Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 94(1)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31619552

RESUMO

Refolding of the HIV-1 gp41 N- and C-terminal heptad repeats (NHR and CHR, respectively) into a six-helix bundle (6-HB) juxtaposes viral and cellular membranes for fusion. The CHR-derived peptide T20 is the only clinically approved viral fusion inhibitor and has potent anti-HIV activity; however, its mechanism of action is not fully understood. In this study, we surprisingly found that T20 disrupted the α-helical conformation of the NHR-derived peptide N54 through its C-terminal tryptophan-rich motif (TRM) and that synthetic short peptides containing the TRM sequence, TRM8 and TRM12, disrupted the N54 helix in a dose-dependent manner. Interestingly, TRM8 efficiently interfered with the secondary structures of three overlapping NHR peptides (N44, N38, and N28) and interacted with N28, which contains mainly the deep NHR pocket-forming sequence, with high affinity, suggesting that TRM targeted the NHR pocket site to mediate the disruption. Unlike TRM8, the short peptide corresponding to the pocket-binding domain (PBD) of the CHR helix had no such disruptive effect, and the CHR peptide C34 could form a stable 6-HB with the NHR helix; however, addition of the TRM to the C terminus of C34 resulted in a peptide (C46) that destroyed the NHR helix. Although the TRM peptides alone had no anti-HIV activity and could not block the formation of 6-HB conformation, substitution of the TRM for the PBD in C34 resulted in a mutant inhibitor (C34TRM) with high binding and inhibitory capacities. Combined, the present data inform a new mode of action of T20 and the structure-function relationship of gp41.IMPORTANCE The HIV-1 Env glycoprotein mediates membrane fusion and is conformationally labile. Despite extensive efforts, the structural property of the native fusion protein gp41 is largely unknown, and the mechanism of action of the gp41-derived fusion inhibitor T20 remains elusive. Here, we report that T20 and its C-terminal tryptophan-rich motif (TRM) can efficiently impair the conformation of the gp41 N-terminal heptad repeat (NHR) coiled coil by interacting with the deep NHR pocket site. The TRM sequence has been verified to possess the ability to replace the pocket-binding domain of C34, a fusion inhibitor peptide with high anti-HIV potency. Therefore, our studies have not only facilitated understanding of the mechanism of action of T20 and developed novel HIV-1 fusion inhibitors but also provided new insights into the structural property of the prefusion state of gp41.


Assuntos
Enfuvirtida/metabolismo , Proteína gp41 do Envelope de HIV/química , Inibidores da Fusão de HIV/metabolismo , HIV-1/química , Triptofano/química , Motivos de Aminoácidos , Sítios de Ligação , Dicroísmo Circular , Enfuvirtida/síntese química , Células HEK293 , Proteína gp41 do Envelope de HIV/antagonistas & inibidores , Proteína gp41 do Envelope de HIV/metabolismo , Inibidores da Fusão de HIV/síntese química , HIV-1/metabolismo , Humanos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Triptofano/metabolismo
2.
AIDS ; 33(10): 1545-1555, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30932963

RESUMO

OBJECTIVE: To revisit the mechanism of action of enfuvirtide (T20) and based on the newly defined mechanism, design an analogous peptide of T20 with improved antiviral activity. DESIGN: We compared the inhibitory activity of T20 with that of T1144 on six-helix bundle (6HB) formation at different time after coculture of HIV type 1 (HIV-1) envelope (Env)-expressing Chinese hamster ovary (CHO-Env) cells and CD4-expressing MT-2 cells at 31.5 °C and with that of T20-SF, an analogous peptide of T20 with an additional tryptophan-rich motif, on hemolysis mediated by FP-P, which contains fusion peptide and fusion peptide (FP) proximal region (FPPR), and HIV-1 infection. METHODS: Inhibitory activity of peptides on 6HB formation was tested in a temperature-controlled cell-cell fusion assay by flow cytometry using 6HB-specific mAb 2G8; on HIV-1 infection and fusion was assessed by p24 and cell-cell fusion assays. Interaction between different peptides or peptide and antibody was evaluated by ELISA. RESULTS: T20 could inhibit 6HB formation at early, but not late, stage of HIV-1 fusion, whereas T1144 was effective at both stages. T20-SF is much more effective than T20 in binding to FP-P and inhibiting infection of HIV-1, including T20-resistant strains, and FP-P-mediated hemolysis. CONCLUSION: Results suggest that T20 has a double-target mechanism, by which its N-terminal and C-terminal portions bind to N-terminal heptad repeat and FPPR, respectively. T20-SF designed based on this new mechanism exhibits significantly improved anti-HIV-1 activity because it targets the triple sites in gp41, including N-terminal heptad repeat, FPPR, and fusion peptide. Thus, this study provides clues for designing novel HIV fusion inhibitors with improved antiviral activity.


Assuntos
Descoberta de Drogas/métodos , Enfuvirtida/química , Enfuvirtida/farmacologia , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/metabolismo , Inibidores da Fusão de HIV/química , Inibidores da Fusão de HIV/farmacologia , Animais , Sítios de Ligação , Fusão Celular , Linhagem Celular , Enfuvirtida/síntese química , Proteína do Núcleo p24 do HIV/metabolismo , Inibidores da Fusão de HIV/síntese química , Humanos , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA