Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.518
Filtrar
Mais filtros

Coleção BVS Equador
Intervalo de ano de publicação
1.
Electrophoresis ; 45(17-18): 1574-1596, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38738705

RESUMO

Dielectrophoresis (DEP), which arises from the interaction between dielectric particles and an aqueous solution in a nonuniform electric field, contributes to the manipulation of nano and microparticles in many fields, including colloid physics, analytical chemistry, molecular biology, clinical medicine, and pharmaceutics. The measurement of the DEP force could provide a more complete solution for verifying current classical DEP theories. This review reports various imaging, fluidic, optical, and mechanical approaches for measuring the DEP forces at different amplitudes and frequencies. The integration of DEP technology into sensors enables fast response, high sensitivity, precise discrimination, and label-free detection of proteins, bacteria, colloidal particles, and cells. Therefore, this review provides an in-depth overview of DEP-based fabrication and measurements. Depending on the measurement requirements, DEP manipulation can be classified into assistance and integration approaches to improve sensor performance. To this end, an overview is dedicated to developing the concept of trapping-on-sensing, improving its structure and performance, and realizing fully DEP-assisted lab-on-a-chip systems.


Assuntos
Eletroforese , Eletroforese/métodos , Eletroforese/instrumentação , Dispositivos Lab-On-A-Chip , Desenho de Equipamento , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Humanos
2.
Electrophoresis ; 45(7-8): 720-734, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38111364

RESUMO

One field of study in microfluidics is the control, trapping, and separation of microparticles suspended in fluid. Some of its applications are related to cell handling, virus detection, and so on. One of the new methods in this field is using ICEK phenomena and dielectrophoresis forces. In the present study, considering the ICEK phenomena, the microparticles inside the fluid are deviated in the desired ratio using a novel ICEK microchip. The deviation is such that after the microparticles reach the floating electrode, they are trapped in the ICEK flow vortex and deviated through a secondary channel that was placed crosswise and noncoplanar above the main channel. For simulation verification, an experimental test is done. The method used for making two noncoplanar channels and separating the particles in the desired ratio with a simple ICEK microchip is an innovation of the present study. Moreover, the adjustment of the percentage of separation of microparticles by adjusting the parameters of the applied voltage and fluid inlet velocity is one of the other innovations of the present experimental study. We observed that for input velocities of 150-1200 µm/s with applied voltages of 10-33 V, 100% of the particles can be directed toward the secondary-channel.


Assuntos
Simulação por Computador , Técnicas Analíticas Microfluídicas , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Tamanho da Partícula , Microesferas , Desenho de Equipamento , Modelos Teóricos , Eletroforese/métodos , Eletroforese/instrumentação
3.
Electrophoresis ; 45(11-12): 1088-1098, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38175846

RESUMO

Metastasis remains a significant cause to cancer-related mortality, underscoring the critical need for early detection and analysis of circulating tumor cells (CTCs). This study presents a novel microfluidic chip designed to efficiently capture A549 lung cancer cells by combining dielectrophoresis (DEP) and aptamer-based binding, thereby enhancing capture efficiency and specificity. The microchip features interdigitated electrodes made of indium-tin-oxide that generate a nonuniform electric field to manipulate CTCs. Following three chip design, scenarios were investigated: (A) bare glass surface, (B) glass modified with gold nanoparticles (AuNPs) only, and (C) glass modified with both AuNPs and aptamers. Experimental results demonstrate that AuNPs significantly enhance capture efficiency under DEP, with scenarios (B) and (C) exhibiting similar performance. Notably, scenario (C) stands out as aptamer-functionalized surfaces resisting fluid shear forces, achieving CTCs retention even after electric field deactivation. Additionally, an innovative reverse pumping method mitigates inlet clogging, enhancing experimental efficiency. This research offers valuable insights into optimizing surface modifications and understanding key factors influencing cell capture, contributing to the development of efficient cell manipulation techniques with potential applications in cancer research and personalized treatment options.


Assuntos
Aptâmeros de Nucleotídeos , Separação Celular , Eletroforese , Ouro , Neoplasias Pulmonares , Nanopartículas Metálicas , Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Humanos , Aptâmeros de Nucleotídeos/química , Células Neoplásicas Circulantes/patologia , Neoplasias Pulmonares/patologia , Eletroforese/métodos , Eletroforese/instrumentação , Separação Celular/métodos , Separação Celular/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Células A549 , Ouro/química , Nanopartículas Metálicas/química , Desenho de Equipamento , Propriedades de Superfície
4.
Electrophoresis ; 42(5): 565-587, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33166414

RESUMO

Dielectrophoretically driven microfluidic devices have demonstrated great applicability in biomedical engineering, diagnostic medicine, and biological research. One of the potential fields of application for this technology is in point-of-care (POC) devices, ideally allowing for portable, fully integrated, easy to use, low-cost diagnostic platforms. Two main approaches exist to induce dielectrophoresis (DEP) on suspended particles, that is, electrode-based DEP and insulator-based DEP, each featuring different advantages and disadvantages. However, a shared concern lies in the input voltage used to generate the electric field necessary for DEP to take place. Therefore, input voltage can determine portability of a microfluidic device. This review outlines the recent advances in reducing stimulation voltage requirements in DEP-driven microfluidics.


Assuntos
Eletroforese/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Eletricidade , Desenho de Equipamento , Dispositivos Lab-On-A-Chip
5.
Electrophoresis ; 42(23): 2511-2518, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34553795

RESUMO

In this paper, a micromixer of a new configuration is presented, consisting of a spherical chamber in the center of which an ion-selective microsphere is placed. Stratified liquid is introduced through the chamber via inlet and outlet holes under an external pressure gradient and an external electric field is directed in such a way that the resulting electroosmotic flow is directed against the pressure-driven flow, resulting in mixing. The investigation is carried out by direct numerical simulation on a super-computer. Optimal values of the applied electric field are determined to yield strong mixing. Above this optimal mixing regime, a number of instabilities and bifurcations are realized, which qualitatively coincide with those occurring during electrophoresis of an ion-selective microgranule. As shown by our calculation, these instabilities do not lead to an enhanced mixing. The resulting electroconvective vortices remain confined near the surface of the microgranule, and do not sufficiently perturb the stratified fluid flow further from the granule. On the other hand, another type of instability caused by the salt concentration gradient can generate sufficiently strong oscillations to enhance mixing. However, this only occurs when the external electric field is sufficiently high that the electroosmotic flow is comparable to the pressure-driven flow. This ultimately leads to creation of reverse flows of the liquid and cessation of the device operation. Thus, it was shown that the best mixing occurs in the absence of electrokinetic instability. Based on the data obtained, it is possible to select the necessary geometric characteristics of the micromixer to achieve the optimal mixing mode for a given set of liquids, which may be ten times more effective than passive mixers at the same flow rates. A comparison with the experimental data of the other authors confirms the effectiveness of this device and its other capabilities. Furthermore, the basic device design can be operated in other modes, for example, an electrohydrodynamic pump, a streaming current generator, or even a micro-reactor, depending on the system parameters and choice of an ion-selective granule.


Assuntos
Eletro-Osmose , Modelos Químicos , Simulação por Computador , Eletro-Osmose/instrumentação , Eletroforese/instrumentação , Desenho de Equipamento , Dispositivos Lab-On-A-Chip , Microesferas
6.
Electrophoresis ; 42(5): 626-634, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32935875

RESUMO

Insulator-based dielectrophoresis (iDEP) exploits the electric field gradients formed around insulating structures to manipulate particles for diverse microfluidic applications. Compared to the traditional electrode-based dielectrophoresis, iDEP microdevices have the advantages of easy fabrication, free of water electrolysis, and robust structure, etc. However, the presence of in-channel insulators may cause thermal effects because of the locally amplified Joule heating of the fluid. The resulting electrothermal flow circulations are exploited in this work to trap and concentrate nanoscale particles (of 100 nm diameter and less) in a ratchet-based iDEP microdevice. Such Joule heating-enabled electrothermal enrichment of nanoparticles are found to grow with the increase of alternating current or direct current electric field. It also becomes more effective for larger particles and in a microchannel with symmetric ratchets. Moreover, a depth-averaged numerical model is developed to understand and simulate the various parametric effects, which is found to predict the experimental observations with a good agreement.


Assuntos
Eletroforese/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Nanopartículas/química , Dimetilpolisiloxanos , Eletricidade , Desenho de Equipamento , Temperatura Alta , Tamanho da Partícula
7.
Electrophoresis ; 42(5): 644-655, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33340119

RESUMO

Dielectrophoresis is a robust approach for the manipulation and separation of (bio)particles using microfluidic platforms. We developed a dielectrophoretic corral trap in a microfluidic device that utilizes negative dielectrophoresis to capture single spherical polystyrene particles. Circular-shaped micron-size traps were employed inside the device and the three-dimensional trap stiffness (restoring trapping force from equilibrium trapping location) was analyzed using 4.42 µm particles and 1 MHz of an alternating electric field from 6 VP-P to 10 VP-P . The trap stiffness increased exponentially in the x- and y-direction, and linearly in the z-direction. Image analysis of the trapped particle movements revealed that the trap stiffness is increased 608.4, 539.3, and 79.7% by increasing the voltage from 6 VP-P to 10 VP-P in the x-, y-, and z-direction, respectively. The trap stiffness calculated from a finite element simulation of the device confirmed the experimental results. This analysis provides important insights to predict the trapping location, strength of the trapping, and optimum geometry for single particle trapping and its applications such as single-molecule analysis and drug discovery.


Assuntos
Eletroforese/instrumentação , Eletroforese/métodos , Simulação por Computador , Desenho de Equipamento , Análise de Elementos Finitos , Técnicas Analíticas Microfluídicas/instrumentação , Microesferas , Nanopartículas/química
8.
Electrophoresis ; 42(3): 305-314, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33128392

RESUMO

The increasing resolution of three-dimensional (3D) printing offers simplified access to, and development of, microfluidic devices with complex 3D structures. Therefore, this technology is increasingly used for rapid prototyping in laboratories and industry. Microfluidic free flow electrophoresis (µFFE) is a versatile tool to separate and concentrate different samples (such as DNA, proteins, and cells) to different outlets in a time range measured in mere tens of seconds and offers great potential for use in downstream processing, for example. However, the production of µFFE devices is usually rather elaborate. Many designs are based on chemical pretreatment or manual alignment for the setup. Especially for the separation chamber of a µFFE device, this is a crucial step which should be automatized. We have developed a smart 3D design of a µFFE to pave the way for a simpler production. This study presents (1) a robust and reproducible way to build up critical parts of a µFFE device based on high-resolution MultiJet 3D printing; (2) a simplified insertion of commercial polycarbonate membranes to segregate separation and electrode chambers; and (3) integrated, 3D-printed wells that enable a defined sample fractionation (chip-to-world interface). In proof of concept experiments both a mixture of fluorescence dyes and a mixture of amino acids were successfully separated in our 3D-printed µFFE device.


Assuntos
Eletroforese , Dispositivos Lab-On-A-Chip , Procedimentos Analíticos em Microchip/métodos , Impressão Tridimensional , Aminoácidos/análise , Eletroforese/instrumentação , Eletroforese/métodos , Desenho de Equipamento
9.
Nanotechnology ; 32(4): 045501, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33027774

RESUMO

A plasmonic nanopore sensor enabling detection of bimodal optical and electrical molecular signatures was fabricated and tested for its ability to characterize low affinity ligand-receptor interactions. This plasmonic nanosensor uses self-induced back-action (SIBA) for optical trapping to enable SIBA-actuated nanopore electrophoresis (SANE) through a nanopore located immediately below the optical trap volume. A natural killer (NK) cell inhibitory receptor heterodimer molecule CD94/NKG2A was synthesized to target a specific peptide-presenting Qa-1b Qdm ligand as a simplified model of low-affinity interactions between immune cells and peptide-presenting cancer cells that occurs during cancer immunotherapy. A cancer-irrelevant Qa-1b GroEL ligand was also targeted by the same receptor as a control experiment to test for non-specific binding. The analysis of different pairs of bimodal SANE sensor signatures enabled discrimination of ligand, receptor and their complexes and enabled differentiating between specific and non-specific ligand interactions. We were able to detect ligand-receptor complex binding at concentrations over 500 times lower than the free solution equilibrium binding constant (K D ). Additionally, SANE sensor measurements enabled estimation of the fast dissociation rate (k off) for this low-affinity specific ligand-receptor system, previously shown to be challenging to quantify with commercial technologies. The k off value of targeted peptide-presenting ligands is known to correlate with the subsequent activation of immune cells in vivo, suggesting the potential utility of the SANE senor as a screening tool in cancer immunotherapy.


Assuntos
Eletroforese , Nanoporos , Receptores de Células Matadoras Naturais , Animais , Eletroforese/instrumentação , Eletroforese/métodos , Cinética , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Receptores de Células Matadoras Naturais/química , Receptores de Células Matadoras Naturais/metabolismo
10.
Appl Opt ; 60(8): 2150-2157, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33690309

RESUMO

Saccharomyces cerevisiae(S. cerevisiae) has been classically used as a treatment for diarrhea and diarrhea-related diseases. However, cases of the fungal infections caused by S. cerevisiae have been increasing in the last two decades among immunocompromised patients, while a long time was spent on S. cerevisiae isolation clinically so it was difficult to achieve timely diagnosis the diseases. Here, a novel approach for isolation and selection of S. cerevisiae is proposed by designing a microfluidic chip with an optically induced dielectrophoresis (ODEP) system. S. cerevisiae was isolated from the surroundings by ODEP due to different dielectrophoretic forces. Two special light images were designed and used to block and separate S. cerevisiae, respectively, and several manipulation parameters of ODEP were experimentally optimized to acquire the maximum isolation efficiency of S. cerevisiae. The results on the S. cerevisiae isolation declared that the purity of the S. cerevisiae selected by the method was up to 99.5%±0.05, and the capture efficiency was up to 65.0%±2.5 within 10 min. This work provides a general method to isolate S. cerevisiae as well as other microbial cells with high accuracy and efficiency and paves a road for biological research in which the isolation of high-purity cells is required.


Assuntos
Eletroforese/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Micoses/diagnóstico , Imagem Óptica/instrumentação , Saccharomyces cerevisiae/isolamento & purificação , Adesão Celular , Separação Celular , Eletroforese/métodos , Desenho de Equipamento , Humanos , Técnicas Analíticas Microfluídicas/métodos , Microesferas , Modelos Químicos , Imagem Óptica/métodos , Poliestirenos , Sensibilidade e Especificidade
11.
Anal Chem ; 92(22): 14885-14891, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33108182

RESUMO

Direct-current insulator-based electrokinetics (DC-iEK) is a branch of microfluidics that has demonstrated to be an attractive and efficient technique for manipulating micro- and nano- particles, including microorganisms. A unique feature of DC-iEK devices is that nonlinear EK effects are enhanced by the presence of regions of higher field intensity between the insulating structures. Accurate computational models, describing particle and cell behavior, are crucial to optimize the design and improve the performance of DC-iEK devices. The electrokinetic equilibrium condition (EEEC) is a recently introduced fundamental concept that has radically shifted the perspective behind the analysis of particle manipulation in these microfluidic devices. The EEEC takes into consideration previously neglected nonlinear effects on particle migration and indicates that these effects are central to control particle motion in DC-iEK devices. In this study, we present a simultaneous experimental characterization of linear and nonlinear electrokinetic (EK) parameters, that is, the electrophoretic mobility (µEP(1)), the particle zeta potential (ζP), the EEEC, and the electrophoretic mobility of the second kind (µEP(3)), for four types of polystyrene microparticles and four cell strains. For this, we studied the electromigration of polystyrene microparticles ranging in size from 2 to 6.8 µm, three bacteria strains (B. cereus, E. coli, and S. enterica) and a yeast cell (S. cerevisiae), ranging in size from 1 to 6.3 µm, in a polydimethylsiloxane (PDMS) microfluidic channel with a rectangular cross-section. The results illustrated that electrokinetic particle trapping can occur by linear and nonlinear electrophoresis and electroosmosis reaching an equilibrium, without the presence of insulating posts. The experimentally measured parameters reported herein will allow optimizing the design of future DC-iEK devices for a wide range of applications (e.g., to separate multiple kinds of particles and microorganisms) and for developing computational models that better represent reality.


Assuntos
Eletroforese/métodos , Microesferas , Bactérias/citologia , Eletroforese/instrumentação , Dispositivos Lab-On-A-Chip , Modelos Lineares , Dinâmica não Linear , Poliestirenos/química , Saccharomyces cerevisiae/citologia , Fatores de Tempo
12.
Electrophoresis ; 41(1-2): 148-155, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31677287

RESUMO

Isomotive dielectrophoresis (isoDEP) is a unique DEP geometrical configuration where the gradient of the field-squared ( ∇Erms2 ) is constant. IsoDEP analyzes polarizable particles based on their magnitude and direction of translation. Particle translation is a function of the polarizability of both the particles and suspending medium, the particles' size and shape, and the frequency of the electric field. However, other electrokinetics act on the particles simultaneously, including electrothermal hydrodynamics. Hence, to maximize the DEP force relative to over electrokinetic forces, design parameters such as microchannel geometry, fabrication materials, and applied electric field must be properly tuned. In this work, scaling law analyses were developed to derive design rules, relative to particle diameter, to reduce unwanted electrothermal hydrodynamics relative to DEP-induced particle translation. For a particle suspended in 10 mS/m media, if the channel width and height are below ten particle diameters, the electrothermal-driven flow is reduced by ∼500 times compared to a channel that is 250 particles diameters in width and height. Replacing glass with silicon as the device's underlying substrate for an insulative-based isoDEP reduces the electrothermal induced flow approximately 20 times less.


Assuntos
Eletroforese/instrumentação , Hidrodinâmica , Técnicas Analíticas Microfluídicas/instrumentação , Termodinâmica , Desenho de Equipamento , Microeletrodos , Silício/química
13.
Electrophoresis ; 41(13-14): 1160-1169, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32386331

RESUMO

Chemical surface patterning can be an incredibly powerful tool in a variety of applications, as it enables precise spatial control over surface properties. But the equipment required to create functional surface patterns-especially "grayscale" patterns where independent control over species placement and density are needed-is often expensive and inaccessible. In this work, we leveraged equipment and methods readily available to many research labs, namely 3D printing and electroblotting, to generate controlled grayscale surface patterns. Three-dimensional-printed molds were used to cast polyacrylamide hydrogels with regions of variable polymer density; regions of low polymer density within the hydrogels served as reservoirs for proteins that were later driven onto a target surface using electrophoresis. This mechanism was used to deposit grayscale patterns of fluorescently labeled proteins, and the fluorescent intensity of these patterns was measured and compared to a theoretical analysis of the deposition mechanism.


Assuntos
Eletroforese/instrumentação , Hidrogéis/análise , Propriedades de Superfície , Desenho de Equipamento , Impressão Tridimensional , Proteínas/química
14.
Electrophoresis ; 41(1-2): 36-55, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31650578

RESUMO

Continuous flow electrophoretic separation with continuous sample loading provides the advantage of processing volumes of any sizes, as well as the benefit of a real-time monitoring and optimization of the separation process. In addition, the spatial separation of the sample enables collecting multiple separated components simultaneously and in a continuous manner. The separation is usually performed in mild buffers without organic solvents and detergents (sample biological activity is retained) and it is carried out without usage of a solid support in the separation space preventing the interaction of the sample with it (high sample recovery). The method is used for the separation of proteins/peptides in proteomic applications, and its great applicability is to the separation of the cells, cellular organelles, vesicles, membrane fragments, and DNA. This review focuses on the electrophoretic separation performed in a continuous flow and it describes various electrophoretic modes and instrumental setups. Recent developments in methodology and instrumentation, the integration with other techniques, and the application to the biological sample analysis are discussed as well.


Assuntos
Eletroforese , DNA/isolamento & purificação , Eletroforese/instrumentação , Eletroforese/métodos , Desenho de Equipamento , Peptídeos/isolamento & purificação , Proteínas/isolamento & purificação
15.
Electrophoresis ; 41(10-11): 991-1001, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32060955

RESUMO

This paper presents the application of the discrete dielectrophoretic force to separate polystyrene particles from red blood cells. The separation process employs a simple microfluidic device that is composed of interdigitated electrodes and a microchannel. The discrete dielectrophoretic force is generated by adjusting the duty cycle of the applied voltage. The electrodes make a tilt angle with the microchannel to change the moving direction of the red blood cells. By adjusting the voltage magnitude and duty cycle, we investigate the deflection of red blood cells and the variation of cell velocity along electrode edge under positive dielectrophoresis. The experiments with polystyrene particles show that the enrichment of the particles is greater than 150 times. The maximum separation efficiency is 97% for particle-to-cell number ratio equal to 1:2000 in the sample having high cell concentration. Using the appropriate applied voltage magnitude and duty cycle, the discrete dielectrophoretic force can prevent the clogging of microchannel while successfully separating the particles from the cells with high enrichment and efficiency. The proposed principle can be readily applied to dielectrophoresis-based devices for biomedical sample preparation or diagnosis such as the separation of rare or infected cells from a blood sample.


Assuntos
Separação Celular/instrumentação , Eletroforese/instrumentação , Separação Celular/métodos , Eritrócitos/citologia , Humanos , Microesferas , Tamanho da Partícula , Poliestirenos
16.
Electrophoresis ; 41(3-4): 225-234, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31816114

RESUMO

We have 3D printed and fabricated micro free-flow electrophoresis (µFFE) devices in acrylonitrile butadiene styrene (ABS) that exhibit minimal surface adsorption without requiring additional surface coatings or specialized buffer additives. 2D, nano LC-micro free flow electrophoresis (2D nLC × µFFE) separations were used to assess both spatial and temporal broadening as peaks eluted through the separation channel. Minimal broadening due to wall adsorption was observed in either the spatial or temporal dimensions during separations of rhodamine 110, rhodamine 123, and fluorescein. Surface adsorption was observed in separations of Chromeo P503 labeled myoglobin and cytochrome c but was significantly reduced compared to previously reported glass devices. Peak widths of < 30 s were observed for both proteins. For comparison, Chromeo P503 labeled myoglobin and cytochrome c adsorb strongly to the surface of glass µFFE devices resulting in peak widths >20 min. A 2D nLC × µFFE separation of a Chromeo P503 labeled tryptic digest of BSA was performed to demonstrate the high peak capacity possible due to the low surface adsorption in the 3D printed ABS devices, even in the absence of surface coatings or buffer additives.


Assuntos
Acrilonitrila/química , Butadienos/química , Eletroforese/instrumentação , Impressão Tridimensional , Estireno/química , Adsorção , Desenho de Equipamento , Corantes Fluorescentes/análise , Corantes Fluorescentes/química , Corantes Fluorescentes/isolamento & purificação , Modelos Químicos , Propriedades de Superfície
17.
Electrophoresis ; 41(18-19): 1641-1650, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32726462

RESUMO

This study describes an inexpensive and nonconventional soft-embossing protocol to produce microfluidic devices in poly(methyl methacrylate) (PMMA). The desirable microfluidic structure was photo-patterned in a poly(vinyl acetate) (PVAc) film deposited on glass substrate to produce a low-relief master. Then, this template was used to generate a high-relief pattern in stiffened PDMS by increasing of curing agent /monomer ratio (1:5) followed by thermal aging in a laboratory oven (200°C for 24 h). The stiffened PDMS masters were used to replicate microfluidic devices in PMMA based on soft embossing at 220-230°C and thermal sealing at 140°C. Both embossing and sealing stages were performed by using binder clips. The proposed protocol has ensured the replication of microfluidic devices in PMMA with great fidelity (>94%). Examples of MCE devices, droplet generator devices and spot test array were successfully demonstrated. For testing MCE devices, a mixture containing inorganic cations was selected as model and the achieved analytical performance did not reveal significant difference from commercial PMMA devices. Water droplets were successfully generated in an oil phase at rate of ca. 60 droplets/min (fixing the continuous phase flow rate at 100 µL/h) with size of ca. 322 ± 6 µm. Glucose colorimetric assay was performed on spot test devices and good detectability level (5 µmol/L) was achieved. The obtained results for two artificial serum samples revealed good agreement with the certified concentrations. Based on the fabrication simplicity and great analytical performance, the proposed soft-embossing protocol may emerge as promising approach for manufacturing PMMA devices.


Assuntos
Desenho de Equipamento/métodos , Dispositivos Lab-On-A-Chip , Procedimentos Analíticos em Microchip/métodos , Polimetil Metacrilato/química , Glicemia/análise , Colorimetria/instrumentação , Eletroforese/instrumentação , Temperatura Alta , Limite de Detecção , Modelos Lineares , Modelos Biológicos , Reprodutibilidade dos Testes
18.
Electrophoresis ; 41(21-22): 1915-1930, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32735707

RESUMO

Many cellular functions are affected by and thus can be characterized by a cell's electrophysiology. This has also been found to correspond to other biophysical parameters such as cell morphology and mechanical properties. Dielectrophoresis (DEP) is an electrostatic technique which can be used to examine cellular biophysical parameters through the measuring of single or multiple cell response to electric field induced forces. This label-free method offers many advantages in characterizing a cell population over conventional electrophysiology methods such as patch clamping; however, it has yet to see mainstream pharmacological application. Challenges such as the transdisciplinary nature of the field bridging engineering and the biological sciences, throughput, specificity as well as standardization are being addressed in current literature. This review focuses on the developments of DEP-based cell electrophysiological characterization where determining cellular properties such as membrane conductance and capacitance, and cytoplasmic conductivity are the primary motivation. A brief theoretical review, techniques for obtaining these cell parameters, as well as the resulting cell parameters and their applications are included in this review. This review aims to further support the development of DEP-based cell characterization as an important part of the future of DEP and electrophysiology research.


Assuntos
Separação Celular , Eletroforese , Animais , Separação Celular/instrumentação , Separação Celular/métodos , Células Cultivadas , Condutividade Elétrica , Eletroforese/instrumentação , Eletroforese/métodos , Desenho de Equipamento , Humanos , Camundongos , Rotação
19.
Electrophoresis ; 41(9): 720-728, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32043614

RESUMO

In this work, we present an optical transit DEP flow cytometer for parallel single-cell analysis. Each cell's dielectric property is inferred from velocity perturbations due to DEP actuation in a microfluidic channel. Dual LED sources facilitate velocity measurement by producing two transit shadows for each cell passing through the channel. These shadows are detected using a 256-pixel linear optical array detector. Massively parallel analysis is possible as each pixel of the detector can independently analyze the passing cells. A wide channel (∼18 mm) was employed to carry many particles simultaneously, and the system was capable of detecting the velocity of over 200 cells simultaneously. We have achieved analysis rates for 10 µm diameter polystyrene spheres response exceeding 250 per second. With appropriate calibration, this DEP cytometer can quantitatively measure the dielectric response. The dielectric response (Clausius-Mossotti factor) of viable CHO cells was measured over the frequency range of 100 kHz to 6 MHz, and the obtained response matches the previously measured values by our group. The DEP cytometer uses simple modular components to achieve high throughput label-free single-cell dielectric analysis and can begin analyzing particles within 10 s after starting to pump the sample into the channel.


Assuntos
Eletroforese/instrumentação , Citometria de Fluxo , Técnicas Analíticas Microfluídicas/instrumentação , Análise de Célula Única/instrumentação , Animais , Células CHO , Cricetinae , Cricetulus , Desenho de Equipamento , Citometria de Fluxo/instrumentação , Citometria de Fluxo/métodos , Poliestirenos
20.
Electrophoresis ; 41(23): 2007-2014, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32776330

RESUMO

A three-dimensional-printed microfluidic device made of a thermoplastic material was used to study the creation of molecular filters by controlled dielectric breakdown. The device was made from acrylonitrile butadiene styrene by a fused deposition modeling three-dimensional printer and consisted of two V-shaped sample compartments separated by 750 µm of extruded plastic gap. Nanofractures were formed in the thin piece of acrylonitrile butadiene styrene by controlled dielectric breakdown by application voltage of 15-20 kV with the voltage terminated when reaching a defined current threshold. Variation of the size of the nanofractures was achieved by both variation of the current threshold and by variation of the ionic strength of the electrolyte used for breakdown. Electrophoretic transport of two proteins, R-phycoerythrin (RPE; <10 nm in size) and fluorescamine-labeled BSA (f-BSA; 2-4 nm), was used to monitor the size and transport properties of the nanofractures. Using 1 mM phosphate buffer, both RPE and f-BSA passed through the nanofractures when the current threshold was set to 25 µA. However, when the threshold was lowered to 10 µA or lower, RPE was restricted from moving through the nanofractures. When we increased the electrolyte concentration during breakdown from 1 to 10 mM phosphate buffer, BSA passed but RPE was blocked when the threshold was equal to, or lower than, 25 µA. This demonstrates that nanofracture size (pore area) is directly related to the breakdown current threshold but inversely related to the concentration of the electrolyte used for the breakdown process.


Assuntos
Eletrólitos/química , Eletroforese/instrumentação , Técnicas Analíticas Microfluídicas , Nanoestruturas/química , Impressão Tridimensional/instrumentação , Butadienos/química , Desenho de Equipamento , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Proteínas/análise , Proteínas/química , Estireno/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA