Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 601
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 20(2): e1011164, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38416769

RESUMO

TOP2 inhibitors (TOP2i) are effective drugs for breast cancer treatment. However, they can cause cardiotoxicity in some women. The most widely used TOP2i include anthracyclines (AC) Doxorubicin (DOX), Daunorubicin (DNR), Epirubicin (EPI), and the anthraquinone Mitoxantrone (MTX). It is unclear whether women would experience the same adverse effects from all drugs in this class, or if specific drugs would be preferable for certain individuals based on their cardiotoxicity risk profile. To investigate this, we studied the effects of treatment of DOX, DNR, EPI, MTX, and an unrelated monoclonal antibody Trastuzumab (TRZ) on iPSC-derived cardiomyocytes (iPSC-CMs) from six healthy females. All TOP2i induce cell death at concentrations observed in cancer patient serum, while TRZ does not. A sub-lethal dose of all TOP2i induces limited cellular stress but affects calcium handling, a function critical for cardiomyocyte contraction. TOP2i induce thousands of gene expression changes over time, giving rise to four distinct gene expression response signatures, denoted as TOP2i early-acute, early-sustained, and late response genes, and non-response genes. There is no drug- or AC-specific signature. TOP2i early response genes are enriched in chromatin regulators, which mediate AC sensitivity across breast cancer patients. However, there is increased transcriptional variability between individuals following AC treatments. To investigate potential genetic effects on response variability, we first identified a reported set of expression quantitative trait loci (eQTLs) uncovered following DOX treatment in iPSC-CMs. Indeed, DOX response eQTLs are enriched in genes that respond to all TOP2i. Next, we identified 38 genes in loci associated with AC toxicity by GWAS or TWAS. Two thirds of the genes that respond to at least one TOP2i, respond to all ACs with the same direction of effect. Our data demonstrate that TOP2i induce thousands of shared gene expression changes in cardiomyocytes, including genes near SNPs associated with inter-individual variation in response to DOX treatment and AC-induced cardiotoxicity.


Assuntos
Antraciclinas , Cardiotoxicidade , Humanos , Feminino , Antraciclinas/efeitos adversos , Antraciclinas/metabolismo , Cardiotoxicidade/genética , Cardiotoxicidade/metabolismo , Antibióticos Antineoplásicos/efeitos adversos , Antibióticos Antineoplásicos/metabolismo , Inibidores da Topoisomerase II/metabolismo , Inibidores da Topoisomerase II/farmacologia , Doxorrubicina/efeitos adversos , Doxorrubicina/metabolismo , Mitoxantrona/efeitos adversos , Mitoxantrona/metabolismo , Miócitos Cardíacos/metabolismo , Daunorrubicina/metabolismo , Daunorrubicina/farmacologia , Epirubicina/metabolismo , Epirubicina/farmacologia , DNA Topoisomerases Tipo II/genética , Expressão Gênica
2.
BMC Cancer ; 24(1): 167, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308220

RESUMO

Breast carcinoma (BC) ranks as a predominant malignancy and constitutes the second principal cause of mortality among women globally. Epirubicin stands as the drug of choice for BC therapeutics. Nevertheless, the emergence of chemoresistance has significantly curtailed its therapeutic efficacy. The resistance mechanisms to Epirubicin remain not entirely elucidated, yet they are conjectured to stem from diminished tumor vascular perfusion and resultant hypoxia consequent to Epirubicin administration. In our investigation, we meticulously scrutinized the Gene Expression Omnibus database for EPDR1, a gene implicated in hypoxia and Epirubicin resistance in BC. Subsequently, we delineated the impact of EPDR1 on cellular proliferation, motility, invasive capabilities, and interstitial-related proteins in BC cells, employing methodologies such as the CCK-8 assay, Transwell assay, and western blot analysis. Our research further unveiled that hypoxia-induced miR-181a-5p orchestrates the regulation of BC cell duplication, migration, invasion, and interstitial-related protein expression via modulation of EPDR1. In addition, we identified TRPC1, a gene associated with EPDR1 expression in BC, and substantiated that EPDR1 influences BC cellular dynamics through TRPC1-mediated modulation of the PI3K/AKT signaling cascade. Our findings underscore the pivotal role of EPDR1 in the development of BC. EPDR1 was found to be expressed at subdued levels in BC tissues, Epirubicin-resistant BC cells, and hypoxic BC cells. The overexpression of EPDR1 curtailed BC cell proliferation, motility, invasiveness, and the expression of interstitial-related proteins. At a mechanistic level, the overexpression of hypoxia-induced miR-181a-5p was observed to inhibit the EPDR1/TRPC1 axis, thereby activating the PI3K/AKT signaling pathway and diminishing the sensitivity to Epirubicin in BC cells. In summation, our study demonstrates that the augmentation of hypoxia-induced miR-181a-5p diminishes Epirubicin sensitivity in BC cells by attenuating EPDR1/TRPC1 expression, thereby invigorating the PI3K/AKT signaling pathway. This exposition offers a theoretical foundation for the application of Epirubicin in BC therapy, marking a significant contribution to the existing body of oncological literature.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Epirubicina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Regulação para Cima , Transdução de Sinais/genética , Proliferação de Células/genética , Hipóxia/genética , Linhagem Celular Tumoral
3.
Bioorg Chem ; 143: 107003, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38029570

RESUMO

Two synthetic methods were proposed for the preparation of a new series of thiophene-1,3,4-oxadiazole-thiazolidine-2,4-dione hybrids (TOT-1 to 15) and their structures were elucidated based on spectral data. Studies on cytotoxicity, ROS, cellular uptake and interactions of TOT-14 with calf thymus DNA were carried out. Anticancer activity of compounds, TOT-1 to 15 on breast cancer (MCF-7) cell lines was investigated. The IC50 values for the standard, epirubicin hydrochloride and TOT-12, 13, 14 and 15 were found to be 6.78, 5.52, 6.53, 4.83 and 5.57 µg/mL, respectively. Notably, TOT-14 exhibited a remarkable antiproliferative activity with a strikingly selective inhibitory effect compared to standard. This specific selectivity could be attributed to the synergistic effect of increased cellular uptake and generation of higher ROS in cancer cells after irradiation. The binding constant of 4.25 x 103 M-1 indicated the moderate interaction between TOT-14 and ct-DNA. The docking score of TOT derivativeswas substantially identical to the docking score of epirubicin hydrochloride. The designed molecules complied with the requirements for drug-likeness and ADME.


Assuntos
Antineoplásicos , Oxidiazóis , Tiazolidinedionas , Humanos , Relação Estrutura-Atividade , Células MCF-7 , Antineoplásicos/farmacologia , Antineoplásicos/química , Epirubicina/farmacologia , Tiofenos/farmacologia , Espécies Reativas de Oxigênio , Simulação de Acoplamento Molecular , Estrutura Molecular , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais
4.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38203818

RESUMO

Epirubicin hydrochloride (EPI) is an anticancer drug widely used in the treatment of many solid tumors, including ovarian cancer. Because of its anatomical location, ovarian cancer shows symptoms when it is already in an advanced stage and is thus more difficult to treat. Epirubicin hydrochloride kills cancer cells effectively, but its dose escalation is limited by its severe toxicity. By encapsulating epirubicin in dextran-based nanoparticles (POLEPI), we expected to deliver higher and thus clinically more effective doses directly to tumors, where epirubicin would be released and retained longer in the tumor. The antitumor activity of POLEPI compared to EPI was first tested ex vivo in a series of ovarian cancer patient-derived tumor xenografts (PDX). The most promising PDX was then implanted orthotopically into immunocompromised mice, and tumor growth was monitored via magnetic resonance imaging (MRI). Although we succeeded in suppressing the growth of ovarian cancer derived from a patient, in a mouse model by 70% compared to 40% via EPI in 5 days after only one injection, we could not eliminate serious side effects, and the study was terminated prematurely for humane reasons.


Assuntos
Nanopartículas , Neoplasias Ovarianas , Policetídeos , Humanos , Animais , Camundongos , Feminino , Epirubicina/farmacologia , Epirubicina/uso terapêutico , Xenoenxertos , Antraciclinas , Neoplasias Ovarianas/tratamento farmacológico , Modelos Animais de Doenças
5.
Int J Mol Sci ; 25(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38791158

RESUMO

Triple-negative breast cancer (TNBC) remains the most lethal subtype of breast cancer, characterized by poor response rates to current chemotherapies and a lack of additional effective treatment options. While approximately 30% of patients respond well to anthracycline- and taxane-based standard-of-care chemotherapy regimens, the majority of patients experience limited improvements in clinical outcomes, highlighting the critical need for strategies to enhance the effectiveness of anthracycline/taxane-based chemotherapy in TNBC. In this study, we report on the potential of a DNA-PK inhibitor, peposertib, to improve the effectiveness of topoisomerase II (TOPO II) inhibitors, particularly anthracyclines, in TNBC. Our in vitro studies demonstrate the synergistic antiproliferative activity of peposertib in combination with doxorubicin, epirubicin and etoposide in multiple TNBC cell lines. Downstream analysis revealed the induction of ATM-dependent compensatory signaling and p53 pathway activation under combination treatment. These in vitro findings were substantiated by pronounced anti-tumor effects observed in mice bearing subcutaneously implanted tumors. We established a well-tolerated preclinical treatment regimen combining peposertib with pegylated liposomal doxorubicin (PLD) and demonstrated strong anti-tumor efficacy in cell-line-derived and patient-derived TNBC xenograft models in vivo. Taken together, our findings provide evidence that co-treatment with peposertib has the potential to enhance the efficacy of anthracycline/TOPO II-based chemotherapies, and it provides a promising strategy to improve treatment outcomes for TNBC patients.


Assuntos
Doxorrubicina , Sinergismo Farmacológico , Inibidores da Topoisomerase II , Neoplasias de Mama Triplo Negativas , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Humanos , Animais , Feminino , Camundongos , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Doxorrubicina/análogos & derivados , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Proteína Quinase Ativada por DNA/metabolismo , Sulfonas/farmacologia , Proliferação de Células/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Polietilenoglicóis/farmacologia , Etoposídeo/farmacologia , Etoposídeo/uso terapêutico , DNA Topoisomerases Tipo II/metabolismo , Epirubicina/farmacologia
6.
Biochem Biophys Res Commun ; 675: 33-40, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37451215

RESUMO

Colorectal cancer is one of the most common cancers worldwide, affecting the colon and rectum. A major problem in the treatment of colorectal cancer is acquired chemoresistance, including resistance against death receptor-induced apoptosis. Therefore, investigating new biomarkers for the treatment of the disease and sensitization strategies against TRAIL might be of high clinical importance. TNFRSF10A/B are known as death receptors for TRAIL-induced apoptotic cell death. In this study, we used multiple bioinformatic tools and experimental analyses to investigate the role of TRAIL receptors TNFRSF10A and TNFRSF10B in colorectal cancer. We also identified the potential effect of bortezomib and epirubicin in the induction of TRAIL-mediated apoptotic cell death. Here, we showed that TNFRSF10 A/B expressions are upregulated in various tumor types, including COAD, and its high expression is decreased with the different clinicopathological parameters in COAD. We also found an association between TNFRSF10 A/B expression and tumor molecular subtypes. We further detected the association between the expression of TNFRSF10 A/B and immune cell tumor infiltration, including B cells, CD8+ T cells, neutrophils and dendritic cells. In addition, we showed that combining bortezomib and epirubicin treatment leads to the upregulation of TNFRSF10 A/B in colorectal cancer cells in vitro. The increase in the expression of death receptors was correlated with higher active caspase-3 levels following the incubation of cells with recombinant TRAIL protein, which is a ligand for TNFRSF10 A/B receptors. Our results suggest that TNFRSF10 A/B may be a marker to differentiate tumor molecular subtypes in colorectal cancer. The expression of TNFRSF10 A/B may be associated with the recruitment of immune cells into tumors and the development of tumor suppression. The combination of bortezomib and epirubicin treatment might sensitize colorectal cancer cells to TRAIL-induced apoptosis via the upregulation of death receptor.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Colorretais , Humanos , Apoptose , Bortezomib/farmacologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Epirubicina/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
7.
Neurochem Res ; 48(9): 2767-2783, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37097396

RESUMO

Epirubicin's (EPI) efficacy as a chemotherapeutic agent against breast cancer is limited by EPI's neurotoxicity associated with increased oxidative and inflammatory stressors. 3-Indolepropionic acid (3-IPA) derived from in vivo metabolism of tryptophan is reported to possess antioxidative properties devoid of pro-oxidant activity. In this regard, we investigated the effect of 3-IPA on EPI-mediated neurotoxicity in forty female rats (180-200 g; five cohorts (n = 6) treated as follows: Untreated control; EPI alone (2.5 mg/Kg); 3-IPA alone (40 mg/Kg body weight); EPI (2.5 mg/Kg) + 3-IPA (20 mg/Kg) and EPI (2.5 mg/Kg) + 3-IPA (40 mg/Kg) for 28 days. Experimental rats were treated with EPI via intraperitoneal injection thrice weekly or co-treated with 3-IPA daily by gavage. Subsequently, the rat's locomotor activities were measured as endpoints of neurobehavioural status. After sacrifice, inflammation, oxidative stress and DNA damage biomarkers were assessed in rats' cerebrum and cerebellum alongside histopathology. Our results demonstrated that locomotor and exploratory deficits were pronounced in EPI-alone treated rats and improved in the presence of 3-IPA co-treatment. EPI-mediated decreases in tissue antioxidant status, increases in reactive oxygen and nitrogen species (RONS), as well as in lipid peroxidation (LPO) and xanthine oxidase (XO) were lessened in the cerebrum and cerebellum of 3-IPA co-treated rats. Increases in nitric oxide (NO) and 8-hydroxydeguanosin (8-OHdG) levels and myeloperoxidase MPO activity were also abated by 3-IPA. Light microscopic examination of the cerebrum and cerebellum revealed EPI-precipitated histopathological lesions were subsequently alleviated in rats co-treated with 3-IPA. Our findings demonstrate that supplementing endogenously derived 3-IPA from tryptophan metabolism enhances tissue antioxidant status, protects against EPI-mediated neuronal toxicity, and improves neurobehavioural and cognitive levels in experimental rats. These findings may benefit breast cancer patients undergoing Epirubicin chemotherapy.


Assuntos
Antioxidantes , Neoplasias , Feminino , Ratos , Animais , Antioxidantes/uso terapêutico , Antioxidantes/farmacologia , Epirubicina/uso terapêutico , Epirubicina/farmacologia , Ratos Wistar , Triptofano/farmacologia , Estresse Oxidativo , Espécies Reativas de Oxigênio , Neoplasias/tratamento farmacológico
8.
J Liposome Res ; 33(2): 197-213, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36440599

RESUMO

Treatment of epithelial ovarian cancer (EOC) is a challenge because it still leads to unsatisfactory clinical prognosis. This is due to the toxicity and poor targeting of chemotherapeutic agents, as well as metastasis of the tumor. In this study, we designed a targeted liposome with nanostructures to overcome these problems. In the liposomes, epirubicin and curcumin were encapsulated to achieve their synergistic antitumor efficacy, while Epi-1 was modified on the liposomal surface to target epithelial cell adhesion molecule (EpCAM). Epi-1, a macrocyclic peptide, exhibits active targeting for enhanced cellular uptake and potent cytotoxicity against tumor cells. The encapsulation of epirubicin and curcumin synergistically inhibited the formation of neovascularization and vasculogenic mimicry (VM) channels, thereby suppressing tumor metastasis on SKOV3 cells. The dual drug loaded Epi-1-liposomes also induced apoptosis and downregulated metastasis-related proteins for effective antitumor in vitro. In vivo studies showed that dual drug loaded Epi-1-liposomes prolonged circulation time in the blood and increased the selective accumulation of drug at the tumor site. H&E staining and immunohistochemistry with Ki-67 also showed that targeted liposomes elevated antitumor activity. Also, targeted liposomes downregulated angiogenesis-related proteins to inhibit angiogenesis and thus tumor metastasis. In conclusion, the production of dual drug loaded Epi-1-liposomes is an effective strategy for the treatment of EOC.


Assuntos
Curcumina , Neoplasias Ovarianas , Humanos , Feminino , Epirubicina/farmacologia , Epirubicina/química , Epirubicina/uso terapêutico , Lipossomos/química , Molécula de Adesão da Célula Epitelial , Curcumina/farmacologia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico
9.
Molecules ; 28(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37175299

RESUMO

(1) Malignant melanomas are dangerous skin cancers, and the treatment of melanomas with various cytostatic drugs often causes side effects and after their prolonged use resistance to these drugs appears. The aim of this study was to evaluate the anticancer effects of esculetin (a simple coumarin) and to assess pharmacodynamic interactions between esculetin and six commonly used cytostatic drugs (cisplatin, epirubicin, docetaxel, paclitaxel, mitoxantrone and vemurafenib) using an isobolographic analysis. (2) The experiments were carried out on four human malignant melanoma cell lines (FM55P, A375, FM55M2 and SK-MEL28). The effects of esculetin on viability, cell proliferation and cytotoxicity were verified in the range of concentrations of 2-200 µM. (3) Esculetin inhibited, in a dose-dependent manner, malignant melanoma cell viability and proliferation. The IC50 for esculetin ranged from 18.20 ± 2.93 to 120.64 ± 30.39 µM depending on the melanoma cell lines used. The combinations of esculetin with epirubicin and vemurafenib showed antagonistic interactions, the combinations of esculetin with cisplatin, docetaxel and paclitaxel showed additive interactions. For the combinations of esculetin with mitoxantrone, the isobolographic analysis displayed synergy. (4) In the treatment of malignant melanoma, esculetin should not be combined with epirubicin or vemurafenib, due to the reduction of their anticancer effects, while the synergistic interactions (esculetin + mitoxantrone) deserve a preclinical recommendation as a beneficial combination during anticancer therapy.


Assuntos
Citostáticos , Melanoma , Humanos , Cisplatino/farmacologia , Docetaxel , Epirubicina/farmacologia , Vemurafenib , Mitoxantrona , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Paclitaxel/farmacologia , Melanoma/tratamento farmacológico , Linhagem Celular , Linhagem Celular Tumoral
10.
Immunity ; 39(5): 874-84, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24184056

RESUMO

Severe sepsis remains a poorly understood systemic inflammatory condition with high mortality rates and limited therapeutic options in addition to organ support measures. Here we show that the clinically approved group of anthracyclines acts therapeutically at a low dose regimen to confer robust protection against severe sepsis in mice. This salutary effect is strictly dependent on the activation of DNA damage response and autophagy pathways in the lung, as demonstrated by deletion of the ataxia telangiectasia mutated (Atm) or the autophagy-related protein 7 (Atg7) specifically in this organ. The protective effect of anthracyclines occurs irrespectively of pathogen burden, conferring disease tolerance to severe sepsis. These findings demonstrate that DNA damage responses, including the ATM and Fanconi Anemia pathways, are important modulators of immune responses and might be exploited to confer protection to inflammation-driven conditions, including severe sepsis.


Assuntos
Antraciclinas/farmacologia , Antibacterianos/farmacologia , Reparo do DNA/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Peritonite/tratamento farmacológico , Sepse/prevenção & controle , Infecções por Adenoviridae/imunologia , Animais , Antraciclinas/uso terapêutico , Antibacterianos/uso terapêutico , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Proteína 7 Relacionada à Autofagia , Ceco/lesões , Dano ao DNA , Epirubicina/administração & dosagem , Epirubicina/farmacologia , Epirubicina/uso terapêutico , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/fisiologia , Inflamação , Mediadores da Inflamação/análise , Injeções Intraperitoneais , Pulmão/metabolismo , Meropeném , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/fisiologia , Especificidade de Órgãos , Peritonite/etiologia , Peritonite/genética , Peritonite/imunologia , Peritonite/fisiopatologia , Infecções Respiratórias/imunologia , Choque Séptico/prevenção & controle , Tienamicinas/uso terapêutico , Irradiação Corporal Total
11.
Bioorg Med Chem Lett ; 76: 129017, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36209968

RESUMO

Despite the enormous potential of siRNAs to transcriptionally downregulate disease causing proteins in many genetic diseases, efficient delivery and endosomal escape are the two bottlenecks that have resulted in only a handful of FDA approved drugs. In this report, we have successfully delivered siRNA against Nanog with the help of pentafluorobenzyl modified Internal Oligo-guanidinium transporter (IGT) that has previously shown promising results in peptide and antisense morpholino delivery. Nanog downregulation in prostate cancer cell line DU145 in serum containing media led to suppression of associated proteins such as KLF4, FAK and cMyc and also enhanced the chemosensitivity of Epirubicin, an anthracycline based drug, in DU145 cells by associated MDR-1 downregulation in vitro. These results show that IGT is a promising candidate for siRNA delivery and its conjugation with stable siRNAs could enhance the chemotherapeutic efficiency of siRNAs alone and in combination with small molecule-based drugs.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Epirubicina , Proteína Homeobox Nanog , Proteínas de Transporte de Cátions Orgânicos , Neoplasias da Próstata , RNA Interferente Pequeno , Humanos , Masculino , Linhagem Celular Tumoral , Epirubicina/farmacologia , Guanidina/metabolismo , Morfolinos , Proteína Homeobox Nanog/genética , Peptídeos/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , RNA Interferente Pequeno/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/genética
12.
Bioorg Chem ; 118: 105470, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34814085

RESUMO

Mesoporous silica nanoparticles (MNs) emerged as new promising drug-delivery platforms capable to overcome resistance in bacteria. Dual loading of drugs on these nanocarriers, exploiting synergistic interactions between the nanoparticles and the drugs, could be considered as a way to increase the efficacy against resistant bacteria with a positive effect even at very low concentrations. Considering that patients with cancer are highly susceptible to almost any type of bacterial infections, in this work, nanocarriers mesoporous silica-based, MNs and MNs@EPI were synthetized and submitted to single and/or dual loading of antibiotics (ofloxacin - OFLO) and anticancer drugs (Doxorubicin - DOX; Epirubicin - EPI), and investigated regarding their antibacterial activity against Escherichia coli, Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Enterococcus faecalis and Pseudomonas aeruginosa. Formulations containing ofloxacin such as MNs-OFLO, MNs-EPI + OFLO, MNs-DOX + OFLO and MNs@EPI + OFLO, present antibacterial activity in all bacterial strains tested. All these are more effective in E.coli with MIC and MBC values for MNs-OFLO, MNs-EPI + OFLO and MNs-DOX + OFLO of around 1 and 2 µgnanomaterial/mL, corresponding to ofloxacin concentrations of 0.03, 0.02 and 0.04 µg/mL, respectively. In the cocktail formulations the conjugation of epirubicin with ofloxacin presents a more effective antibacterial activity with more than 3-fold reduction of ofloxacin concentration when comparing to the single ofloxacin system. By far, the most effective synergistic effect was obtained for the system where epirubicin was functionalized at nanoparticles surface (MNs@EPI), where a 40-fold and 33-fold reductions of ofloxacin concentration were obtained, in P. aeruginosa in comparison to the MNs-OFLO and MNs-EPI + OFLO systems, respectively. These effects are shown in all bacterial strains tested, even in strains that have acquired resistance mechanisms, such as MRSA.


Assuntos
Antibacterianos/farmacologia , Antibióticos Antineoplásicos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Doxorrubicina/farmacologia , Epirubicina/farmacologia , Ofloxacino/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antibióticos Antineoplásicos/química , Relação Dose-Resposta a Droga , Doxorrubicina/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Enterococcus faecalis/efeitos dos fármacos , Epirubicina/química , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Nanopartículas/química , Ofloxacino/química , Tamanho da Partícula , Porosidade , Pseudomonas aeruginosa/efeitos dos fármacos , Dióxido de Silício/química , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Propriedades de Superfície
13.
Acta Pharmacol Sin ; 43(1): 177-193, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34294886

RESUMO

Inhibition of autophagy has been accepted as a promising therapeutic strategy in cancer, but its clinical application is hindered by lack of effective and specific autophagy inhibitors. We previously identified cepharanthine (CEP) as a novel autophagy inhibitor, which inhibited autophagy/mitophagy through blockage of autophagosome-lysosome fusion in human breast cancer cells. In this study we investigated whether and how inhibition of autophagy/mitophagy by cepharanthine affected the efficacy of chemotherapeutic agent epirubicin in triple negative breast cancer (TNBC) cells in vitro and in vivo. In human breast cancer MDA-MB-231 and BT549 cells, application of CEP (2 µM) greatly enhanced cepharanthine-induced inhibition on cell viability and colony formation. CEP interacted with epirubicin synergistically to induce apoptosis in TNBC cells via the mitochondrial pathway. We demonstrated that co-administration of CEP and epirubicin induced mitochondrial fission in MDA-MB-231 cells, and the production of mitochondrial superoxide was correlated with mitochondrial fission and apoptosis induced by the combination. Moreover, we revealed that co-administration of CEP and epirubicin markedly increased the generation of mitochondrial superoxide, resulting in oxidation of the actin-remodeling protein cofilin, which promoted formation of an intramolecular disulfide bridge between Cys39 and Cys80 as well as Ser3 dephosphorylation, leading to mitochondria translocation of cofilin, thus causing mitochondrial fission and apoptosis. Finally, in mice bearing MDA-MB-231 cell xenografts, co-administration of CEP (12 mg/kg, ip, once every other day for 36 days) greatly enhanced the therapeutic efficacy of epirubicin (2 mg/kg) as compared with administration of either drug alone. Taken together, our results implicate that a combination of cepharanthine with chemotherapeutic agents could represent a novel therapeutic strategy for the treatment of breast cancer.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Benzilisoquinolinas/farmacologia , Epirubicina/farmacologia , Dinâmica Mitocondrial/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/química , Benzilisoquinolinas/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Epirubicina/química , Humanos , Estrutura Molecular , Oxirredução , Relação Estrutura-Atividade , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais Cultivadas
14.
Molecules ; 27(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36364051

RESUMO

One of the strategies for the treatment of advanced cancer diseases is targeting the energy metabolism of the cancer cells. The compound 2,4-DNP (2,4-dinitrophenol) disrupts the cell energy metabolism through the ability to decouple oxidative phosphorylation. The aim of the study was to determine the ability of 2,4-DNP to sensitize prostate cancer cells with different metabolic phenotypes to the action of known anthracyclines (doxorubicin and epirubicin). The synergistic effect of the anthracyclines and 2,4-DNP was determined using an MTT assay, apoptosis detection and a cell cycle analysis. The present of oxidative stress in cancer cells was assessed by CellROX, the level of cellular thiols and DNA oxidative damage. The study revealed that the incubation of LNCaP prostate cancer cells (oxidative phenotype) with epirubicin and doxorubicin simultaneously with 2,4-DNP showed the presence of a synergistic effect for both the cytostatics. Moreover, it contributes to the increased induction of oxidative stress, which results in a reduced level of cellular thiols and an increased number of AP sites in the DNA. The synergistic activity may consist of an inhibition of ATP synthesis and the simultaneous production of toxic amounts of ROS, destroying the mitochondria. Additionally, the sensitivity of the LNCaP cell line to the anthracyclines is relatively higher compared to the other two (PC-3, DU-145).


Assuntos
Antraciclinas , Neoplasias da Próstata , Humanos , Masculino , Antraciclinas/farmacologia , 2,4-Dinitrofenol/farmacologia , Epirubicina/farmacologia , Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Dinitrofenóis/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Compostos de Sulfidrila
15.
Molecules ; 27(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35684339

RESUMO

Breast cancer is the leading cause of cancer death among women in the world, and its morbidity and mortality are increasing year by year. Epirubicin (EPI) is a commonly used drug for the treatment of breast cancer but unfortunately can cause cardiac toxicity in patients because of dose accumulation. Therefore, there is an urgent need for new therapies to enhance the sensitivity of breast cancer cells to EPI. In this study, we found ursolic acid (UA) can significantly improve the drug sensitivity of human breast cancer MCF-7/MDA-MB-231 cells to EPI. Next, we observed that the co-treatment of UA and EPI can up-regulate the expression of autophagy-related proteins Beclin-1, LC3-II/LC3-I, Atg5, and Atg7, and decrease the expression levels of PI3K and AKT, which indicates that the potential mechanism should be carried out by the regulating class III PI3K(VPS34)/Beclin-1 pathway and PI3K/AKT/mTOR pathway. Furthermore, we found the autophagy inhibitor 3-methyladenine (3-MA) could significantly reverse the inhibitory effect of co-treatment of UA and EPI on MCF-7 and MDA-MB-231 cells. These findings indicate that UA can dramatically enhance the sensitivity of MCF-7 and MDA-MB-231 cells to EPI by modulating the autophagy pathway. Our study may provide a new therapeutic strategy for combination therapy.


Assuntos
Neoplasias da Mama , Proteínas Proto-Oncogênicas c-akt , Apoptose , Autofagia , Proteína Beclina-1/genética , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Epirubicina/farmacologia , Feminino , Humanos , Células MCF-7 , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Triterpenos , Ácido Ursólico
16.
Molecules ; 27(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35164146

RESUMO

3D-printed hydrogels are particularly advantageous as drug-delivery platforms but their loading with water-soluble active compounds remains a challenge requiring the development of innovative inks. Here, we propose a new 3D extrusion-based approach that, by exploiting the internal gelation of the alginate, avoids the post-printing crosslinking process and allows the loading of epirubicin-HCl (EPI). The critical combinations of alginate, calcium carbonate and d-glucono-δ-lactone (GDL) combined with the scaffold production parameters (extrusion time, temperature, and curing time) were evaluated and discussed. The internal gelation in tandem with 3D extrusion allowed the preparation of alginate hydrogels with a complex shape and good handling properties. The dispersion of epirubicin-HCl in the hydrogel matrix confirmed the potential of this self-crosslinking alginate-based ink for the preparation of 3D-printed drug-delivery platforms. Drug release from 3D-printed hydrogels was monitored, and the cytotoxic activity was tested against MCF-7 cells. Finally, the change in the expression pattern of anti-apoptotic, pro-apoptotic, and autophagy protein markers was monitored by liquid-chromatography tandem-mass-spectrometry after exposure of MCF-7 to the EPI-loaded hydrogels.


Assuntos
Alginatos , Portadores de Fármacos , Epirubicina , Hidrogéis , Impressão Tridimensional , Alginatos/química , Alginatos/farmacologia , Reagentes de Ligações Cruzadas/química , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Epirubicina/química , Epirubicina/farmacocinética , Epirubicina/farmacologia , Humanos , Hidrogéis/síntese química , Hidrogéis/química , Hidrogéis/farmacologia , Células MCF-7
17.
BMC Cancer ; 21(1): 1301, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34872507

RESUMO

BACKGROUND: Pegylated liposomal doxorubicin (PLD) is an improved formulation of doxorubicin with comparable effectiveness but significantly lower cardiotoxicity than conventional anthracycline. This study aimed to evaluate the real-world effectiveness and safety of PLD versus epirubicin as neoadjuvant or adjuvant treatment for breast cancer. METHODS: Clinical data of invasive breast cancer patients who received neoadjuvant or adjuvant chemotherapy with PLD or epirubicin were retrospectively collected. Propensity score matching (PSM) was performed to reduce the risk of selection bias. The molecular typing of these patients included Luminal A, Luminal B, HER2-positive, and basal-like/triple-negative. The primary outcome was pathological complete response (pCR) rate for neoadjuvant chemotherapy and 3-year disease-free survival (DFS) rate for adjuvant chemotherapy. Noninferiority was suggested if the lower limit of the 95% CI for the 3-year DFS rate difference was greater than - 10%. The secondary outcome was adverse reactions. RESULTS: A total of 1213 patients were included (neoadjuvant, n = 274; adjuvant, n = 939). pCR (ypT0/Tis ypN0) rates of patients who received neoadjuvant chemotherapy were 11.6% for the PLD group and 7.0% for the epirubicin group, but the difference was not statistically significant (P = 0.4578). The 3-year DFS rate of patients who received adjuvant chemotherapy was 94.9% [95%CI, 91.1-98.6%] for the PLD group and 95.4% [95%CI, 93.0-97.9%] for the epirubicin group (P = 0.5684). Rate difference between the two groups and its 95% CI was - 0.55 [- 5.02, 3.92]. The lower limit of the 95% CI was - 5.0% > - 10.0%, suggesting that PLD is not be inferior to epirubicin in adjuvant chemotherapy for breast cancer. The incidences of myelosuppression, decreased appetite, alopecia, gastrointestinal reactions, and cardiotoxicity were lower in the PLD group than in the epirubicin group, while the incidence of nausea was higher in the PLD group. CONCLUSIONS: In the neoadjuvant and adjuvant treatment of breast cancer, effectiveness is similar but toxicities are different between the PLD-containing regimen and epirubicin-containing regimen. Therefore, further study is warranted to explore PLD-based neoadjuvant and adjuvant chemotherapy for breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Quimioterapia Adjuvante/métodos , Doxorrubicina/análogos & derivados , Epirubicina/uso terapêutico , Terapia Neoadjuvante/métodos , Adulto , Neoplasias da Mama/patologia , Intervalo Livre de Doença , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Epirubicina/farmacologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polietilenoglicóis/farmacologia , Polietilenoglicóis/uso terapêutico
18.
Mol Biol Rep ; 48(5): 3999-4008, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34009568

RESUMO

Colorectal cancer (CRC) is one of the most common cancers worldwide. Natural Killer Group 2D Receptor (NKG2D) and their ligands (NKG2DLs) play crucial roles in natural killer (NK) cell-mediated cytotoxicity. Tumorigeneses cause increased NKG2DLs expression on tumor cell surfaces, thereby these cells individually eliminated by NK cells. However, CRC cells can reduce their NKG2DL expression to escape from NK-mediated immune surveillance which is associated with poor prognosis. Therefore, previous studies suggest that up-regulation of NKG2DLs can contribute to promising NK cell-mediated immunotherapy strategies. We aimed to analyze NKG2DLs expression profiles in response to chemotherapeutic drugs and increased MHC class I polypeptide-related sequence A (MICA) expression, which is related to favorable prognosis in CRC, using low doses of bortezomib and epirubicin combination without causing direct cytotoxicity. Results showed that MICA expression  sligthly increased following drug treatment in the CRC cells but not for the normal cells. Also, we enriched our study with Gene Expression Omnibus (GEO) datasets including expression profiles of various NKG2DLs using in silico analyses. Accordingly, NKG2DL expression in CRC was screened in proportion to other cancers, histologic subtypes, TNM stages and metastatic samples to compare with our data. Overall, the analyzed data showed that NKG2DLs demonstrate different expression profiles in response to chemotherapeutic agents and a combination of low-dose bortezomib and epirubicin slightly increased MICA mRNA expression in CRC cell lines. However, performing further analysis of the combination therapy for MICA protein expression and studying its interaction with NK cells will make the results more meaningful.


Assuntos
Neoplasias Colorretais/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Receptores de Células Matadoras Naturais/metabolismo , Antineoplásicos/metabolismo , Bortezomib/farmacologia , Linhagem Celular Tumoral , Bases de Dados Genéticas , Epirubicina/farmacologia , Expressão Gênica/genética , Antígenos de Histocompatibilidade Classe I , Humanos , Imunoterapia/métodos , Células Matadoras Naturais/metabolismo , Ligantes , Ativação Linfocitária , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Transcriptoma/genética
19.
Mol Biol Rep ; 48(1): 1017-1023, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33387196

RESUMO

Glioblastoma (GBM) is a lethal astrocyte-derived tumor that is currently treated with a multi-modal approach of surgical resection, radiotherapy, and temozolomide-based chemotherapy. Alternatives to current therapies are urgently needed as its prognosis remains poor. Anthracyclines are a class of compounds that show great potential as GBM chemotherapeutic agents and are widely used to treat solid tumors outside the central nervous system. Here we investigate the cytotoxic effects of doxorubicin and other anthracyclines on GL261 glioma tumor cells in anticipation of novel anthracycline-based CNS therapies. Three methods were used to quantify dose-dependent effects of anthracyclines on adherent GL261 tumor cells, a murine cell-based model of GBM. MTT assays quantified anthracycline effects on cell viability, comet assays examined doxorubicin genotoxicity, and flow cytometry with Annexin V/PI staining characterized doxorubicin-induced apoptosis and necrosis. Dose-dependent reductions in GL261 cell viability were found in cells treated with doxorubicin (EC50 = 4.9 µM), epirubicin (EC50 = 5.9 µM), and idarubicin (EC50 = 4.4 µM). Comet assays showed DNA damage following doxorubicin treatments, peaking at concentrations of 1.0 µM and declining after 25 µM. Lastly, flow cytometric analysis of doxorubicin-treated cells showed dose-dependent induction of apoptosis (EC50 = 5.2 µM). Together, these results characterized the cytotoxic effects of anthracyclines on GL261 glioma cells. We found dose-dependent apoptotic induction; however at high concentrations we find that cell death is likely necrotic. Our results support the continued exploration of anthracyclines as compounds with significant potential for improved GBM treatments.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Citotoxinas/farmacologia , Doxorrubicina/farmacologia , Epirubicina/farmacologia , Idarubicina/farmacologia , Neuroglia/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Fragmentação do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glioma/tratamento farmacológico , Humanos , Camundongos , Modelos Biológicos , Neuroglia/metabolismo , Neuroglia/patologia
20.
Biochem J ; 477(21): 4167-4190, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33030198

RESUMO

Drug repurposing is an alternative avenue for identifying new drugs to treat tuberculosis (TB). Despite the broad-range of anti-tubercular drugs, the emergence of multi-drug-resistant and extensively drug-resistant strains of Mycobacterium tuberculosis (Mtb) H37Rv, as well as the significant death toll globally, necessitates the development of new and effective drugs to treat TB. In this study, we have employed a drug repurposing approach to address this drug resistance problem by screening the drugbank database to identify novel inhibitors of the Mtb target enzyme, DNA gyrase. The compounds were screened against the ATPase domain of the gyrase B subunit (MtbGyrB47), and the docking results showed that echinacoside, doxorubicin, epirubicin, and idarubicin possess high binding affinities against MtbGyrB47. Comprehensive assessment using fluorescence spectroscopy, surface plasmon resonance spectroscopy (SPR), and circular dichroism (CD) titration studies revealed echinacoside as a potent binder of MtbGyrB47. Furthermore, ATPase, and DNA supercoiling assays exhibited an IC50 values of 2.1-4.7 µM for echinacoside, doxorubicin, epirubicin, and idarubicin. Among these compounds, the least MIC90 of 6.3 and 12 µM were observed for epirubicin and echinacoside, respectively, against Mtb. Our findings indicate that echinacoside and epirubicin targets mycobacterial DNA gyrase, inhibit its catalytic cycle, and retard mycobacterium growth. Further, these compounds exhibit potential scaffolds for optimizing novel anti-mycobacterial agents that can act on drug-resistant strains.


Assuntos
Antituberculosos/farmacologia , DNA Girase/metabolismo , Mycobacterium tuberculosis/enzimologia , Adenosina Trifosfatases/metabolismo , Antituberculosos/química , Dicroísmo Circular , Doxorrubicina/química , Doxorrubicina/farmacologia , Desenho de Fármacos , Reposicionamento de Medicamentos/métodos , Epirubicina/química , Epirubicina/farmacologia , Glicosídeos/química , Glicosídeos/farmacologia , Idarubicina/química , Idarubicina/farmacologia , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA