos fármacos , Proteínas Mutantes/genética , Mutação de Sentido Incorreto , Medicina de Precisão , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Estabilidade Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA