Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Traffic ; 25(1): e12928, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272447

RESUMO

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disorder affecting 1 in 5000-8000 individuals. Hereditary hemorrhagic telangiectasia type 1 (HHT1) is the most common HHT and manifests as diverse vascular malformations ranging from mild symptoms such as epistaxis and mucosal and cutaneous telangiectases to severe arteriovenous malformations (AVMs) in the lungs, brain or liver. HHT1 is caused by heterozygous mutations in the ENG gene, which encodes endoglin, the TGFß homodimeric co-receptor. It was previously shown that some endoglin HHT1-causing variants failed to traffic to the plasma membrane due to their retention in the endoplasmic reticulum (ER) and consequent degradation by ER-associated degradation (ERAD). Endoglin is a homodimer formed in the ER, and we therefore hypothesized that mixed heterodimers might form between ER-retained variants and WT protein, thus hampering its maturation and trafficking to the plasma membrane causing dominant negative effects. Indeed, HA-tagged ER-retained mutants formed heterodimers with Myc-tagged WT endoglin. Moreover, variants L32R, V105D, P165L, I271N and C363Y adversely affected the trafficking of WT endoglin by reducing its maturation and plasma membrane localization. These results strongly suggest dominant negative effects exerted by these ER-retained variants aggravating endoglin loss of function in patients expressing them in the heterozygous state with the WT allele. Moreover, this study may help explain some of the variability observed among HHT1 patients due to the additional loss of function exerted by the dominant negative effects in addition to that due to haploinsufficiency. These findings might also have implications for some of the many conditions impacted by ERAD.


Assuntos
Telangiectasia Hemorrágica Hereditária , Humanos , Alelos , Endoglina/genética , Retículo Endoplasmático/metabolismo , Mutação , Receptores de Superfície Celular/genética , Receptores de Fatores de Crescimento , Telangiectasia Hemorrágica Hereditária/genética , Telangiectasia Hemorrágica Hereditária/diagnóstico , Telangiectasia Hemorrágica Hereditária/metabolismo
2.
Blood ; 143(22): 2314-2331, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38457357

RESUMO

ABSTRACT: For monogenic diseases caused by pathogenic loss-of-function DNA variants, attention focuses on dysregulated gene-specific pathways, usually considering molecular subtypes together within causal genes. To better understand phenotypic variability in hereditary hemorrhagic telangiectasia (HHT), we subcategorized pathogenic DNA variants in ENG/endoglin, ACVRL1/ALK1, and SMAD4 if they generated premature termination codons (PTCs) subject to nonsense-mediated decay. In 3 patient cohorts, a PTC-based classification system explained some previously puzzling hemorrhage variability. In blood outgrowth endothelial cells (BOECs) derived from patients with ACVRL1+/PTC, ENG+/PTC, and SMAD4+/PTC genotypes, PTC-containing RNA transcripts persisted at low levels (8%-23% expected, varying between replicate cultures); genes differentially expressed to Bonferroni P < .05 in HHT+/PTC BOECs clustered significantly only to generic protein terms (isopeptide-bond/ubiquitin-like conjugation) and pulse-chase experiments detected subtle protein maturation differences but no evidence for PTC-truncated protein. BOECs displaying highest PTC persistence were discriminated in unsupervised hierarchical clustering of near-invariant housekeeper genes, with patterns compatible with higher cellular stress in BOECs with >11% PTC persistence. To test directionality, we used a HeLa reporter system to detect induction of activating transcription factor 4 (ATF4), which controls expression of stress-adaptive genes, and showed that ENG Q436X but not ENG R93X directly induced ATF4. AlphaFold accurately modeled relevant ENG domains, with AlphaMissense suggesting that readthrough substitutions would be benign for ENG R93X and other less rare ENG nonsense variants but more damaging for Q436X. We conclude that PTCs should be distinguished from other loss-of-function variants, PTC transcript levels increase in stressed cells, and readthrough proteins and mechanisms provide promising research avenues.


Assuntos
Receptores de Activinas Tipo II , Códon sem Sentido , Endoglina , Telangiectasia Hemorrágica Hereditária , Humanos , Telangiectasia Hemorrágica Hereditária/genética , Telangiectasia Hemorrágica Hereditária/patologia , Endoglina/genética , Endoglina/metabolismo , Receptores de Activinas Tipo II/genética , Proteína Smad4/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Mutação , Masculino , Feminino , Degradação do RNAm Mediada por Códon sem Sentido
3.
Clin Genet ; 105(5): 543-548, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38225712

RESUMO

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant form of vascular dysplasia. Genetic diagnosis is made by identifying loss-of-function variants in genes, such as ENG and ACVRL1. However, the causal mechanisms of various variants of unknown significance remains unclear. In this study, we analyzed 12 Japanese patients from 11 families who were clinically diagnosed with HHT. Sequencing analysis identified 11 distinct variants in ACVRL1 and ENG. Three of the 11 were truncating variants, leading to a definitive diagnosis, whereas the remaining eight were splice-site and missense variants that required functional analyses. In silico splicing analyses demonstrated that three variants, c.526-3C > G and c.598C > G in ACVRL1, and c.690-1G > A in ENG, caused aberrant splicing, as confirmed by a minigene assay. The five remaining missense variants were p.Arg67Gln, p.Ile256Asn, p.Leu285Pro, and p.Pro424Leu in ACVRL and p.Pro165His in ENG. Nanoluciferase-based bioluminescence analyses demonstrated that these ACVRL1 variants impaired cell membrane trafficking, resulting in the loss of bone morphogenetic protein 9 (BMP9) signal transduction. In contrast, the ENG mutation impaired BMP9 signaling despite normal cell membrane expression. The updated functional analysis methods performed in this study will facilitate effective genetic testing and appropriate medical care for patients with HHT.


Assuntos
Telangiectasia Hemorrágica Hereditária , Humanos , Telangiectasia Hemorrágica Hereditária/genética , Endoglina/genética , Japão/epidemiologia , Mutação , Testes Genéticos , Receptores de Activinas Tipo II/genética
4.
Eur Arch Otorhinolaryngol ; 281(1): 237-243, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37603052

RESUMO

PURPOSE: Hereditary hemorrhagic telangiectasia (HHT) is a dominantly inherited disorder that involves epistaxis, mucocutaneous telangiectases, and visceral arteriovenous malformations (AVMs). This study aims to investigate the genetic causes in a Chinese family with HHT. METHODS: HHT was confirmed according to Curaçao's diagnostic criteria. Three patients diagnosed with HHT and healthy members were recruited. Whole-exome sequencing (WES) and sanger sequencing were performed to define the patient's genetically pathogenic factor. RESULTS: The proband presented with recurrent epistaxis, hepatopulmonary arteriovenous malformation, and adenocarcinoma. A novel frameshift mutation (c.1376_1377delAC, p.H459Lfs*41) of the ENG gene was revealed in affected individuals by WES. There was no report of this variant and predicted to be highly damaging by causing truncation of the ENG protein. CONCLUSION: We report a novel variant in the ENG gene in Chinese that extends the mutational and phenotypic spectra of the ENG gene, and also demonstrates the feasibility of WES in the application of genetic diagnosis of HHT.


Assuntos
Mutação da Fase de Leitura , Telangiectasia Hemorrágica Hereditária , Humanos , Endoglina/genética , Telangiectasia Hemorrágica Hereditária/complicações , Telangiectasia Hemorrágica Hereditária/diagnóstico , Telangiectasia Hemorrágica Hereditária/genética , Epistaxe , Mutação , China
5.
Int J Mol Sci ; 25(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39062925

RESUMO

Telangiectases and arteriovenous malformations (AVMs) are the characteristic lesions of Hereditary Hemorrhagic Telangiectasia (HHT). Somatic second-hit loss-of-function variations in the HHT causative genes, ENG and ACVRL1, have been described in dermal telangiectasias. It is unclear if somatic second-hit mutations also cause the formation of AVMs and nasal telangiectasias in HHT. To investigate the genetic mechanism of AVM formation in HHT, we evaluated multiple affected tissues from fourteen individuals. DNA was extracted from fresh/frozen tissue of 15 nasal telangiectasia, 4 dermal telangiectasia, and 9 normal control tissue biopsies, from nine unrelated individuals with HHT. DNA from six formalin-fixed paraffin-embedded (FFPE) AVM tissues (brain, lung, liver, and gallbladder) from five individuals was evaluated. A 736 vascular malformation and cancer gene next-generation sequencing (NGS) panel was used to evaluate these tissues down to 1% somatic mosaicism. Somatic second-hit mutations were identified in three in four AVM biopsies (75%) or half of the FFPE (50%) samples, including the loss of heterozygosity in ENG in one brain AVM sample, in which the germline mutation occurred in a different allele than a nearby somatic mutation (both are loss-of-function mutations). Eight of nine (88.9%) patients in whom telangiectasia tissues were evaluated had a somatic mutation ranging from 0.68 to 1.96% in the same gene with the germline mutation. Six of fifteen (40%) nasal and two of four (50%) dermal telangiectasia had a detectable somatic second hit. Additional low-level somatic mutations in other genes were identified in several telangiectasias. This is the first report that nasal telangiectasias and solid organ AVMs in HHT are caused by very-low-level somatic biallelic second-hit mutations.


Assuntos
Malformações Arteriovenosas , Telangiectasia Hemorrágica Hereditária , Humanos , Telangiectasia Hemorrágica Hereditária/genética , Telangiectasia Hemorrágica Hereditária/complicações , Telangiectasia Hemorrágica Hereditária/patologia , Feminino , Masculino , Pessoa de Meia-Idade , Malformações Arteriovenosas/genética , Malformações Arteriovenosas/patologia , Adulto , Endoglina/genética , Idoso , Mutação , Receptores de Activinas Tipo II/genética , Telangiectasia/genética , Telangiectasia/patologia , Sequenciamento de Nucleotídeos em Larga Escala
6.
Int J Mol Sci ; 25(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38791148

RESUMO

Triple-negative breast cancer (TNBC) is characterized by the absence of the estrogen receptor, progesterone receptor, and receptor tyrosine kinase HER2 expression. Due to the limited number of FDA-approved targeted therapies for TNBC, there is an ongoing need to understand the molecular underpinnings of TNBC for the development of novel combinatorial treatment strategies. This study evaluated the role of the MerTK receptor tyrosine kinase on proliferation and invasion/metastatic potential in TNBC. Immunohistochemical analysis demonstrated MerTK expression in 58% of patient-derived TNBC xenografts. The stable overexpression of MerTK in human TNBC cell lines induced an increase in proliferation rates, robust in vivo tumor growth, heightened migration/invasion potential, and enhanced lung metastases. NanoString nCounter analysis of MerTK-overexpressing SUM102 cells (SUM102-MerTK) revealed upregulation of several signaling pathways, which ultimately drive cell cycle progression, reduce apoptosis, and enhance cell survival. Proteomic profiling indicated increased endoglin (ENG) production in SUM102-MerTK clones, suggesting that MerTK creates a conducive environment for increased proliferative and metastatic activity via elevated ENG expression. To determine ENG's role in increasing proliferation and/or metastatic potential, we knocked out ENG in a SUM102-MerTK clone with CRISPR technology. Although this ENG knockout clone exhibited similar in vivo growth to the parental SUM102-MerTK clone, lung metastasis numbers were significantly decreased ~4-fold, indicating that MerTK enhances invasion and metastasis through ENG. Our data suggest that MerTK regulates a unique proliferative signature in TNBC, promoting robust tumor growth and increased metastatic potential through ENG upregulation. Targeting MerTK and ENG simultaneously may provide a novel therapeutic approach for TNBC patients.


Assuntos
Proliferação de Células , Neoplasias de Mama Triplo Negativas , c-Mer Tirosina Quinase , Humanos , c-Mer Tirosina Quinase/metabolismo , c-Mer Tirosina Quinase/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Animais , Feminino , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Endoglina/metabolismo , Endoglina/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Metástase Neoplásica , Transdução de Sinais , Apoptose/genética
7.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928515

RESUMO

Glioblastoma is the most aggressive tumor in the central nervous system, with a survival rate of less than 15 months despite multimodal therapy. Tumor recurrence frequently occurs after removal. Tumoral angiogenesis, the formation of neovessels, has a positive impact on tumor progression and invasion, although there are controversial results in the specialized literature regarding its impact on survival. This study aims to correlate the immunoexpression of angiogenesis markers (CD34, CD105) with the proliferation index Ki67 and p53 in primary and secondary glioblastomas. This retrospective study included 54 patients diagnosed with glioblastoma at the Pathology Department of County Emergency Clinical Hospital Târgu Mureș. Microvascular density was determined using CD34 and CD105 antibodies, and the results were correlated with the immunoexpression of p53, IDH1, ATRX and Ki67. The number of neoformed blood vessels varied among cases, characterized by different shapes and calibers, with endothelial cells showing modified morphology and moderate to marked pleomorphism. Neovessels with a glomeruloid aspect, associated with intense positivity for CD34 or CD105 in endothelial cells, were observed, characteristic of glioblastomas. Mean microvascular density values were higher for the CD34 marker in all cases, though there were no statistically significant differences compared to CD105. Mutant IDH1 and ATRX glioblastomas, wild-type p53 glioblastomas, and those with a Ki67 index above 20% showed a more abundant microvascular density, with statistical correlations not reaching significance. This study highlighted a variety of percentage intervals of microvascular density in primary and secondary glioblastomas using immunohistochemical markers CD34 and CD105, respectively, with no statistically significant correlation between evaluated microvascular density and p53 or Ki67.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Isocitrato Desidrogenase , Antígeno Ki-67 , Densidade Microvascular , Neovascularização Patológica , Proteína Supressora de Tumor p53 , Proteína Nuclear Ligada ao X , Humanos , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/irrigação sanguínea , Glioblastoma/genética , Proteína Supressora de Tumor p53/metabolismo , Antígeno Ki-67/metabolismo , Feminino , Pessoa de Meia-Idade , Masculino , Idoso , Adulto , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/genética , Proteína Nuclear Ligada ao X/metabolismo , Proteína Nuclear Ligada ao X/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Estudos Retrospectivos , Endoglina/metabolismo , Endoglina/genética , Antígenos CD34/metabolismo , Biomarcadores Tumorais/metabolismo , Imuno-Histoquímica
8.
J Biol Chem ; 298(9): 102297, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35872017

RESUMO

Insulin signaling in blood vessels primarily functions to stimulate angiogenesis and maintain vascular homeostasis through the canonical PI3K and MAPK signaling pathways. However, angiogenesis is a complex process coordinated by multiple other signaling events. Here, we report a distinct crosstalk between the insulin receptor and endoglin/activin receptor-like kinase 1 (ALK1), an endothelial cell-specific TGF-ß receptor complex essential for angiogenesis. While the endoglin-ALK1 complex normally binds to TGF-ß or bone morphogenetic protein 9 (BMP9) to promote gene regulation via transcription factors Smad1/5, we show that insulin drives insulin receptor oligomerization with endoglin-ALK1 at the cell surface to trigger rapid Smad1/5 activation. Through quantitative proteomic analysis, we identify ependymin-related protein 1 (EPDR1) as a major Smad1/5 gene target induced by insulin but not by TGF-ß or BMP9. We found endothelial EPDR1 expression is minimal at the basal state but is markedly enhanced upon prolonged insulin treatment to promote cell migration and formation of capillary tubules. Conversely, we demonstrate EPDR1 depletion strongly abrogates these angiogenic effects, indicating that EPDR1 is a crucial mediator of insulin-induced angiogenesis. Taken together, these results suggest important therapeutic implications for EPDR1 and the TGF-ß pathways in pathologic angiogenesis during hyperinsulinemia and insulin resistance.


Assuntos
Endoglina , Fator 2 de Diferenciação de Crescimento , Insulina , Neovascularização Patológica , Proteínas do Tecido Nervoso , Receptores de Fatores de Crescimento Transformadores beta , Animais , Humanos , Camundongos , Receptores de Activinas Tipo II/metabolismo , Chlorocebus aethiops , Células COS , Endoglina/genética , Endoglina/metabolismo , Fator 2 de Diferenciação de Crescimento/genética , Insulina/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fosfatidilinositol 3-Quinases , Proteômica , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Fator de Crescimento Transformador beta/metabolismo
9.
J Pediatr ; 263: 113665, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37572862

RESUMO

OBJECTIVE: To assess the utility of the Curaçao criteria by age over time in children with hereditary hemorrhagic telangiectasia (HHT). STUDY DESIGN: This was a single-center, retrospective analysis of patients attending the HHT clinic at the Hospital for Sick Children (Toronto, Canada) between 2000 and 2019. The evaluation of the Curaçao criteria was completed during initial and follow-up visits. Screening for pulmonary and brain arteriovenous malformations was completed at 5 yearly intervals. RESULTS: A total of 116 patients with genetic confirmation of HHT were included in the analysis. At initial screening at a median (IQR) age of 8.4 (2.8, 12.9) years, 41% met criteria for a definite clinical diagnosis (≥3 criteria). In children <6 years at presentation, only 23% fulfilled at least 3 criteria initially. In longitudinal follow-up, 63% reached a definite clinical diagnosis, with a median (IQR) follow-up duration of 5.2 (3.2, 7.9) years (P = .005). Specifically, more patients met the epistaxis and telangiectasia criteria at last visit compared with initial (79% vs 60%; P = .006; 47% vs 30%; P = .02) but not for the arteriovenous malformation criterion (59% vs 57%; P = .65). CONCLUSIONS: In the pediatric population, most patients do not meet definite clinical criteria of HHT at initial presentation. Although the number of diagnostic criteria met increased over time, mainly due to new onset of epistaxis and telangiectasia, accuracy remained low during follow-up visits. Relying solely on clinical criteria may lead to underdiagnosis of HHT in children.


Assuntos
Malformações Arteriovenosas , Telangiectasia Hemorrágica Hereditária , Humanos , Criança , Telangiectasia Hemorrágica Hereditária/diagnóstico , Telangiectasia Hemorrágica Hereditária/genética , Estudos Retrospectivos , Curaçao , Epistaxe/etiologia , Mutação , Endoglina/genética , Receptores de Activinas Tipo II/genética , Malformações Arteriovenosas/diagnóstico , Malformações Arteriovenosas/genética
11.
BMC Biol ; 20(1): 210, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171573

RESUMO

BACKGROUND: Fluid shear stress enhances endothelial SMAD1/5 signaling via the BMP9-bound ALK1 receptor complex supported by the co-receptor Endoglin. While moderate SMAD1/5 activation is required to maintain endothelial quiescence, excessive SMAD1/5 signaling promotes endothelial dysfunction. Increased BMP signaling participates in endothelial-to-mesenchymal transition and inflammation culminating in vascular diseases such as atherosclerosis. While the function of Endoglin has so far been described under picomolar concentrations of BMP9 and short-term shear application, we investigated Endoglin under physiological BMP9 and long-term pathophysiological shear conditions. RESULTS: We report here that knock-down of Endoglin leads to exacerbated SMAD1/5 phosphorylation and atheroprone gene expression profile in HUVECs sheared for 24 h. Making use of the ligand-trap ALK1-Fc, we furthermore show that this increase is dependent on BMP9/10. Mechanistically, we reveal that long-term exposure of ECs to low laminar shear stress leads to enhanced Endoglin expression and endocytosis of Endoglin in Caveolin-1-positive early endosomes. In these endosomes, we could localize the ALK1-Endoglin complex, labeled BMP9 as well as SMAD1, highlighting Caveolin-1 vesicles as a SMAD signaling compartment in cells exposed to low atheroprone laminar shear stress. CONCLUSIONS: We identified Endoglin to be essential in preventing excessive activation of SMAD1/5 under physiological flow conditions and Caveolin-1-positive early endosomes as a new flow-regulated signaling compartment for BMP9-ALK1-Endoglin signaling axis in atheroprone flow conditions.


Assuntos
Caveolina 1 , Fator 2 de Diferenciação de Crescimento , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Caveolina 1/metabolismo , Endoglina/genética , Endoglina/metabolismo , Endossomos/metabolismo , Fator 2 de Diferenciação de Crescimento/metabolismo , Ligantes , Fosforilação
12.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769077

RESUMO

Targeting the tumor vasculature through specific endothelial cell markers involved in different signaling pathways represents a promising tool for tumor radiosensitization. Two prominent targets are endoglin (CD105), a transforming growth factor ß co-receptor, and the melanoma cell adhesion molecule (CD1046), present also on many tumors. In our recent in vitro study, we constructed and evaluated a plasmid for simultaneous silencing of these two targets. In the current study, our aim was to explore the therapeutic potential of gene electrotransfer-mediated delivery of this new plasmid in vivo, and to elucidate the effects of combined therapy with tumor irradiation. The antitumor effect was evaluated by determination of tumor growth delay and proportion of tumor free mice in the syngeneic murine mammary adenocarcinoma tumor model TS/A. Histological analysis of tumors (vascularization, proliferation, hypoxia, necrosis, apoptosis and infiltration of immune cells) was performed to evaluate the therapeutic mechanisms. Additionally, potential activation of the immune response was evaluated by determining the induction of DNA sensor STING and selected pro-inflammatory cytokines using qRT-PCR. The results point to a significant radiosensitization and a good therapeutic potential of this gene therapy approach in an otherwise radioresistant and immunologically cold TS/A tumor model, making it a promising novel treatment modality for a wide range of tumors.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética , Animais , Camundongos , Terapia Genética/métodos , Neovascularização Patológica/genética , Neovascularização Patológica/terapia , Neovascularização Patológica/patologia , Endoglina/genética , Plasmídeos
13.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36902347

RESUMO

Hereditary hemorrhagic telangiectasia (HHT) is a rare genetic disease characterized by aberrant angiogenesis and vascular malformations. Mutations in the transforming growth factor beta co-receptor, endoglin (ENG), account for approximately half of known HHT cases and cause abnormal angiogenic activity in endothelial cells (ECs). To date, how ENG deficiency contributes to EC dysfunction remains to be fully understood. MicroRNAs (miRNAs) regulate virtually every cellular process. We hypothesized that ENG depletion results in miRNA dysregulation that plays an important role in mediating EC dysfunction. Our goal was to test the hypothesis by identifying dysregulated miRNAs in ENG-knockdown human umbilical vein endothelial cells (HUVECs) and characterizing their potential role in EC function. We identified 32 potentially downregulated miRNAs in ENG-knockdown HUVECs with a TaqMan miRNA microarray. MiRs-139-5p and -454-3p were found to be significantly downregulated after RT-qPCR validation. While the inhibition of miR-139-5p or miR-454-3p had no effect on HUVEC viability, proliferation or apoptosis, angiogenic capacity was significantly compromised as determined by a tube formation assay. Most notably, the overexpression of miRs-139-5p and -454-3p rescued impaired tube formation in HUVECs with ENG knockdown. To our knowledge, we are the first to demonstrate miRNA alterations after the knockdown of ENG in HUVECs. Our results indicate a potential role of miRs-139-5p and -454-3p in ENG-deficiency-induced angiogenic dysfunction in ECs. Further study to examine the involvement of miRs-139-5p and -454-3p in HHT pathogenesis is warranted.


Assuntos
Endoglina , MicroRNAs , Telangiectasia Hemorrágica Hereditária , Humanos , Endoglina/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , MicroRNAs/genética , Transdução de Sinais , Telangiectasia Hemorrágica Hereditária/genética
14.
Zhonghua Jie He He Hu Xi Za Zhi ; 46(9): 916-920, 2023 Sep 12.
Artigo em Zh | MEDLINE | ID: mdl-37670645

RESUMO

Objective: To explore the genetic characteristics of a family with hereditary hemorrhagic telangiectasia (HHT) caused by endoglin (ENG) gene mutations. Methods: A total of 17 individuals from a 3-generation HHT family attending the First Affiliated Hospital of Dali University were selected as the research subjects. Clinical data and familial disease status of the HHT family proband were collected. Whole exome sequencing technology was used to screen for suspected pathogenic genes in the proband, and Sanger sequencing was used for family validation. Results: The proband and her mother had recurrent epistaxis and skin mucosal telangiectasia, and enhanced CT scans of the chest of the proband and her mother, daughter, and cousin indicated the presence of varying degrees of pulmonary arteriovenous malformations. The results of the full exon sequencing results showed that the proband carried the ENG gene c.579_599del non-shift deletion mutation, and Sanger sequencing showed that the mother, daughter, and cousin carried the same mutation. Conclusion: ENG gene c.579_ 599del mutation may be the genetic basis of HHT in this family.


Assuntos
Endoglina , Telangiectasia Hemorrágica Hereditária , Feminino , Humanos , Endoglina/genética , Hospitais , Mutação , Linhagem
15.
Am J Hum Genet ; 105(5): 894-906, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31630786

RESUMO

Hereditary hemorrhagic telangiectasia (HHT) is a Mendelian disease characterized by vascular malformations (VMs) including visceral arteriovenous malformations and mucosal telangiectasia. HHT is caused by loss-of-function (LoF) mutations in one of three genes, ENG, ACVRL1, or SMAD4, and is inherited as an autosomal-dominant condition. Intriguingly, the constitutional mutation causing HHT is present throughout the body, yet the multiple VMs in individuals with HHT occur focally, rather than manifesting as a systemic vascular defect. This disconnect between genotype and phenotype suggests that a local event is necessary for the development of VMs. We investigated the hypothesis that local somatic mutations seed the formation HHT-related telangiectasia in a genetic two-hit mechanism. We identified low-frequency somatic mutations in 9/19 telangiectasia through the use of next-generation sequencing. We established phase for seven of nine samples, which confirms that the germline and somatic mutations in all seven samples exist in trans configuration; this is consistent with a genetic two-hit mechanism. These combined data suggest that bi-allelic loss of ENG or ACVRL1 may be a required event in the development of telangiectasia, and that rather than haploinsufficiency, VMs in HHT are caused by a Knudsonian two-hit mechanism.


Assuntos
Receptores de Activinas Tipo II/genética , Endoglina/genética , Mutação/genética , Proteína Smad4/genética , Telangiectasia Hemorrágica Hereditária/genética , Malformações Vasculares/genética , Idoso , Alelos , Malformações Arteriovenosas/genética , Feminino , Genótipo , Humanos , Perda de Heterozigosidade/genética , Masculino , Fenótipo
16.
Genes Cells ; 26(10): 782-797, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34333851

RESUMO

Bone morphogenetic protein-9 (BMP9), a member of the transforming growth factor ß (TGFß) superfamily, plays important roles in the development and maintenance of various cell lineages via complexes of type I and type II TGFß receptors. Endoglin is a coreceptor for several TGFß family members, including BMP9, which is highly expressed in a particular stage of differentiation in erythroid cells as well as in endothelial cells. Although the importance of the interaction between BMP9 and endoglin for endothelial development has been reported, the contribution of BMP9 to endoglin-expressing erythroid cells remains to be clarified. To address this point, we prepared an anti-BMP9 antibody that blocks the BMP9-endoglin interaction. Of note, challenge with the antibody promotes erythropoiesis in wild-type mice but not in a mouse model of renal anemia in which erythropoietin (EPO) production in the kidneys is genetically ablated. While endoglin-positive erythroid progenitors are mainly maintained as progenitors when bone marrow-derived lineage-negative and cKit-positive cells are cultured in the presence of EPO and stem cell factor, the erythroid-biased accumulation of progenitors is impeded by the presence of BMP9. Our findings uncover an unrecognized role for BMP9 in attenuating erythroid differentiation via its interaction with endoglin on erythroid progenitors.


Assuntos
Eritropoese , Fator 2 de Diferenciação de Crescimento , Animais , Endoglina/genética , Células Endoteliais , Células Precursoras Eritroides , Fator 2 de Diferenciação de Crescimento/genética , Camundongos , Transdução de Sinais
17.
Blood ; 136(17): 1907-1918, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32573726

RESUMO

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular dysplasia. Care delivery for HHT patients is impeded by the need for laborious, repeated phenotyping and gaps in knowledge regarding the relationships between causal DNA variants in ENG, ACVRL1, SMAD4 and GDF2, and clinical manifestations. To address this, we analyzed DNA samples from 183 previously uncharacterized, unrelated HHT and suspected HHT cases using the ThromboGenomics high-throughput sequencing platform. We identified 127 rare variants across 168 heterozygous genotypes. Applying modified American College of Medical Genetics and Genomics Guidelines, 106 variants were classified as pathogenic/likely pathogenic and 21 as nonpathogenic (variant of uncertain significance/benign). Unlike the protein products of ACVRL1 and SMAD4, the extracellular ENG amino acids are not strongly conserved. Our inferences of the functional consequences of causal variants in ENG were therefore informed by the crystal structure of endoglin. We then compared the accuracy of predictions of the causal gene blinded to the genetic data using 2 approaches: subjective clinical predictions and statistical predictions based on 8 Human Phenotype Ontology terms. Both approaches had some predictive power, but they were insufficiently accurate to be used clinically, without genetic testing. The distributions of red cell indices differed by causal gene but not sufficiently for clinical use in isolation from genetic data. We conclude that parallel sequencing of the 4 known HHT genes, multidisciplinary team review of variant calls in the context of detailed clinical information, and statistical and structural modeling improve the prognostication and treatment of HHT.


Assuntos
Estudos de Associação Genética , Mutação , Telangiectasia Hemorrágica Hereditária/genética , Receptores de Activinas Tipo II/química , Receptores de Activinas Tipo II/genética , Estudos de Coortes , Análise Mutacional de DNA/métodos , Endoglina/química , Endoglina/genética , Feminino , Estudos de Associação Genética/métodos , Predisposição Genética para Doença , Testes Genéticos/métodos , Genômica/métodos , Fator 2 de Diferenciação de Crescimento/química , Fator 2 de Diferenciação de Crescimento/genética , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Modelos Moleculares , Fenótipo , Estudos Retrospectivos , Análise de Sequência de DNA/métodos , Proteína Smad4/química , Proteína Smad4/genética , Telangiectasia Hemorrágica Hereditária/epidemiologia , Telangiectasia Hemorrágica Hereditária/patologia
18.
Am J Med Genet A ; 188(1): 199-209, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34611981

RESUMO

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant fibrovascular dysplasia caused by mutations in ENG, ACVRL1, and SMAD4. Increasingly, there has been an appreciation for vascular conditions with phenotypic overlap to HHT but which have distinct clinical manifestations and arise from novel or uncharacterized gene variants. This study reported on a cohort of four unrelated probands who were diagnosed with a rare form of GDF2-related HHT5, for which only five prior cases have been described. Two patients harbored heterozygous missense variants not previously annotated as pathogenic (p.Val403Ile; p.Glu355Gln). Clinically, these patients had features resembling HHT1, including cerebrovascular involvement of their disease (first report documenting cerebral involvement of HHT5), but with earlier onset of epistaxis and a unique anatomic distribution of dermal capillary lesions that involved the upper forelimbs, trunk, and head. The other two patients harbored interstitial deletions larger than five megabases between 10q11.22 and 10q11.23 that included GDF2. To our knowledge, this is the first report detailing large genomic deletions leading to HHT5. These patients also demonstrated mucocutaneous capillary dysplasias, including intranasal vascular lesions complicated by childhood-onset epistasis, with a number of extravascular findings related to their 10q11.21q11.23 deletion. In conclusion, patients with GDF2-related HHT may present with a number of unique characteristics that differ from classically reported features of HHT.


Assuntos
Fator 2 de Diferenciação de Crescimento , Mutação de Sentido Incorreto , Telangiectasia Hemorrágica Hereditária , Receptores de Activinas Tipo II/genética , Criança , Endoglina/genética , Fator 2 de Diferenciação de Crescimento/genética , Heterozigoto , Humanos , Telangiectasia Hemorrágica Hereditária/diagnóstico , Telangiectasia Hemorrágica Hereditária/genética , Telangiectasia Hemorrágica Hereditária/patologia
19.
Am J Med Genet A ; 188(3): 959-964, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34904380

RESUMO

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant multisystemic vascular dysplasia, characterized by arteriovenous malformations (AVMs), mucocutaneous telangiectasia and nosebleeds. HHT is caused by a heterozygous null allele in ACVRL1, ENG, or SMAD4, which encode proteins mediating bone morphogenetic protein (BMP) signaling. Several missense and stop-gain variants identified in GDF2 (encoding BMP9) have been reported to cause a vascular anomaly syndrome similar to HHT, however none of these patients met diagnostic criteria for HHT. HHT families from UK NHS Genomic Medicine Centres were recruited to the Genomics England 100,000 Genomes Project. Whole genome sequencing and tiering protocols identified a novel, heterozygous GDF2 sequence variant in all three affected members of one HHT family who had previously screened negative for ACVRL1, ENG, and SMAD4. All three had nosebleeds and typical HHT telangiectasia, and the proband also had severe pulmonary AVMs from childhood. In vitro studies showed the mutant construct expressed the proprotein but lacked active mature BMP9 dimer, suggesting the mutation disrupts correct cleavage of the protein. Plasma BMP9 levels in the patients were significantly lower than controls. In conclusion, we propose that this heterozygous GDF2 variant is a rare cause of HHT associated with pulmonary AVMs.


Assuntos
Malformações Arteriovenosas , Telangiectasia Hemorrágica Hereditária , Receptores de Activinas Tipo II/genética , Fístula Arteriovenosa , Malformações Arteriovenosas/diagnóstico , Malformações Arteriovenosas/genética , Criança , Endoglina/genética , Endoglina/metabolismo , Epistaxe , Fator 2 de Diferenciação de Crescimento/genética , Humanos , Mutação , Artéria Pulmonar/anormalidades , Veias Pulmonares/anormalidades , Telangiectasia Hemorrágica Hereditária/diagnóstico , Telangiectasia Hemorrágica Hereditária/genética , Telangiectasia Hemorrágica Hereditária/patologia
20.
Ann Hematol ; 101(4): 773-780, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35044512

RESUMO

Several genetic and clinical markers are established as prognostic factors in chronic lymphocytic leukemia (CLL). However, additional markers are needed for risk stratification. Flow cytometric analysis is a mainstay of CLL diagnostics, thus identification of novel prognostic surface markers can improve risk assessment without increasing burden for patients and physicians. Furthermore, surface molecules preferentially expressed in high-risk cases could serve as therapeutic targets for immunotherapy. CD105 (endoglin) is a TGF-beta coreceptor and activates endothelial cells in healthy tissues and cancer. In addition, it is expressed on healthy hematopoietic precursors as well as lymphoid and myeloid leukemias. In acute myeloid leukemia (AML), a CD105 antibody is successfully applied in clinical studies. In CLL, mRNA expression of the CD105 gene ENG reportedly correlates with other risk factors but failed to show significant correlation with overall survival. However, CD105 protein expression in CLL has never been studied. We here analyzed CD105 surface expression on CLL cells from 71 patients by flow cytometry and report for the first time that substantial levels of CD105 are detectable on CLL cells in 70.4% of patients. Using receiver operating characteristics, we established a cutoff of 5.99% positive cells to distinguish between low and high CD105 levels, the latter correlating with decreased time to first treatment and overall survival. High CD105 expression further correlates with CD38 expression. Our study identified membrane expression of CD105 as a potential risk marker and therapeutic target in high-risk CLL. However, multivariant analyses of large cohorts should be performed in confirmatory studies.


Assuntos
Endoglina/análise , Leucemia Linfocítica Crônica de Células B , Leucemia Mieloide Aguda , Endoglina/genética , Células Endoteliais/metabolismo , Citometria de Fluxo , Humanos , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Mieloide Aguda/genética , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA