Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 27(10): 1711-1722, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29514215

RESUMO

Defects in the MFSD8 gene encoding the lysosomal membrane protein CLN7 lead to CLN7 disease, a neurodegenerative lysosomal storage disorder belonging to the group of neuronal ceroid lipofuscinoses. Here, we have performed a SILAC-based quantitative analysis of the lysosomal proteome using Cln7-deficient mouse embryonic fibroblasts (MEFs) from a Cln7 knockout (ko) mouse model. From 3335 different proteins identified, we detected 56 soluble lysosomal proteins and 29 highly abundant lysosomal membrane proteins. Quantification revealed that the amounts of 12 different soluble lysosomal proteins were significantly reduced in Cln7 ko MEFs compared with wild-type controls. One of the most significantly depleted lysosomal proteins was Cln5 protein that underlies another distinct neuronal ceroid lipofuscinosis disorder. Expression analyses showed that the mRNA expression, biosynthesis, intracellular sorting and proteolytic processing of Cln5 were not affected, whereas the depletion of mature Cln5 protein was due to increased proteolytic degradation by cysteine proteases in Cln7 ko lysosomes. Considering the similar phenotypes of CLN5 and CLN7 patients, our data suggest that depletion of CLN5 may play an important part in the pathogenesis of CLN7 disease. In addition, we found a defect in the ability of Cln7 ko MEFs to adapt to starvation conditions as shown by impaired mammalian target of rapamycin complex 1 reactivation, reduced autolysosome tubulation and increased perinuclear accumulation of autolysosomes compared with controls. In summary, depletion of multiple soluble lysosomal proteins suggest a critical role of CLN7 for lysosomal function, which may contribute to the pathogenesis and progression of CLN7 disease.


Assuntos
Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/genética , Glicoproteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Lipofuscinoses Ceroides Neuronais/genética , Animais , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/fisiopatologia , Proteínas de Membrana Lisossomal , Lisossomos/genética , Lisossomos/metabolismo , Camundongos , Camundongos Knockout , Lipofuscinoses Ceroides Neuronais/fisiopatologia , Processamento de Proteína Pós-Traducional , Transporte Proteico/genética , Proteínas/genética , Serina-Treonina Quinases TOR/genética
2.
Hum Mutat ; 40(7): 842-864, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30882951

RESUMO

Mutations in the GNPTAB and GNPTG genes cause mucolipidosis (ML) type II, type III alpha/beta, and type III gamma, which are autosomal recessively inherited lysosomal storage disorders. GNPTAB and GNPTG encode the α/ß-precursor and the γ-subunit of N-acetylglucosamine (GlcNAc)-1-phosphotransferase, respectively, the key enzyme for the generation of mannose 6-phosphate targeting signals on lysosomal enzymes. Defective GlcNAc-1-phosphotransferase results in missorting of lysosomal enzymes and accumulation of non-degradable macromolecules in lysosomes, strongly impairing cellular function. MLII-affected patients have coarse facial features, cessation of statural growth and neuromotor development, severe skeletal abnormalities, organomegaly, and cardiorespiratory insufficiency leading to death in early childhood. MLIII alpha/beta and MLIII gamma are attenuated forms of the disease. Since the identification of the GNPTAB and GNPTG genes, 564 individuals affected by MLII or MLIII have been described in the literature. In this report, we provide an overview on 258 and 50 mutations in GNPTAB and GNPTG, respectively, including 58 novel GNPTAB and seven novel GNPTG variants. Comprehensive functional studies of GNPTAB missense mutations did not only gain insights into the composition and function of the GlcNAc-1-phosphotransferase, but also helped to define genotype-phenotype correlations to predict the clinical outcome in patients.


Assuntos
Mucolipidoses/genética , Mutação , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Éxons , Humanos , Íntrons , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/classificação , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/genética , Mucolipidoses/classificação , Fenótipo , Prognóstico , Domínios Proteicos , Transferases (Outros Grupos de Fosfato Substituídos)/química
3.
Brain ; 139(Pt 2): 317-37, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26715604

RESUMO

Single gene disorders of the autophagy pathway are an emerging, novel and diverse group of multisystem diseases in children. Clinically, these disorders prominently affect the central nervous system at various stages of development, leading to brain malformations, developmental delay, intellectual disability, epilepsy, movement disorders, and neurodegeneration, among others. Frequent early and severe involvement of the central nervous system puts the paediatric neurologist, neurogeneticist, and neurometabolic specialist at the forefront of recognizing and treating these rare conditions. On a molecular level, mutations in key autophagy genes map to different stages of this highly conserved pathway and thus lead to impairment in isolation membrane (or phagophore) and autophagosome formation, maturation, or autophagosome-lysosome fusion. Here we discuss 'congenital disorders of autophagy' as an emerging subclass of inborn errors of metabolism by using the examples of six recently identified monogenic diseases: EPG5-related Vici syndrome, beta-propeller protein-associated neurodegeneration due to mutations in WDR45, SNX14-associated autosomal-recessive cerebellar ataxia and intellectual disability syndrome, and three forms of hereditary spastic paraplegia, SPG11, SPG15 and SPG49 caused by SPG11, ZFYVE26 and TECPR2 mutations, respectively. We also highlight associations between defective autophagy and other inborn errors of metabolism such as lysosomal storage diseases and neurodevelopmental diseases associated with the mTOR pathway, which may be included in the wider spectrum of autophagy-related diseases from a pathobiological point of view. By exploring these emerging themes in disease pathogenesis and underlying pathophysiological mechanisms, we discuss how congenital disorders of autophagy inform our understanding of the importance of this fascinating cellular pathway for central nervous system biology and disease. Finally, we review the concept of modulating autophagy as a therapeutic target and argue that congenital disorders of autophagy provide a unique genetic perspective on the possibilities and challenges of pathway-specific drug development.


Assuntos
Autofagia/fisiologia , Encefalopatias Metabólicas Congênitas/genética , Encefalopatias Metabólicas Congênitas/metabolismo , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/genética , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/metabolismo , Agenesia do Corpo Caloso/diagnóstico , Agenesia do Corpo Caloso/genética , Agenesia do Corpo Caloso/metabolismo , Encefalopatias Metabólicas Congênitas/diagnóstico , Catarata/diagnóstico , Catarata/genética , Catarata/metabolismo , Humanos , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/diagnóstico , Lisossomos/genética , Lisossomos/metabolismo , Paraplegia Espástica Hereditária/diagnóstico , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo
4.
Proc Natl Acad Sci U S A ; 109(35): E2334-42, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22826245

RESUMO

The role of astrocytes in neurodegenerative processes is increasingly appreciated. Here we investigated the contribution of astrocytes to neurodegeneration in multiple sulfatase deficiency (MSD), a severe lysosomal storage disorder caused by mutations in the sulfatase modifying factor 1 (SUMF1) gene. Using Cre/Lox mouse models, we found that astrocyte-specific deletion of Sumf1 in vivo induced severe lysosomal storage and autophagy dysfunction with consequential cytoplasmic accumulation of autophagic substrates. Lysosomal storage in astrocytes was sufficient to induce degeneration of cortical neurons in vivo. Furthermore, in an ex vivo coculture assay, we observed that Sumf1(-/-) astrocytes failed to support the survival and function of wild-type cortical neurons, suggesting a non-cell autonomous mechanism for neurodegeneration. Compared with the astrocyte-specific deletion of Sumf1, the concomitant removal of Sumf1 in both neurons and glia in vivo induced a widespread neuronal loss and robust neuroinflammation. Finally, behavioral analysis of mice with astrocyte-specific deletion of Sumf1 compared with mice with Sumf1 deletion in both astrocytes and neurons allowed us to link a subset of neurological manifestations of MSD to astrocyte dysfunction. This study indicates that astrocytes are integral components of the neuropathology in MSD and that modulation of astrocyte function may impact disease course.


Assuntos
Astrócitos/patologia , Doença da Deficiência de Múltiplas Sulfatases/patologia , Degeneração Neural/patologia , Neurônios/patologia , Sulfatases/genética , Animais , Comunicação Celular/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Cerebelo/patologia , Córtex Cerebral/patologia , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/genética , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/patologia , Lisossomos/patologia , Lisossomos/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microscopia Eletrônica , Doença da Deficiência de Múltiplas Sulfatases/genética , Neurônios/ultraestrutura , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Células de Purkinje/patologia , Células de Purkinje/ultraestrutura
5.
Metab Brain Dis ; 29(1): 1-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24307179

RESUMO

Lysosomal storage diseases are inherited metabolic disorders caused by genetic defects causing deficiency of various lysosomal proteins, and resultant accumulation of non-degraded compounds. They are multisystemic diseases, and in most of them (>70%) severe brain dysfunctions are evident. However, expression of various phenotypes in particular diseases is extremely variable, from non-neuronopathic to severely neurodegenerative in the deficiency of the same enzyme. Although all lysosomal storage diseases are monogenic, clear genotype-phenotype correlations occur only in some cases. In this article, we present an overview on various factors and processes, both general and specific for certain disorders, that can significantly modulate expression of phenotypes in these diseases. On the basis of recent reports describing studies on both animal models and clinical data, we propose a hypothesis that efficiency of production of compounds that cannot be degraded due to enzyme deficiency might be especially important in modulation of phenotypes of patients suffering from lysosomal storage diseases.


Assuntos
Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/patologia , Animais , Comportamento/fisiologia , Modelos Animais de Doenças , Progressão da Doença , Enzimas/genética , Enzimas/fisiologia , Interação Gene-Ambiente , Genótipo , Humanos , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/genética , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/metabolismo , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/psicologia , Lisossomos/enzimologia , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Camundongos , Camundongos Knockout , Modelos Biológicos , Neurônios/metabolismo , Penetrância , Fenótipo
6.
Proc Natl Acad Sci U S A ; 108(42): 17521-6, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21987827

RESUMO

Synaptic terminals are known to expand and contract throughout an animal's life. The physiological constraints and demands that regulate appropriate synaptic growth and connectivity are currently poorly understood. In previous work, we identified a Drosophila model of lysosomal storage disease (LSD), spinster (spin), with larval neuromuscular synapse overgrowth. Here we identify a reactive oxygen species (ROS) burden in spin that may be attributable to previously identified lipofuscin deposition and lysosomal dysfunction, a cellular hallmark of LSD. Reducing ROS in spin mutants rescues synaptic overgrowth and electrophysiological deficits. Synapse overgrowth was also observed in mutants defective for protection from ROS and animals subjected to excessive ROS. ROS are known to stimulate JNK and fos signaling. Furthermore, JNK and fos in turn are known potent activators of synapse growth and function. Inhibiting JNK and fos activity in spin rescues synapse overgrowth and electrophysiological deficits. Similarly, inhibiting JNK, fos, and jun activity in animals with excessive oxidative stress rescues the overgrowth phenotype. These data suggest that ROS, via activation of the JNK signaling pathway, are a major regulator of synapse overgrowth. In LSD, increased autophagy contributes to lysosomal storage and, presumably, elevated levels of oxidative stress. In support of this suggestion, we report here that impaired autophagy function reverses synaptic overgrowth in spin. Our data describe a previously unexplored link between oxidative stress and synapse overgrowth via the JNK signaling pathway.


Assuntos
Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Junção Neuromuscular/crescimento & desenvolvimento , Junção Neuromuscular/metabolismo , Animais , Animais Geneticamente Modificados , Autofagia/genética , Autofagia/fisiologia , Modelos Animais de Doenças , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Genes de Insetos , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/genética , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/metabolismo , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/patologia , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Neurológicos , Mutação , Estresse Oxidativo , Fator de Transcrição AP-1/metabolismo
7.
Rev Neurol (Paris) ; 169 Suppl 1: S63-9, 2013 Feb.
Artigo em Francês | MEDLINE | ID: mdl-23452774

RESUMO

Inborn errors of metabolism (IEM) are caused by mutations in genes coding for enzymes and other proteins involved in cell metabolism. Many IEM can be treated effectively. Although IEM have usually been considered pediatric diseases, they can present at any age, mostly with neurological and psychiatric symptoms, and therefore constitute an integral subspeciality of neurology. However, although they are increasingly being recognized, IEM remain rare, and the care for patients should be optimized in specialized reference centers. Since the number of different diseases is very large, the diagnostic approach needs to be rigorous, starting at the clinics and calling upon the additional help of neuroradiology, biochemistry and molecular biology. In practice, it is important for the neurologist to recognize: (1) when to start suspecting an IEM; and (2) how to correlate a given clinical presentation with one of the five major groups of diseases affecting the nervous system. These five groups may be classified as: (a) energy metabolism disorders such as respiratory chain disorders, pyruvate dehydrogenase deficiency, GLUT1 deficiency, fatty-acid ß-oxidation defects, and disorders involving key cofactors such as electron transfer flavoprotein, thiamine, biotin, riboflavin, vitamin E and coenzyme Q10; (b) intoxication syndromes such as porphyrias, urea-cycle defects, homocystinurias, organic acidurias and amino acidopathies; (c) lipid-storage disorders such as lysosomal storage disorders (Krabbe disease, metachromatic leukodystrophy, Niemann - Pick disease type C, Fabry disease and Gaucher's disease), peroxisomal disorders (adrenomyeloneuropathy, Refsum disease, disorders of pristanic acid metabolism, peroxisome biogenesis disorders), Tangier disease and cerebrotendinous xanthomatosis; (d) metal-storage diseases such as iron, copper and manganese metabolic disorders; and (e) neurotransmitter metabolism defects, including defects of serotonin, dopamine and glycine metabolism.


Assuntos
Erros Inatos do Metabolismo/terapia , Doenças do Sistema Nervoso/terapia , Adulto , Encefalopatias Metabólicas Congênitas/genética , Encefalopatias Metabólicas Congênitas/terapia , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Humanos , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/terapia , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/genética , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/terapia , Erros Inatos do Metabolismo/classificação , Erros Inatos do Metabolismo/complicações , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo dos Metais/genética , Erros Inatos do Metabolismo dos Metais/terapia , Doenças do Sistema Nervoso/classificação , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/genética , Neurotransmissores/metabolismo
8.
J Inherit Metab Dis ; 34(5): 983-90, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21614584

RESUMO

Lysosomal storage disorders (LSD) are monogenic diseases caused by the deficiency of different lysosomal enzymes that degrade complex substrates such as glycosaminoglycans, sphingolipids, and others. As a consequence there is multisystemic storage of these substrates. Most treatments for these disorders are based in the fact that most of these enzymes are soluble and can be internalized by adjacent cells via mannose-6-phosphate receptor. In that sense, these disorders are good candidates to be treated by somatic gene therapy based on cell microencapsulation. Here, we review the existing data about this approach focused on the LSD treatments, the advantages and limitations faced by these studies.


Assuntos
Transplante de Células/métodos , Composição de Medicamentos/estatística & dados numéricos , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/terapia , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Transplante de Células/instrumentação , Composição de Medicamentos/métodos , Técnicas de Transferência de Genes , Terapia Genética/instrumentação , Terapia Genética/métodos , Humanos , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/genética , Modelos Biológicos
9.
Rev Neurol (Paris) ; 167(1): 72-6, 2011 Jan.
Artigo em Francês | MEDLINE | ID: mdl-21195440

RESUMO

Inherited cerebellar ataxias constitute a complicated and heterogeneous group of neurodegenerative disorders affecting the cerebellum and/or spinocerebellar tract, spinal cord and peripheral nerves. A peripheral neuropathy is frequently seen in inherited cerebellar ataxias although it rarely reveals the disease. Moreover, the peripheral neuropathy is helpful for the diagnostic procedure and contributes to the functional prognosis of the disease. Thus, electroneuromyography is essential in the algorithm for the diagnosis of inherited cerebellar ataxias, as well as brain MRI (looking especially for cerebellar atrophy) and the assessment of several biomarkers (alpha-foetoprotein, vitamin E, albumin, LDL cholesterol, lactic acid, phytanic acid).


Assuntos
Ataxia Cerebelar/complicações , Doenças do Sistema Nervoso Periférico/etiologia , Abetalipoproteinemia/complicações , Biomarcadores , Encéfalo/patologia , Encefalopatias Metabólicas Congênitas/complicações , Encefalopatias Metabólicas Congênitas/genética , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Eletromiografia , Síndrome do Cromossomo X Frágil/complicações , Síndrome do Cromossomo X Frágil/genética , Genes Dominantes , Genes Recessivos , Humanos , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/complicações , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/genética , Imageamento por Ressonância Magnética , Miopatias Mitocondriais/complicações , Miopatias Mitocondriais/genética , Deficiência de Vitamina E/complicações , Deficiência de Vitamina E/genética
10.
Hum Mol Genet ; 17(4): 469-77, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17989065

RESUMO

It is estimated that more than 40 different lysosomal storage disorders (LSDs) cumulatively affect one in 5000 live births, and in the majority of the LSDs, neurodegeneration is a prominent feature. Neuronal ceroid lipofuscinoses (NCLs), as a group, represent one of the most common (one in 12,500 births) neurodegenerative LSDs. The infantile NCL (INCL) is the most devastating neurodegenerative LSD, which is caused by inactivating mutations in the palmitoyl-protein thioesterase-1 (PPT1) gene. We previously reported that neuronal death by apoptosis in INCL, and in the PPT1-knockout (PPT1-KO) mice that mimic INCL, is at least in part caused by endoplasmic reticulum (ER) and oxidative stresses. In the present study, we sought to determine whether ER and oxidative stresses are unique manifestations of INCL or they are common to both neurodegenerative and non-neurodegenerative LSDs. Unexpectedly, we found that ER and oxidative stresses are common manifestations in cells from both neurodegenerative and non-neurodegenerative LSDs. Moreover, all LSD cells studied show extraordinary sensitivity to brefeldin-A-induced apoptosis, which suggests pre-existing ER stress conditions. Further, we uncovered that chemical disruption of lysosomal homeostasis in normal cells causes ER stress, suggesting a cross-talk between the lysosomes and the ER. Most importantly, we found that chemical chaperones that alleviate ER and oxidative stresses are also cytoprotective in all forms of LSDs studied. We propose that ER and oxidative stresses are common mediators of apoptosis in both neurodegenerative and non-neurodegenerative LSDs and suggest that the beneficial effects of chemical/pharmacological chaperones are exerted, at least in part, by alleviating these stress conditions.


Assuntos
Apoptose/fisiologia , Retículo Endoplasmático/metabolismo , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/metabolismo , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/patologia , Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/patologia , Apoptose/efeitos dos fármacos , Calnexina/genética , Catalase/genética , Células Cultivadas , Proteínas de Ligação a DNA/genética , Retículo Endoplasmático/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Gangliosidose GM1/genética , Gangliosidose GM1/metabolismo , Gangliosidose GM1/patologia , Marcadores Genéticos , Glutarredoxinas/genética , Proteínas de Choque Térmico/genética , Humanos , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/tratamento farmacológico , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/genética , Lisossomos/metabolismo , Metilaminas/farmacologia , ATPases Mitocondriais Próton-Translocadoras/genética , Chaperonas Moleculares/genética , Lipofuscinoses Ceroides Neuronais/tratamento farmacológico , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo , Lipofuscinoses Ceroides Neuronais/patologia , Proteínas Nucleares/genética , Estresse Oxidativo/genética , Dobramento de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição de Fator Regulador X , Superóxido Dismutase/genética , Ácido Tauroquenodesoxicólico/farmacologia , Fatores de Transcrição
11.
J Inherit Metab Dis ; 33(4): 315-29, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20490930

RESUMO

The purpose of this review is to describe neurological phenotypes associated with lysosomal storage diseases (LSDs), focusing on features arising from primary neuronal involvement. Clinical presentation, progression and genetic data, are discussed in detail in Part 2, the electronic material. Main features are summarized in Part 1. Insights gained from several observational studies are discussed. Prospective studies of the natural history of most neuronopathic LSDs have been hampered by the rarity of these conditions and the short survival of affected patients. Increasingly, longitudinal observations relating to neurological manifestations are being reported. Better clinical studies are necessary, including repeated measurements of disease progression to facilitate the development of sensitive scoring systems and appropriate counseling of affected individuals and their families. Ideally, clinical studies should involve a large cohort. As treatment becomes available, knowledge of disease expression and factors that influence the phenotype may enable critical assessment of therapeutic outcomes. It is hoped that increased familiarity with the clinical expression of individual LSDs will allow early diagnosis, so families at risk are given options to consider during future pregnancies. Early diagnosis also permits the introduction of timely intervention, to favoring improved outcome in cases that are potentially treatable.


Assuntos
Aconselhamento Genético , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso , Humanos , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/diagnóstico , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/genética , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/fisiopatologia
12.
J Neurosci ; 28(46): 11778-84, 2008 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-19005039

RESUMO

At the 2008 Annual Meeting of the Society for Neuroscience, a Mini-Symposium entitled "Contributions to TRP Channels to Neurological Disease" included talks from six heads of newly established laboratories, each with a unique research focus, model system, and set of experimental tools. Some of the questions addressed in these talks include the following. What is the role of transient receptor potential (TRP) channels in pain perception? How do normally functioning TRP channels contribute to cell death pathways? What are the characteristics of TRPpathies, disease states that result from overactive or underactive TRP channels? How are TRP channels regulated by signal transduction cascades? This review summarizes recent results from those laboratories and provides six perspectives on the subject of TRP channels and disease.


Assuntos
Doenças do Sistema Nervoso/metabolismo , Sistema Nervoso/metabolismo , Dor/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatologia , Surdez/genética , Surdez/metabolismo , Surdez/fisiopatologia , Predisposição Genética para Doença/genética , Humanos , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/genética , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/metabolismo , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/fisiopatologia , Degeneração Neural/genética , Degeneração Neural/metabolismo , Degeneração Neural/fisiopatologia , Sistema Nervoso/fisiopatologia , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/fisiopatologia , Dor/genética , Dor/fisiopatologia , Canais de Potencial de Receptor Transitório/genética
13.
Neuron ; 36(3): 335-8, 2002 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-12408836

RESUMO

In this issue of Neuron, Sweeney and Davis present a beautiful characterization of Drosophila mutants in a gene named spinster. The results indicate a function of the endocytic pathway in regulating transforming growth factor-beta (TGF-beta) signaling at the Drosophila motor synapse. This study provides important new information at an intersection of several disciplines, including membrane traffic, lipid organization, synaptic signaling, and neurodegenerative lysosomal storage disease.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Proteínas de Membrana/metabolismo , Mutação/genética , Junção Neuromuscular/crescimento & desenvolvimento , Transmissão Sináptica/genética , Fator de Crescimento Transformador beta/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Endocitose/genética , Humanos , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/genética , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/metabolismo , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/fisiopatologia , Proteínas de Membrana/genética , Junção Neuromuscular/metabolismo , Transdução de Sinais/genética , Fator de Crescimento Transformador beta/genética
14.
Biochem Biophys Res Commun ; 377(3): 843-6, 2008 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-18952067

RESUMO

A subgroup of neutral lipid storage disease has been recently associated with myopathy (NLSDM) and attributed to mutations in the gene (PNPLA2) encoding an adipose triglyceride lipase involved in the degradation of intracellular triglycerides. Five NLSDM patients have been described thus far and we reported three additional patients. A 44-year old Iranian woman and two Italian brothers, aged 40 and 35, presented with exercise intolerance and proximal limb weakness, elevated CK levels, and Jordan's anomaly. Muscle biopsies showed marked neutral lipid accumulation in all patients. The 10 exons and the intron-exon junctions of the PNPLA2 gene were sequenced. Two novel homozygous mutations in exon 5 of PNPLA2 gene were found (c.695delT and c.542delAC). Both mutations resulted in frameshifts leading to premature stop codons (p.L255X and p.I212X, respectively). These mutations predict a truncated PNPLA2 protein lacking the C-terminal hydrophobic domain. These findings indicate that NLSDM is rare, but genetically heterogeneous.


Assuntos
Mutação da Fase de Leitura , Lipase/genética , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/genética , Doenças Musculares/genética , Adulto , Biópsia , Éxons/genética , Feminino , Humanos , Lipase/metabolismo , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/metabolismo , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/patologia , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia
15.
J Neuropathol Exp Neurol ; 66(8): 687-97, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17882013

RESUMO

The lysosomal storage disease alpha-mannosidosis is due to absence or defective function of lysosomal alpha-mannosidase, resulting in primary storage of undegraded mannose-rich oligosaccharides. Disease has been described in humans, cattle, cats, mice, and guinea pigs and is characterized in all species by progressive neurologic deterioration and premature death. We analyzed the neurodegenerative processes relative to clinical disease in alpha-mannosidosis guinea pigs as a human disease model, from birth to end-stage disease. Before the onset of obvious neurologic abnormalities at 2 months, we observed widespread neuronal lysosomal vacuolation including secondary accumulation of GM3 ganglioside, widespread axonal spheroids, and reduced myelination of white matter. Histopathologic changes subsequently showed rapid progression in severity in a pattern common to a number of different lysosomal storage disorders, with additional abnormalities including accumulation of GM2 ganglioside and cholesterol, astrogliosis, neuron loss particularly in the cerebellum, and activation and infiltration of the CNS with microglia/macrophages. End-stage clinical disease was seen at 10 to 14 months of age. Our findings show that complex neuropathologic changes in alpha-mannosidosis guinea pigs are already present at birth, before clinical changes are evident, and similar events are likely to occur in patients with this disorder.


Assuntos
Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/patologia , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/genética , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/patologia , alfa-Manosidase/genética , Fatores Etários , Animais , Animais Recém-Nascidos , Sistema Nervoso Central/ultraestrutura , Modelos Animais de Doenças , Progressão da Doença , Filipina/metabolismo , Gangliosídeo G(M3)/metabolismo , Gangliosidoses GM2/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Cobaias , Microscopia Eletrônica de Transmissão/métodos , Coloração pela Prata/métodos
16.
Rev Neurol ; 64(s03): S25-S28, 2017 May 17.
Artigo em Espanhol | MEDLINE | ID: mdl-28524215

RESUMO

INTRODUCTION: Individually, neurometabolic diseases are ultra rare, but for some of them there is an effective treatment. DEVELOPMENT: Several recent therapeutic advances are reviewed. Today, the possibilities of treatment for lysosomal diseases have improved. In recent years the use of enzyme replacement therapy has become more widely extended to treat mucopolysaccharidosis type IVA (Morquio A), mucopolysaccharidosis type VII (Sly syndrome), lysosomal acid lipase deficiency and alpha-mannosidosis. It has been proven that very early treatment of mucopolysaccharidoses can change their natural course. Intrathecal enzyme replacement therapy is being tried in some mucopolysaccharidoses with cognitive involvement, in an attempt to halt neurodegeneration. Very positive results have been obtained with genetically modified autotransplants in late-onset infantile metachromatic leukodystrophy and research is being conducted on other pathologies (mucopolysaccharidosis type III, X-linked adrenoleukodystrophy). Novel outcomes are also being achieved in the treatment of some encephalopathies that are sensitive to vitamins or cofactors: triple therapy in pyridoxine dependency, treatment with thiamine for some subacute encephalopathies with involvement of the basal ganglia, treatment with folinic acid for children with cerebral folate deficiency, or treatment with cyclic pyranopterin monophosphate in molybdenum cofactor deficiency type A. CONCLUSIONS: As neuropaediatricians we must update our knowledge, especially in the case of treatable neurometabolic pathologies, since early treatment can change their prognosis significantly.


TITLE: Terapias novedosas en enfermedades neurometabolicas: importancia de una intervencion precoz.Introduccion. Las enfermedades neurometabolicas son individualmente ultrarraras, pero algunas de ellas tienen un tratamiento eficaz. Desarrollo. Se revisan algunas novedades terapeuticas. Las enfermedades lisosomales tienen actualmente mejores posibilidades de tratamiento. En los ultimos años se ha extendido el uso de la terapia enzimatica sustitutiva a la mucopolisacaridosis tipo IVA (Morquio A), a la mucopolisacaridosis tipo VII (enfermedad de Sly), al deficit de lipasa acida lisosomal y a la alfa-manosidosis. Se ha constatado que un tratamiento muy precoz de las mucopolisacaridosis puede cambiar su historia natural. Se esta probando la terapia enzimatica sustitutiva intratecal en algunas mucopolisacaridosis con afectacion cognitiva, en el intento de frenar la neurodegeneracion. Se han obtenido resultados muy positivos con autotrasplante modificado geneticamente en leucodistrofia metacromatica infantil tardia y se esta trabajando en otras patologias (mucopolisacaridosis tipo III, adrenoleucodistrofia ligada a X). Tambien hay novedades en la terapia de algunas encefalopatias sensibles a vitaminas o cofactores: la triple terapia en la dependencia de piridoxina, el tratamiento con tiamina de algunas encefalopatias subagudas con afectacion de ganglios basales, el tratamiento con acido folinico de niños con deficiencia de folato cerebral, o el tratamiento con monofosfato de piranopterina ciclico en los defectos de cofactor de molibdeno de tipo A. Conclusiones. Los neuropediatras debemos actualizar nuestro conocimiento especialmente en aquellas patologias neurometabolicas tratables, dado que una terapia precoz puede cambiar de forma significativa su pronostico.


Assuntos
Encefalopatias Metabólicas Congênitas/terapia , Intervenção Médica Precoce , Doenças do Sistema Nervoso/terapia , Terapias em Estudo , Deficiência de Vitaminas/terapia , Encefalopatias Metabólicas Congênitas/diagnóstico , Encefalopatias Metabólicas Congênitas/genética , Proteínas de Transporte/metabolismo , Criança , Ensaios Clínicos como Assunto , Coenzimas/deficiência , Coenzimas/uso terapêutico , Diagnóstico Precoce , Terapia de Reposição de Enzimas , Epilepsia/genética , Epilepsia/metabolismo , Epilepsia/terapia , Terapia Genética , Humanos , Recém-Nascido , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/tratamento farmacológico , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/genética , Doenças do Sistema Nervoso/diagnóstico
17.
Postepy Biochem ; 52(1): 16-23, 2006.
Artigo em Polonês | MEDLINE | ID: mdl-16869297

RESUMO

Tripeptidyl-peptidase I (TPPI) is an acidic lysosomal peptidase that removes tripeptides from an unmodified N-terminus of small proteins and polypeptides. In humans, TPP I constitutes an integral part of the lysosomal proteolytic apparatus, which, includes numerous hydrolytic enzymes, mostly cysteine proteases (cathepsin B, C, H, K, L, and others), but also serine (cathepsin A) and aspartic (cathepsin D) proteases. The combination of endo- and exopeptidase activities of these enzymes allows for efficient digestion of the diverse proteins transported to the lysosomes, releasing free amino acids and dipeptides that are transported back to the cytoplasm and reused according to the metabolic needs of the cell. The role of TPP I in normal lysosome functioning is underscored by the genetic association of the enzyme with one form of a group of the developmental neurodegenerative disorders of childhood--the neuronal ceroid lipofuscinoses (NCLs). The scope of this article is to review the most recent data, mostly from author's laboratory, on the biology and pathology of TPP I. NCLs are also shortly reviewed with the special emphasis on CLN2 form resulting from mutations in TPP I gene.


Assuntos
Endopeptidases/metabolismo , Lisossomos/metabolismo , Lipofuscinoses Ceroides Neuronais/enzimologia , Aminopeptidases , Animais , Encéfalo/enzimologia , Encéfalo/fisiopatologia , Dipeptidil Peptidases e Tripeptidil Peptidases , Endopeptidases/biossíntese , Endopeptidases/química , Endopeptidases/genética , Ativação Enzimática , Humanos , Concentração de Íons de Hidrogênio , Lactente , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/enzimologia , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/genética , Mutação , Biogênese de Organelas , Inibidores de Proteases/farmacologia , Serina Proteases , Frações Subcelulares/enzimologia , Tripeptidil-Peptidase 1
19.
Eur Rev Med Pharmacol Sci ; 19(7): 1219-26, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25912581

RESUMO

Gaucher disease is a multisystemic disorder that affects men and woman in equal numbers and occurs in all ethnic groups at any age with racial variations and an estimated worldwide incidence of 1/75,000. It is caused by a genetic deficient activity of the lysosomal enzyme glucocerebrosidase due to mutations in the ß-glucocerebrosidase gene, and resulting in lack of glucocerebroside degradation. The subsequent accumulation of glucocerebroside in lysosomes of tissue macrophages primarily in the liver, bone marrow and spleen, causes damage in haematological, skeletal and nervous systems. The clinical manifestations show a high degree of variability with symptoms that varies according to organs involved. In many cases, these disorders do not correlate with mutations in the ß-glucocerebrosidase gene. Although several mutations have been identified as responsible for the deficient activity of glucocerebrosidase, mechanisms by which this enzymatic defect leads to Gaucher disease remain poorly understood. Recent reports indicate the implication of complex mechanisms, including enzyme deficiency, substrate accumulation, unfolded protein response, and macrophage activation. Further elucidating these mechanisms will advance understanding of Gaucher disease and related disorders.


Assuntos
Doença de Gaucher/enzimologia , Doença de Gaucher/genética , Glucosilceramidase/genética , Animais , Doença de Gaucher/diagnóstico , Glucosilceramidase/deficiência , Humanos , Fígado/enzimologia , Fígado/patologia , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/diagnóstico , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/enzimologia , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/genética , Mutação/genética , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/genética
20.
Cell Rep ; 12(12): 2009-20, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26387958

RESUMO

Here, we evaluate the mechanisms underlying the neurodevelopmental deficits in Drosophila and mouse models of lysosomal storage diseases (LSDs). We find that lysosomes promote the growth of neuromuscular junctions (NMJs) via Rag GTPases and mechanistic target of rapamycin complex 1 (MTORC1). However, rather than employing S6K/4E-BP1, MTORC1 stimulates NMJ growth via JNK, a determinant of axonal growth in Drosophila and mammals. This role of lysosomal function in regulating JNK phosphorylation is conserved in mammals. Despite requiring the amino-acid-responsive kinase MTORC1, NMJ development is insensitive to dietary protein. We attribute this paradox to anaplastic lymphoma kinase (ALK), which restricts neuronal amino acid uptake, and the administration of an ALK inhibitor couples NMJ development to dietary protein. Our findings provide an explanation for the neurodevelopmental deficits in LSDs and suggest an actionable target for treatment.


Assuntos
Drosophila melanogaster/genética , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/genética , Lisossomos/metabolismo , MAP Quinase Quinase 4/genética , Complexos Multiproteicos/genética , Junção Neuromuscular/genética , Serina-Treonina Quinases TOR/genética , Quinase do Linfoma Anaplásico , Animais , Proteínas de Ligação ao Cálcio , Proteínas Alimentares/administração & dosagem , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/metabolismo , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/patologia , Lisossomos/efeitos dos fármacos , Lisossomos/patologia , MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/metabolismo , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA