Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 666
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 21(7): 766-776, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32424367

RESUMO

Tissue-resident memory T (TRM) cells, functionally distinct from circulating memory T cells, have a critical role in protective immunity in tissues, are more efficacious when elicited after vaccination and yield more effective antitumor immunity, yet the signals that direct development of TRM cells are incompletely understood. Here we show that type 1 regulatory T (Treg) cells, which express the transcription factor T-bet, promote the generation of CD8+ TRM cells. The absence of T-bet-expressing type 1 Treg cells reduces the presence of TRM cells in multiple tissues and increases pathogen burden upon infectious challenge. Using infection models, we show that type 1 Treg cells are specifically recruited to local inflammatory sites via the chemokine receptor CXCR3. Close proximity with effector CD8+ T cells and Treg cell expression of integrin-ß8 endows the bioavailability of transforming growth factor-ß in the microenvironment, thereby promoting the generation of CD8+ TRM cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Comunicação Celular/imunologia , Diferenciação Celular/imunologia , Memória Imunológica , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Linfócitos T CD8-Positivos/transplante , Coccidiose/imunologia , Coccidiose/parasitologia , Modelos Animais de Doenças , Eimeria/imunologia , Feminino , Humanos , Cadeias beta de Integrinas/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Receptores CXCR3/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/transplante , Fator de Crescimento Transformador beta/metabolismo
2.
Avian Pathol ; 50(2): 109-111, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33464927

RESUMO

The use of novel vector vaccines (viral, bacterial and apicomplexan) can have a significant impact on the control of poultry disease. They offer a cost effective, convenient and effective means of mass vaccine delivery combined with the ability to switch on both antibody and cell-mediated immunity. In addition, recent viral vector constructs have enabled farmers to vaccinate against up to three important pathogens with a single in ovo administration. As the technology develops, it is likely that this means of vaccine administration will be utilized further and it will play a key role in the control of both existing and new emerging diseases of poultry in the future.


Assuntos
Doenças Transmissíveis Emergentes/prevenção & controle , Eimeria/imunologia , Vírus da Varíola das Aves Domésticas/imunologia , Doenças das Aves Domésticas/prevenção & controle , Salmonella/imunologia , Vacinas/administração & dosagem , Animais , Doenças Transmissíveis Emergentes/patologia , Vírus da Varíola das Aves Domésticas/genética , Vetores Genéticos , Imunidade Celular , Imunidade Humoral , Aves Domésticas , Doenças das Aves Domésticas/patologia , Vacinação/veterinária , Vacinas Sintéticas
3.
Exp Parasitol ; 220: 108034, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33188795

RESUMO

Eimeria ninakohlyakimovae represents a highly pathogenic coccidian parasite causing severe haemorrhagic typhlocolitis in goat kids worldwide. NETosis was recently described as an efficient defense mechanism of polymorphonuclear neutrophils (PMN) acting against different parasites in vitro and in vivo. In vitro interactions of caprine PMN with parasitic stages of E. ninakohlyakimovae (i. e. oocysts and sporozoites) as well as soluble oocyst antigens (SOA) were analyzed at different ratios, concentrations and time spans. Extracellular DNA staining was used to illustrate classical molecules induced during caprine NETosis [i. e. histones (H3) and neutrophil elastase (NE)] via antibody-based immunofluorescence analyses. Functional inhibitor treatments with DPI and DNase I were applied to unveil role of NADPH oxidase (NOX) and characterize DNA-backbone composition of E. ninakohlyakimovae-triggered caprine NETosis. Scanning electron microscopy (SEM)- and immunofluorescence-analyses demonstrated that caprine PMN underwent NETosis upon contact with sporozoites and oocysts of E. ninakohlyakimovae, ensnaring filaments which firmly entrapped parasites. Detailed co-localization studies of E. ninakohlyakimovae-induced caprine NETosis revealed presence of PMN-derived DNA being adorned with nuclear H3 and NE corroborating molecular characteristics of NETosis. E. ninakohlyakoimovae-induced caprine NETosis was found to be NOX-independent since DPI inhibition led to a slight decrease of NETosis. Exposure of caprine PMN to vital E. ninakohlyakimovae sporozoites as well as SOA resulted in up-regulation of IL-12, TNF-α, IL-6, CCL2 and iNOS gene transcription in stimulated PMN. Since vital E. ninakohlyakimovae-sporozoites induced caprine NETosis, this effective entrapment mechanism might reduce initial sporozoite epithelial host cell invasion during goat coccidiosis ultimately resulting in less macromeront formation and reduced merozoites I production.


Assuntos
Coccidiose/veterinária , Citocinas/genética , Eimeria/imunologia , Doenças das Cabras/parasitologia , Neutrófilos/parasitologia , Análise de Variância , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Coccidiose/imunologia , Coccidiose/parasitologia , Colite/parasitologia , Colite/veterinária , Citocinas/metabolismo , Eimeria/genética , Eimeria/ultraestrutura , Hemorragia Gastrointestinal/parasitologia , Hemorragia Gastrointestinal/veterinária , Doenças das Cabras/imunologia , Cabras , Interleucina-12/genética , Interleucina-12/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Microscopia Eletrônica de Varredura/veterinária , NADPH Oxidases/metabolismo , Neutrófilos/imunologia , Neutrófilos/ultraestrutura , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Oocistos/genética , Oocistos/imunologia , Reação em Cadeia da Polimerase/veterinária , Esporozoítos/genética , Esporozoítos/imunologia , Transcrição Gênica , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Tiflite/parasitologia , Tiflite/veterinária , Regulação para Cima
4.
Exp Parasitol ; 216: 107945, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32615133

RESUMO

Despite decades of investigation to clarify protective mechanisms of anticoccidial responses, one crucial field is neglected, that is, protective memory responses in primed birds. Protective memory immunity is critical for host resistance to reinfection and is the basis of modern vaccinology, especially in developing successful subunit vaccines. There are important differences between the immune responses induced by infections and antigens delivered either as killed, recombinant proteins or as live, replicating vector vaccines or as DNA vaccines. Animals immunized with these vaccines may fail to develop protective memory immunity, and is still naïve to Eimeria infection. This may explain why limited success is achieved in developing next-generation anticoccidial vaccines. In this review, we try to decipher the protective memory responses against Eimeria infection, assess immune responses elicited by various anticoccidial vaccine candidates, and propose possible approaches to develop rational vaccines that can induce a protective memory response to chicken coccidiosis.


Assuntos
Galinhas/parasitologia , Coccidiose/veterinária , Eimeria/imunologia , Memória Imunológica/fisiologia , Doenças das Aves Domésticas/imunologia , Vacinas Protozoárias , Animais , Galinhas/imunologia , Coccidiose/imunologia , Coccidiose/prevenção & controle , Intestinos/imunologia , Intestinos/parasitologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Protozoárias/imunologia , Recidiva , Vacinação/veterinária , Vacinas de Subunidades Antigênicas/imunologia
5.
Parasitol Res ; 118(3): 969-976, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30694415

RESUMO

Rabbit coccidiosis is a common parasitic disease and responsible for enormous economic losses in the rabbit industry. Eimeria intestinalis, one of the highly pathogenic and common Eimeria species infecting rabbits, is considered as an indispensable species for the development of live oocyst vaccines against rabbit coccidiosis. In this study, we report the successful selection of a precocious line (EIP8) from a wild-type strain of E. intestinalis (WT) by successively collecting and propagating the early excreted progeny oocysts. The EIP8 line had a prepatent period of only 132 h compared to 204 h for the WT. Oocysts of EIP8 were notably different from those produced by the WT strain by their significantly larger size (mean length: 29.3 vs 27.6 µm and mean width 20.5 vs 19.8 µm). Examination of tissue sections prepared from EIP8-infected rabbits revealed that this precocious line undergoes only two generations of schizogony before differentiating into gametocytes by 120 h post-infection. In contrast, WT parasites undergo three generations of schizogony and gametocytes are present by 168 h post-infection. EIP8 multiplication capacity reduced by more than 35-fold and a concomitant decrease in pathogenicity was detected. Interestingly, immunization with 103 or 104 EIP8 oocysts provided sufficient protection against homologous challenge with wild-type parasites, as body weight gain of immunized and challenged rabbits was similar to that of untreated animals, as well as more than 90% reduction of oocyst output was detected in immunized and challenged animals when compared to unimmunized and challenged animals. Together, these results show that the EIP8 precocious line of E. intestinalis is an attenuated immunogenic strain and a suitable candidate for the development of a live vaccine against rabbit coccidiosis.


Assuntos
Coccidiose/veterinária , Eimeria/genética , Eimeria/fisiologia , Oocistos/citologia , Coelhos/parasitologia , Animais , Coccidiose/parasitologia , Coccidiose/prevenção & controle , Eimeria/imunologia
6.
Parasitol Res ; 118(11): 3173-3183, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31606835

RESUMO

Prevention of coccidiosis is one of the best ways of controlling disease. Therefore, the present study was carried out to evaluate the protective effect of ultraviolet (UV)-irradiated sporulated oocysts of Eimeria species against coccidiosis in layer chickens. One hundred forty-four one-day-old layer chicks were randomly divided into 4 groups (n = 36), including non-immunized/non-challenged negative control group (NC group), non-immunized/challenged control group (NIC group), non-irradiated sporulated oocyst/challenged group (CA group), and UV-irradiated sporulated oocyst/challenged (UV group). At the age of 4 days, chickens in groups UV and CA were both orally inoculated with 1.0 × 104 UV-irradiated and non-irradiated sporulated oocysts of Eimeria species, respectively. Chickens in groups NIC and NC were served as positive and negative controls, respectively. Chickens in all groups were orally challenged with 7.5 × 104 sporulated oocysts of Eimeria species except the NC group at the age of 21 days. The results revealed that chicks receiving UV-irradiated sporulated oocysts had no signs of illness with minimal or no changes in the cecal integrity and a significantly lower oocyst shedding (OPG) than in the NIC group. Additionally, the cytokine gene expression profiles were evaluated. Expression levels of IL-2, IL-12, and IFN-γ were significantly higher in the spleen of chicks in the UV and CA groups than in the NC group post-challenge. As expected, treatment with irradiated oocysts resulted in a significant reduction in oocyst shedding and maintenance of cecal mucosal integrity. Furthermore, the body weight was higher in chickens inoculated with UV-irradiated oocysts than their non-irradiated counterparts. In conclusion, our results demonstrate that inoculation with UV-irradiated sporulated oocysts of Eimeria species can produce a substantial reduction in infection symptoms.


Assuntos
Galinhas , Coccidiose/veterinária , Eimeria , Oocistos/imunologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Protozoárias/administração & dosagem , Animais , Peso Corporal , Coccidiose/prevenção & controle , Eimeria/imunologia , Eimeria/efeitos da radiação , Masculino , Oocistos/efeitos da radiação , Doenças das Aves Domésticas/parasitologia , Raios Ultravioleta , Vacinação/veterinária
7.
Parasitol Res ; 118(10): 3033-3041, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31407118

RESUMO

Coccidiosis, caused by the infection of Eimeria parasites, is one of the most common diseases in domestic rabbits. Live anticoccidial vaccine formulated with attenuated precocious lines of pathogenic eimerian parasites is expected to be valuable for the control of rabbit coccidiosis as a similar strategy to produce anticoccidial vaccines against chicken coccidiosis has being used for several decades. Eimeria media, moderate pathogenic, is widespread in China. Therefore, attenuated anticoccidial vaccines against rabbit coccidiosis should contain vaccine strain(s) of E. media. In this study, a precocious line of E. media (Empre) was selected by collecting and propagating the early excreted oocysts with 16 successive generations. The prepatent period of Empre reduced from 108 h of its parental strain (Emwt) to 70 h. The fecundity of Empre was about 1/10 to 1/3 lower than that of Emwt. Each sporocyst of Empre sporulated oocyst contained only one large refractile body instead of two smaller ones seen in the parental strain. When vaccinated with 1 × 103 or 1 × 104 precocious line oocysts, the rabbits were completely protected against homologous challenge with the parental strain 14 days post challenge by terms of body weight gain and oocyst output counting, indicating the efficacy of Empre. Meanwhile, all immunized rabbits showed no clinical sign post immunization, indicating the safety of Empre. For co-immunization, 1 × 103Empre oocysts and 5 × 102 oocysts of a precocious line of E. intestinalis (EIP8) were inoculated to each rabbit in a trial. No diarrhea or mortality was found after vaccination, and the weight gains of the vaccinated group were similar to that of unvaccinated-unchallenged control (UUC) group, while the weight gains of the vaccinated group were similar to that of unvaccinated-unchallenged control (UUC) group (P > 0.05), but significantly higher than that of UCC group (P < 0.01) after challenge, indicating it is safe and effective when using co-immunization. These results together show that Empre, as a precocious line, is a good candidate of precocious line of E. media for anticoccidial vaccine development.


Assuntos
Coccidiose/veterinária , Eimeria/patogenicidade , Infecções Protozoárias em Animais/parasitologia , Animais , Coccidiose/parasitologia , Coccidiose/prevenção & controle , Eimeria/crescimento & desenvolvimento , Eimeria/imunologia , Eimeria/fisiologia , Imunização/veterinária , Oocistos/crescimento & desenvolvimento , Oocistos/imunologia , Oocistos/patogenicidade , Infecções Protozoárias em Animais/prevenção & controle , Vacinas Protozoárias/imunologia , Coelhos , Reprodução , Vacinas Atenuadas/imunologia
8.
Parasitol Res ; 118(6): 1701-1710, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31065831

RESUMO

Coccidiosis is a major poultry disease which compromises animal welfare and costs the global chicken industry a huge economic loss. As a result, research entailing coccidial control measures is crucial. Coccidiosis is caused by Eimeria parasites that are highly immunogenic. Consequently, a low dosage of the Eimeria parasite supplied by a vaccine will enable the host organism to develop an innate immune response towards the pathogen. The production of traditional live anticoccidial vaccines is limited by their low reproductive index and high production costs, among other factors. Recombinant vaccines overcome these limitations by eliciting undesired contaminants and prevent the reversal of toxoids back to their original toxigenic form. Recombinant vaccines are produced using defined Eimeria antigens and harmless adjuvants. Thus, studies regarding the identification of potent novel Eimeria antigens which stimulate both cell-mediated and humoral immune responses in chickens are essential. Although the prevalence and risk posed by Eimeria have been well established, there is a dearth of information on genetic and antigenic diversity within the field. Therefore, this paper discusses the potential and efficiency of recombinant vaccines as an anticoccidial control measure. Novel protective Eimeria antigens and their antigenic diversity for the production of cheap, easily accessible recombinant vaccines are also reviewed.


Assuntos
Coccidiose/veterinária , Eimeria/imunologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Protozoárias/imunologia , Adjuvantes Imunológicos , Animais , Antígenos/administração & dosagem , Antígenos/genética , Antígenos/imunologia , Galinhas/parasitologia , Coccidiose/imunologia , Coccidiose/parasitologia , Coccidiose/prevenção & controle , Eimeria/genética , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/parasitologia , Vacinas Protozoárias/administração & dosagem , Vacinas Protozoárias/genética
9.
BMC Genomics ; 19(1): 699, 2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30249186

RESUMO

BACKGROUND: Chicken coccidiosis, caused by the infection of Eimeria species, leads to important economic losses to the poultry industry. Vaccination with attenuated live parasites seems to be the best way to control this disease. Attenuated eimerian parasites with shortened prepatent times show great changes in intracellular development compared to their parent strains but the mechanisms involved in these biological differences are still unclear. RESULTS: In this study, we obtained a precocious line of E. maxima by sequential selection of 22 generations of early shed oocysts in chickens and performed a comparative transcriptome analysis of three different developmental stages of the precocious line and its parent strain using Illumina high-throughput sequencing. Our E. maxima precocious line showed decreased pathogenicity, reduced fecundity and a greatly shorted prepatent time of only 98 h. We found that typical gene changes in the stage development from unsporulated to sporulated oocyst and from sporulated oocyst to merozoite were marked by upregulated organelle genes and protein translation related genes, respectively. Additionally, major differences between the precocious line and its parent strain were detected in the merozoite stage, characterized by downregulated genes involved in protein cleavage and DNA replication activities. CONCLUSIONS: Our study generated and characterized an E. maxima precocious line, illustrating gene expression landscapes during parasite development by transcriptome analysis. We also show that the suppressed DNA replication progress in the merozoite stage in the precocious line may result in its reduced fecundity. These results provide the basis for a better understanding of the mechanism of precocity in Eimeria species, which can be useful in studies in early gametocytogenesis in apicomplexan parasites.


Assuntos
Replicação do DNA , Eimeria/genética , Transcriptoma , Animais , Galinhas/parasitologia , Eimeria/crescimento & desenvolvimento , Eimeria/imunologia , Eimeria/patogenicidade , Fertilidade/genética
10.
BMC Vet Res ; 14(1): 337, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30419898

RESUMO

BACKGROUND: Avian coccidiosis is often caused by co-infection with several species of Eimeria worldwide. Developing a multivalent vaccine with an antigen common to multiple Eimeria species is a promising strategy for controlling clinical common co-infection of Eimeria. In the previous study, 14-3-3 was identified as one of the immunogenic common antigen in E. tenella, E. acervulina and E. maxima. The aim of the present study was to evaluate the immunogenicity and protective efficacy of Ea14-3-3 in the form of DNA vaccine against infection with three species of Eimeria both individually and simultaneously. RESULTS: After vaccination with pVAX-Ea14-3-3, the Ea14-3-3 gene was transcribed and expressed in the injected muscles. Vaccination with pVAX-Ea14-3-3 significantly increased the proportion of CD4+ and CD8+ T lymphocytes and produced a strong IgY response in immunized chickens. Similarly, pVAX-Ea14-3-3 stimulated the chicken's splenocytes to produce high levels of Th1-type (IFN-γ, IL-2) and Th2-type (IL-4) cytokines. The vaccine-induced immune response was responsible to increase weight gain, decreased the oocyst output, and alleviated enteric lesions significantly in immunized chickens as compared to control group, in addition to induce moderate anti-coccidial index (ACI). CONCLUSION: These results indicate that Ea14-3-3 is highly immunogenic and capable to induce significant immune responses. Furthermore, Ea14-3-3 antigen can provide effective protection against infection with Eimeria tenella, Eimeria acervulina, Eimeria maxima both individually and in combination with three Eimeria species. Significant outcomes of our study provide an effective candidate antigen for developing a multivalent Eimeria vaccine against mixed infection with various Eimeria species under natural conditions.


Assuntos
Antígenos de Protozoários/imunologia , Coccidiose/veterinária , Eimeria tenella/imunologia , Eimeria/imunologia , Doenças das Aves Domésticas/parasitologia , Vacinas Protozoárias/uso terapêutico , Animais , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/genética , Western Blotting/veterinária , Galinhas/imunologia , Galinhas/parasitologia , Coccidiose/imunologia , Coccidiose/parasitologia , Coccidiose/prevenção & controle , Eimeria/genética , Eimeria tenella/genética , Citometria de Fluxo/veterinária , Genes de Protozoários/genética , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Protozoárias/imunologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Análise de Sequência de DNA , Subpopulações de Linfócitos T/imunologia
11.
Korean J Parasitol ; 55(1): 15-20, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28285502

RESUMO

The aim of this study was to identify antigens for a vaccine or drug target to control rabbit coccidiosis. A combination of 2-dimensional electrophoresis, immunoblotting, and mass spectrometric analysis were used to identify novel antigens from the sporozoites of Eimeria stiedae. Protein spots were recognized by the sera of New Zealand rabbits infected artificially with E. stiedae. The proteins were characterized by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF/TOF-MS) analysis in combination with bioinformatics. Approximately 868 protein spots were detected by silver-staining, and a total of 41 immunoreactive protein spots were recognized by anti-E. stiedae sera. Finally, 23 protein spots were successfully identified. The proteins such as heat shock protein 70 and aspartyl protease may have potential as immunodiagnostic or vaccine antigens. The immunoreactive proteins were found to possess a wide range of biological functions. This study is the first to report the proteins recognized by sera of infected rabbits with E. stiedae, which might be helpful in identifying potential targets for vaccine development to control rabbit coccidiosis.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/análise , Antígenos de Protozoários/imunologia , Coccidiose/veterinária , Eimeria/imunologia , Proteoma/análise , Vacinas Protozoárias/isolamento & purificação , Animais , Coccidiose/imunologia , Coccidiose/prevenção & controle , Biologia Computacional , Eletroforese em Gel Bidimensional , Immunoblotting , Espectrometria de Massas , Vacinas Protozoárias/imunologia , Coelhos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
12.
J Eukaryot Microbiol ; 63(6): 709-721, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27037629

RESUMO

The gene of Eimeria acervulina microneme protein 3 (EaMIC3) was cloned and characterized. According to the conserved sequence, the 3'- and 5'-ends of EaMIC3 were amplified by the rapid amplification of cDNA ends (RACE). The full length cDNA of this gene was obtained by overlapping the sequences of 3'- and 5'-extremities and amplification by reverse transcription PCR. The sequence analysis revealed that the opening reading frame (ORF) of EaMIC3 was 2,607 bp and encoded a protein of 868 amino acids with 93.04 kDa. Western blotting assay showed that the recombinant protein was successfully recognized by the sera of chickens experimentally infected with E. acervulina, whereas the native protein in the somatic extract of sporozoites was as well detected by sera from rats immunized with the recombinant protein of EaMIC3. Immunofluorescence analysis indicated that EaMIC3 was expressed in the sporozoites and merozoites stages of E. acervulina. Animal challenge experiments demonstrated that the recombinant protein of EaMIC3 could significantly increase the average body weight gains, decrease the mean lesion scores and the oocyst outputs of the immunized chickens and presented anticoccidial index (ACI) more than 165. Moreover, EaMIC3 protein produced significantly high level of IgG antibody, IFN-γ, IL-10, IL-17 TGF-ß, CD4+ , and CD8+ .


Assuntos
Coccidiose/veterinária , Eimeria/genética , Doenças das Aves Domésticas/parasitologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Galinhas , Coccidiose/genética , Coccidiose/imunologia , Coccidiose/parasitologia , Eimeria/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-17/genética , Interleucina-17/imunologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/imunologia
13.
Vet Res ; 47(1): 111, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27825377

RESUMO

Coccidiosis is endemic in the commercial broiler industry capable of inflicting devastating economic losses to poultry operations. Vaccines are relatively effective in controlling the disease; their efficacy could potentially be improved with concurrent use of probiotics as evaluated in this study using an Eimeria challenge. Day of hatch 400 Cobb-500 male broilers were assigned to one of four treatment groups including control (CON), vaccine-only gel application (VNC), probiotic-only gel application (NPC), and vaccine-plus-probiotic gel application (VPC). Birds were placed in floor pens (6 replicate pens/treatment, 16-17 birds/pen). NPC and VPC birds received the probiotics in the water on days 2-4, 8, 14-20, 22, 29, and 34-36. On day 15, birds were mildly challenged with 0.5 mL of a mixed oral inoculum of Eimeria sp. prepared with the coccidiosis vaccine at 10× the vaccination dose. Performance measurements were recorded on first day and weekly afterwards, and lesion scores were evaluated 6 days post-challenge. Overall, the probiotics and coccidiosis vaccine resulted in an enhanced protective effect against the challenge, with VPC birds exhibiting lower lesion scores in the duodenum than VNC or NPC birds. Birds in the VPC treatment also demonstrated higher weight gains during days 1-15, days 7-15, and days 21-28 when compared to the VNC birds. These results suggest that the combination of probiotics and coccidiosis vaccines could enhance performance and provide an additional protective effect against a mixed Eimeria challenge.


Assuntos
Coccidiose/veterinária , Eimeria , Doenças das Aves Domésticas/prevenção & controle , Probióticos/uso terapêutico , Vacinas Protozoárias/uso terapêutico , Animais , Galinhas/parasitologia , Coccidiose/prevenção & controle , Eimeria/imunologia , Masculino , Vacinas Protozoárias/imunologia
14.
Br J Nutr ; 116(12): 2030-2043, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27993179

RESUMO

For this study, threonine (Thr) deficiency was hypothesised to exacerbate the intestinal damage induced by feed withdrawal with coccidial infection because of its high obligatory requirement by the gut; two dietary Thr treatments (0·49 and 0·90 %) were applied to chicks from 0 to 21 d of age. At 13 d of age, feed was withdrawn for 24 h from one-half of birds of each dietary treatment with subsequent gavage of a 25× dose of coccidial vaccine. Overall, there were four treatments with eight replicate cages per treatment. Under combined challenge, birds fed the Thr-deficient diet had 38 % lower 13-21-d body weight gain (P≤0·05) compared with birds fed the Thr-control diet. At 21 d, the challenged group fed low Thr had higher number of oocysts (+40 %, P=0·03) and lower crypt depth (-31 %, P0·05). Overall, Thr deficiency worsened the detrimental effects of combined feed withdrawal and coccidial infection on growth performance and oocyst shedding by impairing intestinal morphology, barrier function, lymphocyte profiles and their cytokine expressions.


Assuntos
Coccidiose/veterinária , Deficiências Nutricionais/veterinária , Imunidade nas Mucosas/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Doenças das Aves Domésticas/fisiopatologia , Vacinas Protozoárias/uso terapêutico , Treonina/deficiência , Administração Oral , Animais , Restrição Calórica/efeitos adversos , Restrição Calórica/veterinária , Ceco/efeitos dos fármacos , Ceco/imunologia , Ceco/parasitologia , Ceco/patologia , Galinhas/crescimento & desenvolvimento , Coccidiose/imunologia , Coccidiose/patologia , Coccidiose/prevenção & controle , Citocinas/genética , Citocinas/metabolismo , Deficiências Nutricionais/imunologia , Deficiências Nutricionais/fisiopatologia , Dieta com Restrição de Proteínas/efeitos adversos , Dieta com Restrição de Proteínas/veterinária , Eimeria/efeitos dos fármacos , Eimeria/crescimento & desenvolvimento , Eimeria/imunologia , Eimeria/isolamento & purificação , Interações Hospedeiro-Parasita/efeitos dos fármacos , Íleo/efeitos dos fármacos , Íleo/imunologia , Íleo/parasitologia , Íleo/patologia , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/parasitologia , Mucosa Intestinal/patologia , Jejuno/efeitos dos fármacos , Jejuno/crescimento & desenvolvimento , Jejuno/imunologia , Masculino , Oocistos/efeitos dos fármacos , Oocistos/crescimento & desenvolvimento , Oocistos/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/patologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Protozoárias/administração & dosagem , Distribuição Aleatória
15.
Avian Pathol ; 45(1): 82-93, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26743571

RESUMO

Live Eimeria vaccines against coccidiosis in poultry initiate immunity using a vaccine dose containing few oocysts; protection is enhanced through subsequent faecal-oral transmission ("cycling") of parasites in the poultry house. Spray-administered Eimeria vaccines can permit wide variations in doses ingested by individual chicks; some chicks may receive no primary vaccination at all. Consequently, protective immunity for the entire flock depends on successful environmental cycling of vaccine progeny. Pullets missing primary vaccination at day of age can become protected from coccidial challenge through cycling of vaccine progeny oocysts from vaccinated (V) cage mates. This study tested whether 40% cage floor coverage (CFC) with a durable material could improve protection against challenge in these "contact-vaccinated" (CV) or successfully V pullets. The six treatment groups tested were CV, V or sham-vaccinated pullets cage-reared on either 0% or 40% CFC. Oocyst output was measured separately for each group for 30 days following vaccine administration. Lesion scores, body weights and total oocyst outputs were measured to quantify protection at 30 days of age against single or mixed Eimeria species challenge infections. Use of 40% CFC to promote low-level oocyst cycling impacted the flock in two ways: (1) more uniform flock immunity was achieved in the 40% CFC (CV similar to V pullets) compared with 0% CFC and (2) protection was enhanced in the 40% CFC compared with the 0% CFC. The use of CFC is an easily adopted means of improving live Eimeria vaccination of caged pullets.


Assuntos
Galinhas/parasitologia , Coccidiose/veterinária , Eimeria/imunologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Protozoárias/administração & dosagem , Vacinação/veterinária , Animais , Coccidiose/parasitologia , Coccidiose/prevenção & controle , Feminino , Oocistos , Doenças das Aves Domésticas/parasitologia , Vacinas Atenuadas
16.
Avian Pathol ; 45(3): 370-5, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26927291

RESUMO

Since the ban of antimicrobial growth promotors, the importance of necrotic enteritis in broilers increases. Reliable and reproducible infection models are required for pathogenesis studies and product screening. Two major predisposing factors in necrotic enteritis models are fishmeal supplementation to feed and Eimeria infection. However, many unsolved issues regarding these predisposing factors still exist. Therefore, the influence of timepoint of fishmeal administration (onset on day 8 or day 18), timing of coccidiosis challenge (day 15 or day 19) and strain of coccidiosis challenge (field strain vs. commercial vaccine) on the induction of necrotic enteritis lesions was investigated. The birds were inoculated with Clostridium perfringens three times per day for four consecutive days (day 17 until day 20) and were scored for the presence of necrotic enteritis on days 22, 23, 24, 25 and 26. Supplementation of the diet with fishmeal from day 8 onwards increased the likelihood of necrotic enteritis compared to supplementation from day 18 onwards. Birds challenged on day 19 with coccidiosis were more likely to have necrotic enteritis on scoring days 23 and 24 compared to birds challenged on day 15. Differences on other scoring days were less pronounced. Finally, the strain of coccidiosis challenge had little influence on the induction of necrotic enteritis. Findings of this study can help researchers to set up successful necrotic enteritis infection models.


Assuntos
Infecções por Clostridium/veterinária , Clostridium perfringens/fisiologia , Coccidiose/veterinária , Suplementos Nutricionais/efeitos adversos , Enterite/veterinária , Doenças das Aves Domésticas/prevenção & controle , Ração Animal , Animais , Galinhas , Infecções por Clostridium/microbiologia , Infecções por Clostridium/parasitologia , Coccidiose/parasitologia , Dieta/veterinária , Modelos Animais de Doenças , Eimeria/imunologia , Eimeria/fisiologia , Enterite/microbiologia , Enterite/parasitologia , Masculino , Necrose/veterinária , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/parasitologia , Fatores de Tempo
17.
Exp Parasitol ; 164: 79-83, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26921717

RESUMO

The excretion frequencies of cecal and intestinal droppings of Chinese Lingnan yellow chickens were observed for 10 consecutive days. The chickens were then orally inoculated with a precocious line of Eimeria necatrix, and the oocysts present in the cecal and intestinal droppings were separately collected and monitored using the McMaster method. The results showed that the excretion frequency of cecal droppings was significantly lower than that of intestinal droppings, and the oocysts of E. necatrix were distributed primarily in the cecal droppings. This distribution affects the homogeneity of the second and third generation of oocysts ingested by the chickens and therefore affects the immune effect observed during E. necatrix immunization. To artificially strengthen the immunologic homogeneity against E. necatrix, a method of artificially strengthening the second immunization was applied, and the immune effect was evaluated based on oocyst excretion, body weight gain, fecal scores, intestinal lesion scores and survival percentages. The results showed that no significant intestinal damage was caused by immunization reactions in the chickens. In addition, the number of excreted oocysts in the immunized chicken groups could be significantly increased, and the immunologic homogeneity of the immunized chickens could be improved by artificially strengthening the second immunization, which could in turn improve the immune protective effect.


Assuntos
Galinhas/parasitologia , Coccidiose/veterinária , Eimeria/isolamento & purificação , Imunização/veterinária , Doenças das Aves Domésticas/parasitologia , Animais , Ceco/parasitologia , Coccidiose/imunologia , Coccidiose/parasitologia , Coccidiose/prevenção & controle , Eimeria/imunologia , Fezes/parasitologia , Imunização Secundária/veterinária , Intestinos/parasitologia , Intestinos/patologia , Oocistos , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/prevenção & controle , Distribuição Aleatória
18.
Exp Parasitol ; 162: 7-17, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26743188

RESUMO

There have been only a few antigen genes of Eimeria brunetti reported up to now. In this study, the gene encoding the microneme protein 2 (EbMIC2) was isolated from oocysts of E. brunetti by RT-PCR and the immunogenicity of recombinant EbMIC2 was observed. The EbMIC2 was cloned into vector pMD19-T for sequencing. The sequence was compared with the published EbMIC2 gene from GenBank revealed homology of the nucleotide sequence and amino acids sequence were 99.43 and 98.63%, respectively. The correct recombinant pMD-EbMIC2 plasmid was inserted into the pET-28a (+) expressing vector and transformed into competent Escherichia coli BL21 cells for expression. The expressed product was analyzed using SDS-PAGE and Western-blot. The results indicated that the recombinant EbMIC2 protein was recognized strongly by serum from naturally infected chicken with E. brunetti. Rat rcEbMIC2 antisera bound to bands of about 36 kDa in the somatic extract of E. brunetti sporozoites. The recombinant plasmid pVAX1-EbMIC2 was constructed and then the efficacies of recombinant plasmid and recombinant protein were evaluated. The results of IgG antibody level and cytokines concentration suggested that recombinant EbMIC2 could increase the IgG antibody level and induce the expressions of cytokines. Animal challenge experiments demonstrated that the recombinant EbMIC2 protein and recombinant plasmid pVAX1-EbMIC2 could significantly increase the average body weight gains, decrease the mean lesion scores and the oocyst outputs of the immunized chickens and presented high anti-coccidial index. All results suggested that EbMIC2 could become an effective candidate for the development of new vaccine against E. brunetti infection.


Assuntos
Galinhas/parasitologia , Coccidiose/veterinária , Surtos de Doenças/veterinária , Eimeria/isolamento & purificação , Doenças das Aves Domésticas/parasitologia , Proteínas de Protozoários/isolamento & purificação , Animais , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , China/epidemiologia , Clonagem Molecular , Coccidiose/epidemiologia , Coccidiose/parasitologia , DNA Complementar/química , DNA Complementar/metabolismo , Eimeria/imunologia , Regulação da Expressão Gênica , Soros Imunes/imunologia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/prevenção & controle , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/normas , RNA de Protozoário/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Transcrição Reversa , Alinhamento de Sequência/veterinária , Vacinação/veterinária , Vacinas Sintéticas/normas
19.
Parasitol Res ; 115(1): 211-5, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26377842

RESUMO

Recently, we have demonstrated the utility of Eimeria krijgsmanni as a novel mouse eimerian parasite for elucidating the biological diversity. The parasite showed notable infectivity to mice with various levels of immune status and susceptibility to antimicrobial agents including coccidiostat. However, the detailed lifecycle of E. krijgsmanni had not yet been determined and this information was lacking in discussion of previous findings. In the present study, we clarified the morphological characteristics of E. krijgsmanni and its lifecycle in normal mice, and examined the effects in immunodeficient mice and lifecycle stage for challenge infections after the primary inoculation. In immunocompetent mice, the lifecycle consisted of four asexual stages and the sexual sages followed by formation of oocysts during the prepatent periods. Interestingly, the second-generation meronts were detected in all observation periods after the disappearance of the other stages. For the challenge infection of immunodeficient mice, all developmental stages except for the second generation meronts were temporarily vanished. This finding suggests a "rest" or marked delay in development and a "restart" of the promotion toward the next generations. The second generation meronts may play an important role in the lifecycle of E. krijgsmanni.


Assuntos
Coccidiose/parasitologia , Eimeria/crescimento & desenvolvimento , Imunocompetência , Hospedeiro Imunocomprometido , Estágios do Ciclo de Vida , Animais , Coccidiose/imunologia , Modelos Animais de Doenças , Eimeria/imunologia , Eimeria/ultraestrutura , Feminino , Camundongos , Camundongos Nus , Camundongos SCID , Oocistos
20.
Parasitol Res ; 115(11): 4123-4128, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27384177

RESUMO

In the poultry industry, Eimeria spp. is one of the important pathogens which cause significant economic losses. We have previously generated a chicken monoclonal antibody (mAb), 6D-12-G10, with specificity for an antigen located in the apical cytoskeleton of Eimeria acervulina and with cross-reactive among Apicomplexan parasites, including other Eimeria spp., Toxoplasma, Neospora, and Cryptosporidium spp. Furthermore, the protein of Cryptosporidium parvum recognized by the 6D-12-G10 has been identified as elongation factor-1α (EF-1α). In the present study, to identify the target molecule of E. acervulina by the mAb, we performed two-dimensional Western blotting analysis. Finally, we found two positive molecules which are identified as EF-1α and a related protein. Our previous finding using C. parvum and the results in this study suggest that EF-1α could be associated with the invasion facilitated by the cytoskeleton at the apical region of zoites.


Assuntos
Antígenos de Protozoários/imunologia , Galinhas/parasitologia , Coccidiose/veterinária , Eimeria/imunologia , Fator 1 de Elongação de Peptídeos/metabolismo , Doenças das Aves Domésticas/parasitologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antiprotozoários/imunologia , Western Blotting/veterinária , Coccidiose/parasitologia , Reações Cruzadas , Cryptosporidium parvum/imunologia , Cryptosporidium parvum/isolamento & purificação , Eimeria/isolamento & purificação , Ensaio de Imunoadsorção Enzimática/veterinária , Neospora/imunologia , Neospora/isolamento & purificação , Esporozoítos , Toxoplasma/imunologia , Toxoplasma/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA