Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; 195: 106497, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583641

RESUMO

OBJECTIVES: To elucidate and compare the genetic, clinical, ancillary diagnostic, and pathological characteristics across different Gerstmann-Sträussler-Scheinker disease (GSS) phenotypes and explore the underlying causes of the phenotypic heterogeneities. METHODS: The genetic, clinical, ancillary diagnostic, and pathological profiles of GSS patients reported in the literature were obtained and analyzed. Additionally, 3 patients with genetically confirmed GSS from our unit were included. Based on clinical presentation, patients were classified into typical GSS, Creutzfeldt-Jakob disease (CJD)-like GSS, GSS with dementia, and other categories. RESULTS: A total of 329 GSS cases were included with a 1.13:1 female-to-male ratio, median onset age 44, and median duration 4 years. Of the 294 categorized patients, 50.7% had typical GSS, 24.8% showed CJD-like GSS, and 16.3% presented with GSS with dementia. Clinical classification varied significantly based on genotype, with P102L more common in typical GSS and A117V prevalent in CJD-like GSS. Polymorphism at codon 129 has no effect on GSS phenotype, but the 129 M allele acts as a protective factor in GSS patients in Asia and North America. Moderate to severe spongiform degeneration and the presence of PK-resistant small fragments migrating at <11 kDa on electrophoretic gels along with PrP27-30 fragments were more prevalent in CJD-like GSS phenotype, while hyperphosphorylated tau protein co-deposition tends to be characteristic of typical GSS and GSS with dementia. CONCLUSION: This study reveals GSS's intricate nature, showing significant variations in clinical presentations, diagnostic findings, and pathological features. Mutation sites and pathological changes play crucial roles in determining the GSS clinical heterogeneity.


Assuntos
Doença de Gerstmann-Straussler-Scheinker , Fenótipo , Humanos , Doença de Gerstmann-Straussler-Scheinker/genética , Doença de Gerstmann-Straussler-Scheinker/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso
2.
Nervenarzt ; 95(4): 376-384, 2024 Apr.
Artigo em Alemão | MEDLINE | ID: mdl-38503894

RESUMO

Human spongiform encephalopathies are rare transmissible neurodegenerative diseases of the brain and the nervous system that are caused by misfolding of the physiological prion protein into a pathological form and its deposition in the central nervous system (CNS). Prion diseases include Creutzfeldt-Jakob disease (CJD, sporadic or familial), Gerstmann-Straussler-Scheinker syndrome (GSS) and fatal familial insomnia (FFI). Prion diseases can be differentiated into three etiological categories: spontaneous (sporadic CJD), inherited (familial CJD, FFI, and GSS) and acquired (variant CJD and iatrogenic CJD). Most cases occur sporadically. Prion diseases can lead to a variety of neurological symptoms and always have an inevitably fatal course. Cerebrospinal fluid analysis and magnetic resonance imaging (MRI) play a crucial role in the diagnostics of prion diseases and may facilitate an early and reliable clinical diagnosis. A causal treatment or specific therapeutic agents are not yet available. In general, a palliative therapeutic concept is indicated.


Assuntos
Síndrome de Creutzfeldt-Jakob , Encefalopatia Espongiforme Bovina , Doença de Gerstmann-Straussler-Scheinker , Doenças Priônicas , Animais , Bovinos , Humanos , Doenças Priônicas/diagnóstico , Doenças Priônicas/patologia , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/patologia , Doença de Gerstmann-Straussler-Scheinker/diagnóstico , Doença de Gerstmann-Straussler-Scheinker/genética , Doença de Gerstmann-Straussler-Scheinker/patologia , Encéfalo/patologia , Encefalopatia Espongiforme Bovina/patologia
3.
J Biol Chem ; 296: 100490, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33662396

RESUMO

Fatal familial insomnia (FFI), genetic Creutzfeldt-Jakob disease (gCJD), and Gerstmann-Sträussler-Scheinker (GSS) syndrome are neurodegenerative disorders linked to prion protein (PrP) mutations. The pathogenic mechanisms are not known, but increasing evidence points to mutant PrP misfolding and retention in the secretory pathway. We previously found that the D178N/M129 mutation associated with FFI accumulates in the Golgi of neuronal cells, impairing post-Golgi trafficking. In this study we further characterized the trafficking defect induced by the FFI mutation and tested the 178N/V129 variant linked to gCJD and a nine-octapeptide repeat insertion associated with GSS. We used transfected HeLa cells, embryonic fibroblasts and primary neurons from transgenic mice, and fibroblasts from carriers of the FFI mutation. In all these cell types, the mutant PrPs showed abnormal intracellular localizations, accumulating in the endoplasmic reticulum (ER) and Golgi. To test the efficiency of the membrane trafficking system, we monitored the intracellular transport of the temperature-sensitive vesicular stomatite virus glycoprotein (VSV-G), a well-established cargo reporter, and of endogenous procollagen I (PC-I). We observed marked alterations in secretory trafficking, with VSV-G accumulating mainly in the Golgi complex and PC-I in the ER and Golgi. A redacted version of mutant PrP with reduced propensity to misfold did not impair VSV-G trafficking, nor did artificial ER or Golgi retention of wild-type PrP; this indicates that both misfolding and intracellular retention were required to induce the transport defect. Pharmacological activation of Src family kinase (SFK) improved intracellular transport, suggesting that mutant PrP impairs secretory trafficking through corruption of SFK-mediated signaling.


Assuntos
Mutação , Proteínas Priônicas/metabolismo , Quinases da Família src/metabolismo , Animais , Células Cultivadas , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Doença de Gerstmann-Straussler-Scheinker/genética , Doença de Gerstmann-Straussler-Scheinker/metabolismo , Doença de Gerstmann-Straussler-Scheinker/patologia , Complexo de Golgi/metabolismo , Humanos , Insônia Familiar Fatal/genética , Insônia Familiar Fatal/metabolismo , Insônia Familiar Fatal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Proteínas Priônicas/genética , Dobramento de Proteína , Via Secretória , Quinases da Família src/química
4.
Int J Mol Sci ; 22(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34948096

RESUMO

Gerstmann-Sträussler-Scheinker syndrome (GSS) is a hereditary neurodegenerative disease characterized by extracellular aggregations of pathological prion protein (PrP) forming characteristic plaques. Our study aimed to evaluate the micromorphology and protein composition of these plaques in relation to age, disease duration, and co-expression of other pathogenic proteins related to other neurodegenerations. Hippocampal regions of nine clinically, neuropathologically, and genetically confirmed GSS subjects were investigated using immunohistochemistry and multichannel confocal fluorescent microscopy. Most pathognomic prion protein plaques were small (2-10 µm), condensed, globous, and did not contain any of the other investigated proteinaceous components, particularly dystrophic neurites. Equally rare (in two cases out of nine) were plaques over 50 µm having predominantly fibrillar structure and exhibit the presence of dystrophic neuritic structures; in one case, the plaques also included bulbous dystrophic neurites. Co-expression with hyperphosphorylated protein tau protein or amyloid beta-peptide (Aß) in GSS PrP plaques is generally a rare observation, even in cases with comorbid neuropathology. The dominant picture of the GSS brain is small, condensed plaques, often multicentric, while presence of dystrophic neuritic changes accumulating hyperphosphorylated protein tau or Aß in the PrP plaques are rare and, thus, their presence probably constitutes a trivial observation without any relationship to GSS development and progression.


Assuntos
Doença de Gerstmann-Straussler-Scheinker , Mutação de Sentido Incorreto , Proteínas Priônicas , Agregação Patológica de Proteínas , Adulto , Idoso , Feminino , Doença de Gerstmann-Straussler-Scheinker/genética , Doença de Gerstmann-Straussler-Scheinker/metabolismo , Doença de Gerstmann-Straussler-Scheinker/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia
5.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830321

RESUMO

Conformational conversion of the cellular isoform of prion protein, PrPC, into the abnormally folded, amyloidogenic isoform, PrPSc, is an underlying pathogenic mechanism in prion diseases. The diseases manifest as sporadic, hereditary, and acquired disorders. Etiological mechanisms driving the conversion of PrPC into PrPSc are unknown in sporadic prion diseases, while prion infection and specific mutations in the PrP gene are known to cause the conversion of PrPC into PrPSc in acquired and hereditary prion diseases, respectively. We recently reported that a neurotropic strain of influenza A virus (IAV) induced the conversion of PrPC into PrPSc as well as formation of infectious prions in mouse neuroblastoma cells after infection, suggesting the causative role of the neuronal infection of IAV in sporadic prion diseases. Here, we discuss the conversion mechanism of PrPC into PrPSc in different types of prion diseases, by presenting our findings of the IAV infection-induced conversion of PrPC into PrPSc and by reviewing the so far reported transgenic animal models of hereditary prion diseases and the reverse genetic studies, which have revealed the structure-function relationship for PrPC to convert into PrPSc after prion infection.


Assuntos
Síndrome de Creutzfeldt-Jakob/genética , Doença de Gerstmann-Straussler-Scheinker/genética , Influenza Humana/genética , Insônia Familiar Fatal/genética , Proteínas PrPC/genética , Proteínas PrPSc/genética , Proteínas Priônicas/genética , Animais , Linhagem Celular Tumoral , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Síndrome de Creutzfeldt-Jakob/virologia , Doença de Gerstmann-Straussler-Scheinker/metabolismo , Doença de Gerstmann-Straussler-Scheinker/patologia , Doença de Gerstmann-Straussler-Scheinker/virologia , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/crescimento & desenvolvimento , Vírus da Influenza A/patogenicidade , Influenza Humana/metabolismo , Influenza Humana/patologia , Influenza Humana/virologia , Insônia Familiar Fatal/metabolismo , Insônia Familiar Fatal/patologia , Insônia Familiar Fatal/virologia , Camundongos , Camundongos Transgênicos , Mutação , Neurônios/metabolismo , Neurônios/patologia , Neurônios/virologia , Proteínas PrPC/química , Proteínas PrPC/metabolismo , Proteínas PrPSc/química , Proteínas PrPSc/metabolismo , Proteínas Priônicas/química , Proteínas Priônicas/metabolismo , Conformação Proteica , Genética Reversa/métodos
6.
Int J Mol Sci ; 22(9)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064393

RESUMO

Although it is not yet universally accepted that all neurodegenerative diseases (NDs) are prion disorders, there is little disagreement that Alzheimer's disease (AD), Parkinson's disease, frontotemporal dementia (FTD), and other NDs are a consequence of protein misfolding, aggregation, and spread. This widely accepted perspective arose from the prion hypothesis, which resulted from investigations on scrapie, a common transmissible disease of sheep and goats. The prion hypothesis argued that the causative infectious agent of scrapie was a novel proteinaceous pathogen devoid of functional nucleic acids and distinct from viruses, viroids, and bacteria. At the time, it seemed impossible that an infectious agent like the one causing scrapie could replicate and exist as diverse microbiological strains without nucleic acids. However, aggregates of a misfolded host-encoded protein, designated the prion protein (PrP), were shown to be the cause of scrapie as well as Creutzfeldt-Jakob disease (CJD) and Gerstmann-Sträussler-Scheinker syndrome (GSS), which are similar NDs in humans. This review discusses historical research on diseases caused by PrP misfolding, emphasizing principles of pathogenesis that were later found to be core features of other NDs. For example, the discovery that familial prion diseases can be caused by mutations in PrP was important for understanding prion replication and disease susceptibility not only for rare PrP diseases but also for far more common NDs involving other proteins. We compare diseases caused by misfolding and aggregation of APP-derived Aß peptides, tau, and α-synuclein with PrP prion disorders and argue for the classification of NDs caused by misfolding of these proteins as prion diseases. Deciphering the molecular pathogenesis of NDs as prion-mediated has provided new approaches for finding therapies for these intractable, invariably fatal disorders and has revolutionized the field.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Proteínas Priônicas/genética , Scrapie/genética , alfa-Sinucleína/genética , Proteínas tau/genética , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Animais , Síndrome de Creutzfeldt-Jakob/etiologia , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Demência Frontotemporal/etiologia , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Expressão Gênica , Doença de Gerstmann-Straussler-Scheinker/etiologia , Doença de Gerstmann-Straussler-Scheinker/genética , Doença de Gerstmann-Straussler-Scheinker/metabolismo , Doença de Gerstmann-Straussler-Scheinker/patologia , Humanos , Camundongos , Mutação , Doença de Parkinson/etiologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Proteínas Priônicas/química , Proteínas Priônicas/metabolismo , Príons , Dobramento de Proteína , Scrapie/etiologia , Scrapie/metabolismo , Scrapie/patologia , Ovinos , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo
7.
Ann Neurol ; 86(5): 643-652, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31397917

RESUMO

Gerstmann-Sträussler-Scheinker syndrome (GSS) with the P102L mutation is a rare genetic prion disease caused by a pathogenic mutation at codon 102 in the prion protein gene. Cluster analysis encompassing data from 7 Czech patients and 87 published cases suggests the existence of 4 clinical phenotypes (typical GSS, GSS with areflexia and paresthesia, pure dementia GSS, and Creutzfeldt-Jakob disease-like GSS); GSS may be more common than previously estimated. In making a clinical diagnosis or progression estimates of GSS, magnetic resonance imaging and real-time quaking-induced conversion may be helpful, but the results should be evaluated with respect to the overall clinical context. ANN NEUROL 2019;86:643-652.


Assuntos
Doença de Gerstmann-Straussler-Scheinker/patologia , Doença de Gerstmann-Straussler-Scheinker/fisiopatologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo
8.
Brain ; 142(3): 760-770, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30698738

RESUMO

A common presentation of inherited prion disease is Gerstmann-Sträussler-Scheinker syndrome, typically presenting with gait ataxia and painful dysaesthesiae in the legs evolving over 2-5 years. The most frequent molecular genetic diagnosis is a P102L mutation of the prion protein gene (PRNP). There is no explanation for why this clinical syndrome is so distinct from Creutzfeldt-Jakob disease, and biomarkers of the early stages of disease have not been developed. Here we aimed, first, at determining if quantitative neurophysiological assessments could predict clinical diagnosis or disability and monitor progression and, second, to determine the neuropathological basis of the initial clinical and neurophysiological findings. We investigated subjects known to carry the P102L mutation in the longitudinal observational UK National Prion Monitoring Cohort study, with serial assessments of clinical features, peripheral nerve conduction, H and F components, threshold tracking and histamine flare and itch response and neuropathological examination in some of those who died. Twenty-three subjects were studied over a period of up to 12 years, including 65 neurophysiological assessments at the same department. Six were symptomatic throughout and six became symptomatic during the study. Neurophysiological abnormalities were restricted to the lower limbs. In symptomatic patients around the time of, or shortly after, symptom onset the H-reflex was lost. Lower limb thermal thresholds were at floor/ceiling in some at presentation, in others thresholds progressively deteriorated. Itch sensation to histamine injection was lost in most symptomatic patients. In six patients with initial assessments in the asymptomatic stage of the disease, a progressive deterioration in the ability to detect warm temperatures in the feet was observed prior to clinical diagnosis and the onset of disability. All of these six patients developed objective abnormalities of either warm or cold sensation prior to the onset of significant symptoms or clinical diagnosis. Autopsy examination in five patients (including two not followed clinically) showed prion protein in the substantia gelatinosa, spinothalamic tracts, posterior columns and nuclei and in the neuropil surrounding anterior horn cells. In conclusion, sensory symptoms and loss of reflexes in Gerstmann-Sträussler-Scheinker syndrome can be explained by neuropathological changes in the spinal cord. We conclude that the sensory symptoms and loss of lower limb reflexes in Gerstmann-Sträussler-Scheinker syndrome is due to pathology in the caudal spinal cord. Neuro-physiological measures become abnormal around the time of symptom onset, prior to diagnosis, and may be of value for improved early diagnosis and for recruitment and monitoring of progression in clinical trials.


Assuntos
Doenças Priônicas/patologia , Proteínas Priônicas/genética , Medula Espinal/patologia , Adulto , Idoso , Biomarcadores/sangue , Encéfalo/patologia , Estudos de Coortes , Síndrome de Creutzfeldt-Jakob/patologia , Feminino , Doença de Gerstmann-Straussler-Scheinker/patologia , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Mutação , Neurofisiologia , Linhagem , Proteínas Priônicas/metabolismo , Príons/genética
9.
Emerg Infect Dis ; 25(1): 73-81, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30561322

RESUMO

Variably protease-sensitive prionopathy (VPSPr), a recently described human sporadic prion disease, features a protease-resistant, disease-related prion protein (resPrPD) displaying 5 fragments reminiscent of Gerstmann-Sträussler-Scheinker disease. Experimental VPSPr transmission to human PrP-expressing transgenic mice, although replication of the VPSPr resPrPD profile succeeded, has been incomplete because of second passage failure. We bioassayed VPSPr in bank voles, which are susceptible to human prion strains. Transmission was complete; first-passage attack rates were 5%-35%, and second-passage rates reached 100% and survival times were 50% shorter. We observed 3 distinct phenotypes and resPrPD profiles; 2 imitated sporadic Creutzfeldt-Jakob disease resPrPD, and 1 resembled Gerstmann-Sträussler-Scheinker disease resPrPD. The first 2 phenotypes may be related to the presence of minor PrPD components in VPSPr. Full VPSPr transmission confirms permissiveness of bank voles to human prions and suggests that bank vole PrP may efficiently reveal an underrepresented native strain but does not replicate the complex VPSPr PrPD profile.


Assuntos
Doenças Priônicas/transmissão , Príons/metabolismo , Animais , Arvicolinae , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Genótipo , Doença de Gerstmann-Straussler-Scheinker/patologia , Doença de Gerstmann-Straussler-Scheinker/transmissão , Humanos , Camundongos , Camundongos Transgênicos , Peptídeo Hidrolases/metabolismo , Fenótipo , Doenças Priônicas/patologia , Príons/genética , Isoformas de Proteínas
10.
Proc Natl Acad Sci U S A ; 113(48): 13851-13856, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27849581

RESUMO

Recombinant C-terminally truncated prion protein PrP23-144 (which corresponds to the Y145Stop PrP variant associated with a Gerstmann-Sträussler-Scheinker-like prion disease) spontaneously forms amyloid fibrils with a parallel in-register ß-sheet architecture and ß-sheet core mapping to residues ∼112-139. Here we report that mice (both tga20 and wild type) inoculated with a murine (moPrP23-144) version of these fibrils develop clinical prion disease with a 100% attack rate. Remarkably, even though fibrils in the inoculum lack the entire C-terminal domain of PrP, brains of clinically sick mice accumulate longer proteinase K-resistant (PrPres) fragments of ∼17-32 kDa, similar to those observed in classical scrapie strains. Shorter, Gerstmann-Sträussler-Scheinker-like PrPres fragments are also present. The evidence that moPrP23-144 amyloid fibrils generated in the absence of any cofactors are bona fide prions provides a strong support for the protein-only hypothesis of prion diseases in its pure form, arguing against the notion that nonproteinaceous cofactors are obligatory structural components of all infectious prions. Furthermore, our finding that a relatively short ß-sheet core of PrP23-144 fibrils (residues ∼112-139) with a parallel in-register organization of ß-strands is capable of seeding the conversion of full-length prion protein to the infectious form has important implications for the ongoing debate regarding structural aspects of prion protein conversion and molecular architecture of mammalian prions.


Assuntos
Amiloide/química , Doença de Gerstmann-Straussler-Scheinker/genética , Doenças Priônicas/genética , Proteínas Priônicas/química , Amiloide/efeitos adversos , Amiloide/genética , Animais , Doença de Gerstmann-Straussler-Scheinker/etiologia , Doença de Gerstmann-Straussler-Scheinker/patologia , Humanos , Camundongos , Doenças Priônicas/etiologia , Doenças Priônicas/patologia , Proteínas Priônicas/efeitos adversos , Proteínas Priônicas/genética , Conformação Proteica em Folha beta/genética , Scrapie/genética , Scrapie/patologia , Espectroscopia de Infravermelho com Transformada de Fourier
11.
Int J Mol Sci ; 20(14)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340582

RESUMO

Inherited mutations in the Prion protein (PrP), encoded by the PRNP gene, have been associated with autosomal dominant neurodegenerative disorders, such as Creutzfeldt-Jacob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), and Fatal Familial Insomnia (FFI). Notably, PRNP mutations have also been described in clinical pictures resembling other neurodegenerative diseases, such as frontotemporal dementia. Regarding the pathogenesis, it has been observed that these point mutations are located in the C-terminal region of the PRNP gene and, currently, the potential significance of the N-terminal domain has largely been underestimated. The purpose of this report is to review and provide current insights into the pathogenic mechanisms of PRNP mutations, emphasizing the differences between the C- and N-terminal regions and focusing, in particular, on the lesser-known flexible N-terminal, for which recent biophysical evidence has revealed a physical interaction with the globular C-terminal domain of the cellular prion protein (PrPC).


Assuntos
Síndrome de Creutzfeldt-Jakob/genética , Demência Frontotemporal/genética , Doença de Gerstmann-Straussler-Scheinker/genética , Mutação , Proteínas PrPC/genética , Proteínas Priônicas/genética , Sítios de Ligação , Encéfalo/metabolismo , Encéfalo/patologia , Cátions Bivalentes , Cobre/química , Cobre/metabolismo , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Expressão Gênica , Doença de Gerstmann-Straussler-Scheinker/metabolismo , Doença de Gerstmann-Straussler-Scheinker/patologia , Humanos , Proteínas PrPC/química , Proteínas PrPC/metabolismo , Proteínas Priônicas/química , Proteínas Priônicas/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Zinco/química , Zinco/metabolismo
12.
Acta Neuropathol ; 132(4): 593-610, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27350609

RESUMO

Attempts to model inherited human prion disorders such as familial Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker (GSS) disease, and fatal familial insomnia (FFI) using genetically modified mice have produced disappointing results. We recently demonstrated that transgenic (Tg) mice expressing wild-type bank vole prion protein (BVPrP) containing isoleucine at polymorphic codon 109 develop a spontaneous neurodegenerative disorder that exhibits many of the hallmarks of prion disease. To determine if mutations causing inherited human prion disease alter this phenotype, we generated Tg mice expressing BVPrP containing the D178N mutation, which causes FFI; the E200K mutation, which causes familial CJD; or an anchorless PrP mutation similar to mutations that cause GSS. Modest expression levels of mutant BVPrP resulted in highly penetrant spontaneous disease in Tg mice, with mean ages of disease onset ranging from ~120 to ~560 days. The brains of spontaneously ill mice exhibited prominent features of prion disease-specific neuropathology that were unique to each mutation and distinct from Tg mice expressing wild-type BVPrP. An ~8-kDa proteinase K-resistant PrP fragment was found in the brains of spontaneously ill Tg mice expressing either wild-type or mutant BVPrP. The spontaneously formed mutant BVPrP prions were transmissible to Tg mice expressing wild-type or mutant BVPrP as well as to Tg mice expressing mouse PrP. Thus, Tg mice expressing mutant BVPrP exhibit many of the hallmarks of heritable prion disorders in humans including spontaneous disease, protease-resistant PrP, and prion infectivity.


Assuntos
Encéfalo/patologia , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Doença de Gerstmann-Straussler-Scheinker/metabolismo , Proteínas Mutantes/metabolismo , Proteínas PrPSc/metabolismo , Animais , Modelos Animais de Doenças , Doença de Gerstmann-Straussler-Scheinker/patologia , Camundongos Transgênicos , Doenças Priônicas/metabolismo
13.
J Biol Chem ; 289(8): 4870-81, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24398683

RESUMO

The role of the GPI-anchor in prion disease pathogenesis is still a challenging issue. In vitro studies have shown that anchorless cellular prion protein (PrP(C)) undergoes aberrant post-translational processing and metabolism. Moreover, transgenic (Tg) mice overexpressing anchorless PrP(C) develop a spontaneous neurological disease accompanied with widespread brain PrP amyloid deposition, in the absence of spongiform changes. Generation of PrP forms lacking the GPI and PrP amyloidosis are striking features of human stop codon mutations in the PrP gene (PRNP), associated with PrP cerebral amyloid angiopathy (PrP-CAA) and Gerstmann-Sträussler-Scheinker (GSS) syndrome. More recently, the presence of anchorless PrP species has been also claimed in sporadic Creutzfeldt-Jakob disease (sCJD). Using a highly sensitive protein separation technique and taking advantage of reference maps of synthetic PrP peptides, we investigated brain tissues from scrapie-infected "anchorless PrP" Tg mice and wild type mice to determine the contribution of the GPI-anchor to the molecular mass and isoelectric point of PrP quasispecies under two-dimensional electrophoresis. We also assessed the conformational properties of anchorless and anchored prions under standard and inactivating conditions. These studies were extended to sCJD and GSS. At variance with GSS, characterization of PrP quasispecies in different sCJD subtypes ruled out the presence of anchorless prions. Moreover, under inactivating conditions, mice anchorless prions, but not sCJD prions, generated internal PrP fragments, cleaved at both N and C termini, similar to those found in PrP-CAA and GSS brain tissues. These findings show that anchorless PrP(Sc) generates GSS-like PrP fragments, and suggest a major role for unanchored PrP in amyloidogenesis.


Assuntos
Síndrome de Creutzfeldt-Jakob/metabolismo , Doença de Gerstmann-Straussler-Scheinker/metabolismo , Príons/metabolismo , Animais , Anticorpos/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Eletroforese em Gel Bidimensional , Endopeptidase K/metabolismo , Mapeamento de Epitopos , Doença de Gerstmann-Straussler-Scheinker/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Peso Molecular , Proteínas Mutantes/metabolismo , Proteínas PrPSc/metabolismo , Príons/química , Conformação Proteica
14.
PLoS Pathog ; 9(9): e1003643, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086135

RESUMO

Prions are infectious agents causing fatal neurodegenerative diseases of humans and animals. In humans, these have sporadic, acquired and inherited aetiologies. The inherited prion diseases are caused by one of over 30 coding mutations in the human prion protein (PrP) gene (PRNP) and many of these generate infectious prions as evidenced by their experimental transmissibility by inoculation to laboratory animals. However, some, and in particular an extensively studied type of Gerstmann-Sträussler-Scheinker syndrome (GSS) caused by a PRNP A117V mutation, are thought not to generate infectious prions and instead constitute prion proteinopathies with a quite distinct pathogenetic mechanism. Multiple attempts to transmit A117V GSS have been unsuccessful and typical protease-resistant PrP (PrP(Sc)), pathognomonic of prion disease, is not detected in brain. Pathogenesis is instead attributed to production of an aberrant topological form of PrP, C-terminal transmembrane PrP ((Ctm)PrP). Barriers to transmission of prion strains from one species to another appear to relate to structural compatibility of PrP in host and inoculum and we have therefore produced transgenic mice expressing human 117V PrP. We found that brain tissue from GSS A117V patients did transmit disease to these mice and both the neuropathological features of prion disease and presence of PrP(Sc) was demonstrated in the brains of recipient transgenic mice. This PrP(Sc) rapidly degraded during laboratory analysis, suggesting that the difficulty in its detection in patients with GSS A117V could relate to post-mortem proteolysis. We conclude that GSS A117V is indeed a prion disease although the relative contributions of (Ctm)PrP and prion propagation in neurodegeneration and their pathogenetic interaction remains to be established.


Assuntos
Substituição de Aminoácidos , Encéfalo/metabolismo , Doença de Gerstmann-Straussler-Scheinker/metabolismo , Doença de Gerstmann-Straussler-Scheinker/transmissão , Mutação de Sentido Incorreto , Proteínas PrPSc/metabolismo , Príons/metabolismo , Animais , Encéfalo/patologia , Doença de Gerstmann-Straussler-Scheinker/genética , Doença de Gerstmann-Straussler-Scheinker/patologia , Humanos , Camundongos , Camundongos Transgênicos , Proteínas PrPSc/genética , Proteínas Priônicas , Príons/genética
15.
Hum Mol Genet ; 21(26): 5417-28, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22965875

RESUMO

Human prion diseases are a heterogeneous group of fatal neurodegenerative disorders, characterized by the deposition of the partially protease-resistant prion protein (PrP(res)), astrocytosis, neuronal loss and spongiform change in the brain. Among inherited forms that represent 15% of patients, different phenotypes have been described depending on the variations detected at different positions within the prion protein gene. Here, we report a new mechanism governing the phenotypic variability of inherited prion diseases. First, we observed that the substitution at residue 211 with either Gln or Asp leads to distinct disorders at the clinical, neuropathological and biochemical levels (Creutzfeldt-Jakob disease or Gerstmann-Sträussler-Scheinker syndrome with abundant amyloid plaques and tau neurofibrillar pathology). Then, using molecular dynamics simulations and biophysical characterization of mutant proteins and an in vitro model of PrP conversion, we found evidence that each substitution impacts differently the stability of PrP and its propensity to produce different protease resistant fragments that may contribute to the phenotypical switch. Thus, subtle differences in the PrP primary structure and stability are sufficient to control amyloid plaques formation and tau abnormal phosphorylation and fibrillation. This mechanism is unique among neurodegenerative disorders and is consistent with the prion hypothesis that proposes a conformational change as the key pathological event in prion disorders.


Assuntos
Síndrome de Creutzfeldt-Jakob/genética , Doença de Gerstmann-Straussler-Scheinker/genética , Príons/genética , Substituição de Aminoácidos , Clonagem Molecular , Síndrome de Creutzfeldt-Jakob/patologia , Doença de Gerstmann-Straussler-Scheinker/patologia , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Fenótipo , Fosforilação , Placa Amiloide/genética , Placa Amiloide/metabolismo , Príons/metabolismo , Conformação Proteica
16.
Clin Neuropathol ; 33(5): 344-53, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24986180

RESUMO

We describe an autopsied case of a Japanese woman with Gerstmann-Straeussler-Scheinker disease (GSS) presenting with a rapidly progressive clinical course. Disease onset occurred at the age of 54 with dementia and gait disturbance. Her clinical course progressively deteriorated until she reached a bedridden state with myoclonus 9 months after onset. Two months later, she reached the akinetic mutism state. Nasal tube feeding was introduced at this point and continued for several years. Electroencephalograms showed diffuse slowing without periodic sharp-wave complexes. Diffusion-weighted magnetic resonance imaging (MRI) showed widespread cerebral cortical hyperintensity. Prion protein (PrP) gene analysis revealed a Pro to Leu point mutation at codon 102 with methionine homozygosity at codon 129. The patient died of respiratory failure after a total disease duration of 62 months. Neuropathologic examination revealed widespread spongiform change with numerous eosinophilic amyloid plaques (Kuru plaques) in the cerebral and cerebellar cortices by H & E staining. Diffuse myelin pallor with axon loss of the cerebral white matter, suggestive of panencephalopathic-type pathology was observed. Numerous PrP immunopositive plaques and diffuse synaptic-type PrP deposition were extensively observed, particularly in the cerebral and cerebellar cortices. Western blot analysis of proteinase Kresistant PrP showed a characteristic band pattern with a small molecular band of 6 kDa. The reason for the similarity in clinicopathologic findings between the present case and Creutzfeldt-Jakob disease is uncertain; however, the existence of an unknown disease-modifying factor is suspected.


Assuntos
Doença de Gerstmann-Straussler-Scheinker/genética , Doença de Gerstmann-Straussler-Scheinker/patologia , Mutação Puntual , Príons/genética , Encéfalo/patologia , Progressão da Doença , Evolução Fatal , Feminino , Humanos , Pessoa de Meia-Idade , Fenótipo
17.
Proc Natl Acad Sci U S A ; 108(52): 21223-8, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22160704

RESUMO

Some prion protein mutations create anchorless molecules that cause Gerstmann-Sträussler-Scheinker (GSS) disease. To model GSS, we generated transgenic mice expressing cellular prion protein (PrP(C)) lacking the glycosylphosphatidyl inositol (GPI) anchor, denoted PrP(ΔGPI). Mice overexpressing PrP(ΔGPI) developed a late-onset, spontaneous neurologic dysfunction characterized by widespread amyloid deposition in the brain and the presence of a short protease-resistant PrP fragment similar to those found in GSS patients. In Tg(PrP,ΔGPI) mice, disease onset could be accelerated either by inoculation with brain homogenate prepared from spontaneously ill animals or by coexpression of membrane-anchored, full-length PrP(C). In contrast, coexpression of N-terminally truncated PrP(Δ23-88) did not affect disease progression. Remarkably, disease from ill Tg(PrP,ΔGPI) mice transmitted to mice expressing wild-type PrP(C), indicating the spontaneous generation of prions.


Assuntos
Amiloide/ultraestrutura , Modelos Animais de Doenças , Doença de Gerstmann-Straussler-Scheinker/metabolismo , Doença de Gerstmann-Straussler-Scheinker/fisiopatologia , Glicosilfosfatidilinositóis/deficiência , Proteínas PrPC/metabolismo , Animais , Western Blotting , Eletroforese em Gel de Poliacrilamida , Mapeamento de Epitopos , Doença de Gerstmann-Straussler-Scheinker/genética , Doença de Gerstmann-Straussler-Scheinker/patologia , Técnicas Histológicas , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Proteínas PrPC/genética , Dobramento de Proteína
18.
J Neurol Sci ; 464: 123166, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39128159

RESUMO

INTRODUCTION: Gerstmann-Sträussler-Scheinker disease (GSS) is an autosomal-dominant inherited prion disease most often associated with the human prion protein gene (PRNP)-P102L mutation. Although patients manifest considerable phenotypic heterogeneity, the involvement of the nigrostriatal system has not been well-studied. METHODS: We performed dopamine transporter single-photon emission computed tomography (DAT-SPECT) using 123I-ioflupane to investigate the nigrostriatal system function in nine patients with the PRNP-P102L mutation. We also examined the pathological findings in another patient whose predominant feature was ataxia and who died 5 years after disease onset. RESULTS: Striatum uptake of 123I-ioflupane indicated by specific binding ratio (SBR) values was significantly reduced in two patients. The DAT-SPECT examination was performed 6 months after disease onset in one of these patients who manifested rapidly developing cognitive decline mimicking Creutzfeldt-Jakob disease. DAT-SPECT was also performed 9 years after disease onset in another patient who manifested the conventional features of GSS involving ataxia and dementia in the initial phase but showed akinetic mutism at the examination time. Another patient examined 2 years after disease onset who predominantly manifested ataxia showed marginally abnormal SBR values. An autopsy case showed moderate neuronal loss in the substantia nigra, and the degree of neuronal loss was similar in most other parts of the brain. CONCLUSION: Nigrostriatal system involvement may occur in patients with GSS associated with the PRNP-P102L mutation, even though parkinsonism is not the predominant feature.


Assuntos
Corpo Estriado , Doença de Gerstmann-Straussler-Scheinker , Mutação , Proteínas Priônicas , Príons , Substância Negra , Tomografia Computadorizada de Emissão de Fóton Único , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/patologia , Corpo Estriado/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Doença de Gerstmann-Straussler-Scheinker/genética , Doença de Gerstmann-Straussler-Scheinker/patologia , Doença de Gerstmann-Straussler-Scheinker/diagnóstico por imagem , Nortropanos , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Príons/genética , Príons/metabolismo , Substância Negra/diagnóstico por imagem , Substância Negra/patologia , Substância Negra/metabolismo
19.
J Neurosci ; 32(36): 12396-405, 2012 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-22956830

RESUMO

Autophagy is a cell survival response to nutrient deprivation that delivers cellular components to lysosomes for digestion. In recent years, autophagy has also been shown to assist in the degradation of misfolded proteins linked to neurodegenerative disease (Ross and Poirier, 2004). In support of this, rapamycin, an autophagy inducer, improves the phenotype of several animal models of neurodegenerative disease. Our Tg(PrP-A116V) mice model Gerstmann-Sträussler-Scheinker disease (GSS), a genetic prion disease characterized by prominent ataxia and extracellular PrP amyloid plaque deposits in brain (Yang et al., 2009). To determine whether autophagy induction can mitigate the development of GSS, Tg(PrP-A116V) mice were chronically treated with 10 or 20 mg/kg rapamycin intraperitoneally thrice weekly, beginning at 6 weeks of age. We observed a dose-related delay in disease onset, a reduction in symptom severity, and an extension of survival in rapamycin-treated Tg(PrP-A116V) mice. Coincident with this response was an increase in the autophagy-specific marker LC3II, a reduction in insoluble PrP-A116V, and a near-complete absence of PrP amyloid plaques in the brain. An increase in glial cell apoptosis of unclear significance was also detected. These findings suggest autophagy induction enhances elimination of misfolded PrP before its accumulation in plaques. Because ataxia persisted in these mice despite the absence of plaque deposits, our findings also suggest that PrP plaque pathology, a histopathological marker for the diagnosis of GSS, is not essential for the GSS phenotype.


Assuntos
Modelos Animais de Doenças , Doença de Gerstmann-Straussler-Scheinker/prevenção & controle , Placa Amiloide/prevenção & controle , Príons/antagonistas & inibidores , Sirolimo/uso terapêutico , Animais , Feminino , Doença de Gerstmann-Straussler-Scheinker/metabolismo , Doença de Gerstmann-Straussler-Scheinker/patologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Príons/metabolismo , Distribuição Aleatória , Fatores de Tempo
20.
Histopathology ; 62(7): 994-1001, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23570304

RESUMO

AIMS: To investigate in prion diseases the in-situ localization of prion protein oligomers sharing a common epitope with amyloid oligomers involved in a range of neurodegenerative diseases. METHODS AND RESULTS: We performed immunohistochemistry on sporadic Creutzfeldt-Jakob disease (sCJD) (n = 9) and hereditary Gerstmann-Sträussler-Scheinker disease (GSS) (n = 1) specimens with the anti-oligomer antibody A11 to determine the localization of reactive species. We found that A11 reactivity in the sCJD specimens was localized to the cerebral and cerebellar cortices both in spongiform and adjacent, non-spongiform areas, reminiscent of multicentric or diffuse plaques. In the GSS specimens, we found that staining was closely associated with kuru-like plaques, and that A11-reactive species colocalized with protease-resistant prion protein (Prp(Sc)). We also observed sporadic neuronal cytosolic staining in both types of specimen. CONCLUSIONS: We confirm that intracellular and extracellular A11-reactive species are present in situ in sCJD cases and GSS, and that immunoreactivity for A11 and Prp(Sc) overlaps. We argue that the A11-reactive species are indeed composed of oligomeric Prp(Sc), and suggest that the toxic effects of Prp(Sc) oligomers could be related to the generic oligomeric conformation recognized by A11.


Assuntos
Síndrome de Creutzfeldt-Jakob/patologia , Doença de Gerstmann-Straussler-Scheinker/patologia , Proteínas PrPC/metabolismo , Doenças Priônicas/patologia , Idoso , Idoso de 80 Anos ou mais , Síndrome de Creutzfeldt-Jakob/metabolismo , Feminino , Doença de Gerstmann-Straussler-Scheinker/congênito , Doença de Gerstmann-Straussler-Scheinker/metabolismo , Humanos , Imuno-Histoquímica/métodos , Masculino , Pessoa de Meia-Idade , Oligonucleotídeos , Doenças Priônicas/metabolismo , Conformação Proteica , Isoformas de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA