Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 314
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Biosci Biotechnol Biochem ; 85(1): 115-125, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33577670

RESUMO

To elucidate the gross lankamycin biosynthetic pathway including two cytochrome P450 monooxygenases, LkmK and LkmF, we constructed two double mutants of P450 genes in combination with glycosyltransferase genes, lkmL and lkmI. An aglycon 8,15-dideoxylankanolide, a possible substrate for LkmK, was prepared from an lkmK-lkmL double mutant, while a monoglycoside 3-O-l-arcanosyl-8-deoxylankanolide, a substrate for LkmF, was from an lkmF-lkmI double mutant. Bioconversion of lankamycin derivatives was performed in the Escherichia coli recombinant for LkmK and the Streptomyces lividans recombinant for LkmF, respectively. LkmK catalyzes the C-15 hydroxylation on all 15-deoxy derivatives, including 8,15-dideoxylankanolide (a possible substrate), 8,15-dideoxylankamycin, and 15-deoxylankamycin, suggesting the relaxed substrate specificity of LkmK. On the other hand, LkmF hydroxylates the C-8 methine of 3-O-l-anosyl-8-deoxylankanolide. Other 8-deoxy lankamycin/lankanolide derivatives were not oxidized, suggesting the importance of a C-3 l-arcanosyl moiety for substrate recognition by LkmF in lankamycin biosynthesis. Thus, LkmF has a strict substrate specificity in lankamycin biosynthesis.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Eritromicina/análogos & derivados , Biotransformação , Eritromicina/biossíntese , Técnicas de Inativação de Genes , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
2.
Microb Cell Fact ; 18(1): 206, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31775761

RESUMO

BACKGROUND: The choice of phosphate/nitrogen source and their concentrations have been shown to have great influences on antibiotic production. However, the underlying mechanisms responsible for this remain poorly understood. RESULTS: We show that nutrient-sensing regulator PhoP (phosphate regulator) binds to and upregulates most of genes (ery cluster genes) involved in erythromycin biosynthesis in Saccharopolyspora erythraea, resulting in increase of erythromycin yield. Furthermore, it was found that PhoP also directly interacted with the promoter region of bldD gene encoding an activator of erythromycin biosynthesis, and induced its transcription. Phosphate limitation and overexpression of phoP increased the transcript levels of ery genes to enhance the erythromycin production. The results are further supported by observation that an over-producing strain of S. erythraea expressed more PhoP than a wild-type strain. On the other hand, nitrogen signal exerts the regulatory effect on the erythromycin biosynthesis through GlnR negatively regulating the transcription of phoP gene. CONCLUSIONS: These findings provide evidence that PhoP mediates the interplay between phosphate/nitrogen metabolism and secondary metabolism by integrating phosphate/nitrogen signals to modulate the erythromycin biosynthesis. Our study reveals a molecular mechanism underlying antibiotic production, and suggests new possibilities for designing metabolic engineering and fermentation optimization strategies for increasing antibiotics yield.


Assuntos
Proteínas de Bactérias/metabolismo , Eritromicina/biossíntese , Saccharopolyspora , Antibacterianos/biossíntese , Regulação Bacteriana da Expressão Gênica , Engenharia Metabólica , Fosfatos/metabolismo , Saccharopolyspora/genética , Saccharopolyspora/metabolismo , Fatores de Transcrição/genética
3.
Appl Microbiol Biotechnol ; 103(11): 4539-4548, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30997553

RESUMO

The MtrA-MtrB two-component regulatory system is highly conserved in Actinobacteria and plays crucial roles in cell cycle progression, cell morphology, antibiotic resistance, and osmoprotection. Previously, we revealed that the MtrA protein of Saccharopolyspora erythraea E3 strain (a high erythromycin-producing strain) had a two amino acid (H197 and V198) deletion in the DNA recognition helices of the C-terminal domain compared to the wild type S. erythraea strain NRRL2338. Here, we identified mepA (encoding a membrane protein related to metalloendopeptidases) as an MtrA target gene, and found that deleting the two amino acids in MtrA (MtrAdel) resulted in the loss of its DNA-binding activity for the mepA gene. The mutant MtrAdel lost its regulatory activity and affected various physiological functions consistent with mtrA deletion, including increased erythromycin biosynthesis, enhanced antibiotic resistance, deregulated osmoprotection, and improved transport of substances. The introduction of the wild type mtrA gene into the S. erythraea E3 strain with the mtrAdel gene decreased the erythromycin yield by approximately 50%, confirming that MtrA repressed erythromycin production. These findings demonstrate that MtrA is an important pleiotropic regulator of erythromycin biosynthesis, antibiotic resistance, osmoprotection, and substance transport in S. erythraea and provide new insights for improving erythromycin production. Future studies linking the molecular effects of MtrA to these phenotypes will improve our understanding of the MtrA-MtrB two-component regulatory system in Actinobacteria.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antibacterianos/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Eritromicina/biossíntese , Saccharopolyspora/enzimologia , Saccharopolyspora/metabolismo , Deleção de Sequência , Transporte Biológico , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fenótipo , Saccharopolyspora/crescimento & desenvolvimento
4.
J Ind Microbiol Biotechnol ; 46(7): 1013-1024, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31016583

RESUMO

In this work, we found that the Lrp/AsnC family protein SACE_5717 negatively regulated erythromycin biosynthesis in S. erythraea. Disruption of SACE_5717 led to a 27% improvement in the yield of erythromycin in S. erythraea A226. SACE_5717 directly repressed its own gene expression, as well as that of the adjacent gene SACE_5716 by binding to the target sequence 5'-GAACGTTCGCCGTCACGCC-3'. The predicted LysE superfamily protein SACE_5716 directly influenced the export of lysine, histidine, threonine and glycine in S. erythraea. Arginine, tyrosine and tryptophan were characterized as the effectors of SACE_5717 by weakening the binding affinity of SACE_5717. In the industrial S. erythraea WB strain, deletion of SACE_5717 (WBΔSACE_5717) increased erythromycin yield by 20%, and by 36% when SACE_5716 was overexpressed in WBΔSACE_5717 (WBΔSACE_5717/5716). In large-scale 5-L fermentation experiment, erythromycin yield in the engineered strain WBΔSACE_5717/5716 reached 4686 mg/L, a 41% enhancement over 3323 mg/L of the parent WB strain.


Assuntos
Eritromicina/biossíntese , Saccharopolyspora/metabolismo , Engenharia de Proteínas , Saccharopolyspora/genética
5.
Bioprocess Biosyst Eng ; 42(11): 1747-1756, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31399864

RESUMO

In the current study, the effect of different available nitrogen sources on erythromycin fermentation by Saccharopolyspora erythraea No. 8 is evaluated. Three different combinations of corn steep liquor and yeast powder were developed to investigate their impacts on erythromycin production. The results indicate that the optimal combination of available nitrogen sources was 10.0 g/L corn steep liquor and 4.0 g/L yeast power, generating a maximum yield of erythromycin of 13672 U/mL. To explore the effects of nitrogen perturbations on cell metabolism, metabolic flux analyses were performed and compared under different conditions. A high flux pentose phosphate pathway provided more NADPH for erythromycin synthesis via nitrogen optimization. Moreover, high n-propanol specific consumption rate enhanced erythromycin synthesis and n-propanol flowed into the central carbon metabolism by methylmalonyl-CoA node. These results indicate that the selection of an appropriate organic nitrogen source is essential for cell metabolism and erythromycin synthesis, and this is the first report of the successful application of available nitrogen source combinations in industrial erythromycin production.


Assuntos
Eritromicina/biossíntese , Nitrogênio/metabolismo , Saccharopolyspora/crescimento & desenvolvimento
6.
Appl Environ Microbiol ; 84(8)2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29439982

RESUMO

Branched-chain amino acid (BCAA) degradation is a major source of propionyl coenzyme A (propionyl-CoA), a key precursor of erythromycin biosynthesis in Saccharopolyspora erythraea In this study, we found that the bkd operon, responsible for BCAA degradation, was regulated directly by PccD, a transcriptional regulator of propionyl-CoA carboxylase genes. The transcriptional level of the bkd operon was upregulated 5-fold in a pccD gene deletion strain (ΔpccD strain) and decreased 3-fold in a pccD overexpression strain (WT/pIB-pccD), demonstrating that PccD was a negative transcriptional regulator of the operon. The deletion of pccD significantly improved the ΔpccD strain's growth rate, whereas pccD overexpression repressed WT/pIB-pccD growth rate, in basic Evans medium with 30 mM valine as the sole carbon and nitrogen source. The deletion of gdhA1 and the BcdhE1 gene (genes in the bkd operon) resulted in lower growth rates of ΔgdhA1 and ΔBcdhE1 strains, respectively, on 30 mM valine, further suggesting that the bkd operon is involved in BCAA degradation. Both bkd overexpression (WT/pIB-bkd) and pccD inactivation (ΔpccD strain) improve erythromycin production (38% and 64%, respectively), whereas the erythromycin production of strain WT/pIB-pccD was decreased by 48%. Lastly, we explored the applications of engineering pccD and bkd in an industrial high-erythromycin-producing strain. pccD deletion in industrial strain S. erythraea E3 (E3pccD) improved erythromycin production by 20%, and the overexpression of bkd in E3ΔpccD (E3ΔpccD/pIB-bkd) increased erythromycin production by 39% compared with S. erythraea E3 in an industrial fermentation medium. Addition of 30 mM valine to industrial fermentation medium further improved the erythromycin production by 23%, a 72% increase from the initial strain S. erythraea E3.IMPORTANCE We describe a bkd operon involved in BCAA degradation in S. erythraea The genes of the operon are repressed by a TetR regulator, PccD. The results demonstrated that PccD controlled the supply of precursors for biosynthesis of erythromycin via regulating the BCAA degradation and propionyl-CoA assimilation and exerted a negative effect on erythromycin production. The findings reveal a regulatory mechanism in feeder pathways and provide new strategies for designing metabolic engineering to increase erythromycin yield.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Proteínas de Bactérias/genética , Eritromicina/biossíntese , Saccharopolyspora/genética , Proteínas de Bactérias/metabolismo , Saccharopolyspora/metabolismo
7.
Bioprocess Biosyst Eng ; 41(10): 1529-1538, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30003380

RESUMO

Erythromycin A is an important antibiotic. A chemically defined synthetic medium for erythromycin production was systematically optimized in this study. A high-throughput method was employed to reduce the number of components and optimize the concentration of each component. After two round single composition deletion experiment, only 19 components were remained in the medium, and then the concentration of each component was optimized through PB experiment. The optimal medium from the PB experiment was further optimized according to the nitrogen and phosphate metabolic consumption in 5 L bioreactor. It was observed that among the 8 amino acids concluded in the media, 4 amino acids were first consumed, when they are almost depleted, the other 4 amino acids were initiated their consumption afterwards in 5 L bioreactor. The decrease of phosphate concentration would increase qglc and qery. However, when phosphate concentration was too low, the production of erythromycin was hindered. The positive correlation between intracellular metabolite pools and Yery/glc indicated that low phosphate concentration in the medium can promote cell metabolism especially secondary metabolism during the stationary phase; however, if it was too low (5 mmol/L), the cell metabolism and secondary metabolism would both slow down. The erythromycin titer in the optimized medium (medium V) reached 1380 mg/L, which was 17 times higher than the previously used synthetic medium in our lab. The optimized medium can facilitate the metabolomics study or metabolic flux analysis of the erythromycin fermentation process, which laid a solid foundation for further study of erythromycin fermentation process.


Assuntos
Reatores Biológicos , Meios de Cultura/química , Eritromicina/biossíntese , Saccharopolyspora/crescimento & desenvolvimento , Eritromicina/química , Eritromicina/isolamento & purificação
8.
Bioprocess Biosyst Eng ; 41(7): 1073-1077, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29931578

RESUMO

Metabolomics is essential to understand the metabolism and identify engineering targets to improve the performances of strains and bioprocesses. Although numerous metabolomics techniques have been developed and applied to various organisms, the metabolome of Saccharopolyspora erythraea, a native producer of erythromycin, had never been studied. The 2017 best paper of Bioprocess and Biosystems Engineering reports examination of three methods for quenching and extraction to analyze the intracellular metabolome of S. erythraea, and identified the most reliable methods for studying different groups of the metabolites. Subsequent studies on the dynamics of the intracellular metabolome of S. erythraea during the fed-batch fermentation identified a positive correlation between the specific erythromycin production rate and the pool size of intracellular propionyl-CoA and other precursors of erythromycin. A series of follow-up studies, such as demonstrating the applicability of the quenching/extraction methods in other related antibiotic producers, demonstrating the generality of the best matches between the quenching/extraction methods and the metabolite groups, and combining metabolomics approaches with the fluxomics and systems metabolic engineering approaches, will facilitate the metabolomics studies on important antibiotic producers, enable standardization of the quenching/extraction protocols, and improve the performance of the antibiotic production with deeper insight into their metabolism.


Assuntos
Acil Coenzima A/metabolismo , Eritromicina/biossíntese , Fermentação , Metaboloma , Metabolômica/métodos , Saccharopolyspora/crescimento & desenvolvimento , Eritromicina/isolamento & purificação , Engenharia Metabólica/métodos
9.
Biochim Biophys Acta ; 1860(3): 486-97, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26592346

RESUMO

Type I polyketide synthases (PKSs) are giant multidomain proteins that synthesize many therapeutics and other natural products. The synthesis proceeds by a thiotemplate mechanism whereby intermediates are covalently attached to the PKS. The release of the final polyketide is catalyzed by the terminal thioesterase (TE) domain through hydrolysis, transesterification, or macrocyclization. The PKS 6-deoxyerythronolide B synthase (DEBS) produces the 14-membered macrolide core of the clinically important antibiotic erythromycin. The TE domain of DEBS (DEBS TE) has well-established, empirically-defined specificities for hydrolysis or macrocyclization of native and modified substrates. We present efforts towards understanding the structural basis for the specificity of the thioesterase reaction in DEBS TE using a set of novel diphenyl alkylphosphonates, which mimic substrates that are specifically cyclized or hydrolyzed by DEBS TE. We have determined structures of a new construct of DEBS TE alone at 1.7Å, and DEBS TE bound with a simple allylphosphonate at 2.1Å resolution. Other, more complex diphenyl alkylphosphonates inhibit DEBS TE, but we were unable to visualize these faithful cyclization analogs in complex with DEBS TE. This work represents a first step towards using DEBS TE complexed with sophisticated substrate analogs to decipher the specificity determinants in this important reaction.


Assuntos
Eritromicina/análogos & derivados , Tioléster Hidrolases/química , Domínio Catalítico , Eritromicina/biossíntese , Estrutura Terciária de Proteína , Especificidade por Substrato
10.
Metab Eng ; 39: 29-37, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27794466

RESUMO

Leucine-responsive regulatory proteins (Lrps) are a group of transcriptional regulators that regulate diverse cellular processes in bacteria and archaea. However, the regulatory role of Lrps in antibiotic biosynthesis remains poorly understood. In this study, we show that SACE_5388, an Lrp family regulator named as SACE_Lrp, is an efficient regulator for transporting and catabolizing branched-chain amino acids (BCAAs), playing an important role in regulating erythromycin production in Saccharopolyspora erythraea. SACE_Lrp directly controlled the expression of the divergently transcribed SACE_5387-5386 operon putatively encoding a BCAA ABC transporter by interacting with the intergenic region between SACE_Lrp and SACE_5387 (SACE_Lrp-5387-int), and indirectly controlled the expression of ilvE putatively encoding an aminotransferase catabolizing BCAAs. BCAA catabolism is one source of the precursors for erythromycin biosynthesis. Lysine and arginine promoted the dissociation of SACE_Lrp from SACE_Lrp -5387-int, whereas histidine increased their binding. Gene disruption of SACE_Lrp (ΔSACE_Lrp) in S. erythraea A226 resulted in a 25% increase in erythromycin production, while overexpression of SACE_5387-5386 in A226 enhanced erythromycin production by 36%. Deletion of SACE_Lrp (WBΔSACE_Lrp) in the industrial strain S. erythraea WB enhanced erythromycin production by 19%, and overexpression of SACE_5387-5386 in WBΔSACE_Lrp (WBΔSACE_Lrp/5387-5386) increased erythromycin production by 41% compared to WB. Additionally, supplement of 10mM valine to WBΔSACE_Lrp/5387-5386 culture further increased total erythromycin production up to 48%. In a 5-L fermenter, the erythromycin accumulation in the engineered strain WBΔSACE_Lrp/5387-5386 with 10mM extra valine in the industrial culture media reached 5001mg/L, a 41% increase over 3503mg/L of WB. These insights into the molecular regulation of antibiotic biosynthesis by SACE_Lrp in S. erythraea are instrumental in increasing industrial production of secondary metabolites.


Assuntos
Vias Biossintéticas/genética , Eritromicina/biossíntese , Melhoramento Genético/métodos , Proteína Reguladora de Resposta a Leucina/genética , Engenharia Metabólica/métodos , Saccharopolyspora/fisiologia , Proteínas de Bactérias/genética , Eritromicina/isolamento & purificação , Redes e Vias Metabólicas/genética
11.
Bioprocess Biosyst Eng ; 40(2): 201-209, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27709326

RESUMO

A high erythromycin producing mutant strain Saccharopolyspora erythraea HL3168 E3-ΔmutB was constructed by deleting mutB (SACE_5639) gene encoding the beta subunit of methylmalonyl-CoA mutase of an industrial strain of S. erythraea HL3168 E3. Industrial media and process control strategies were adopted in a 5 L bioreactor for characterizing the physiological parameters. The total erythromycin titer and erythromycin A concentration in mutant were 46.9 (12740.5 µg/mL) and 64.9 % (8094.4 µg/mL) higher than those in original strain, respectively, which were comparable to industrial erythromycin production. The specific glucose and n-propanol consumption rates were increased by 52.4 and 39.8 %, respectively. During the rapid erythromycin synthesis phase, the yield of erythromycin on n-propanol also increased from 24.3 % in control group to 66.9 % in mutant group. Meanwhile, the specific formation rates of methylmalonyl-CoA and propionyl-CoA, two crucial precursors for erythromycin synthesis, were 1.89- and 2.02-folds higher in the mutant strain, respectively.


Assuntos
Proteínas de Bactérias/genética , Ciclo do Ácido Cítrico/genética , Eritromicina/biossíntese , Técnicas de Silenciamento de Genes , Metilmalonil-CoA Mutase/genética , Propionatos/metabolismo , Saccharopolyspora , Saccharopolyspora/genética , Saccharopolyspora/metabolismo
12.
Bioprocess Biosyst Eng ; 40(9): 1337-1348, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28567527

RESUMO

Metabolomics analysis is extremely essential to explore the metabolism characteristics of Saccharopolyspora erythraea. The lack of suitable methods for the determination of intracellular metabolites, however, hinders the application of metabolomics analysis for S. erythraea. Acyl-CoAs are important precursors of erythromycin; phosphorylated sugars are intermediate metabolites in EMP pathway or PPP pathway; organic acids are intermediate metabolites in TCA cycle. Reliable determination methods for intracellular acyl-CoAs, phosphorylated sugars, and organic acids of S. erythraea were designed and validated in this study. Using the optimized determination methods, the pool sizes of intracellular metabolites during an erythromycin fermentation process were precisely quantified by isotope dilution mass spectroscopy method. The quantification results showed that the specific erythromycin production rate was positively correlated with the pool sizes of propionyl-CoA as well as many other intracellular metabolites. The experiment under the condition without propanol, which is a precursor of propionyl-CoA and an important substrate in industrial erythromycin production process, also corroborated the correlation between specific erythromycin production rate and intracellular propionyl-CoA pool size. As far as we know, this is the first paper to conduct the metabolomics analysis of S. erythraea, which makes the metabolomics analysis of S. erythraea in the industrial erythromycin production process possible.


Assuntos
Acil Coenzima A/metabolismo , Eritromicina/biossíntese , Metabolômica/métodos , Saccharopolyspora/metabolismo , Acil Coenzima A/genética , Isótopos de Carbono/metabolismo , Isótopos de Carbono/farmacologia , Saccharopolyspora/genética
13.
J Proteome Res ; 15(5): 1685-701, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-27090497

RESUMO

Lysine acylation is a dynamic, reversible post-translational modification that can regulate cellular and organismal metabolism in bacteria. Acetylome has been studied well in bacteria. However, to our knowledge, there are no proteomic data on the lysine malonylation in prokaryotes, especially in actinomycetes, which are the major producers of therapeutic antibiotics. In our study, the first malonylome of the erythromycin-producing Saccharopolyspora erythraea was described by using a high-resolution mass spectrometry-based proteomics approach and high-affinity antimalonyllysine antibodies. We identified 192 malonylated sites on 132 substrates. Malonylated proteins are enriched in many biological processes such as protein synthesis, glycolysis and gluconeogenesis, the TCA cycle, and the feeder metabolic pathways of erythromycin synthesis according to GO analysis and KEGG pathway analysis. A total of 238 S/T/Y/H-phosphorylated sites on 158 proteins were also identified in our study, which aimed to explore the potential cross-talk between acylation and phosphorylation. After that, site-specific mutations showed that malonylation is a negative regulatory modification on the enzymatic activity of the acetyl-CoA synthetase (Acs) and glutamine synthetase (Gs). Furthermore, we compared the malonylation levels of the two-growth state to explore the potential effect of malonylation on the erythromycin biosynthesis. These findings expand our current knowledge of the actinomycetes malonylome and supplement the acylproteome databases of the whole bacteria.


Assuntos
Eritromicina/biossíntese , Lisina/metabolismo , Malonatos/metabolismo , Saccharopolyspora/metabolismo , Vias Biossintéticas , Metabolismo , Processamento de Proteína Pós-Traducional , Proteômica/métodos
14.
Microb Cell Fact ; 15: 93, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27255285

RESUMO

BACKGROUND: Omics approaches have significantly increased our understanding of biological systems. However, they have had limited success in explaining the dramatically increased productivity of commercially important natural products by industrial high-producing strains, such as the erythromycin-producing actinomycete Saccharopolyspora erythraea. Further yield increase is of great importance but requires a better understanding of the underlying physiological processes. RESULTS: To reveal the mechanisms related to erythromycin yield increase, we have undertaken an integrated study of the genomic, transcriptomic, and proteomic differences between the wild type strain NRRL2338 (WT) and the industrial high-producing strain ABE1441 (HP) of S. erythraea at multiple time points of a simulated industrial bioprocess. 165 observed mutations lead to differences in gene expression profiles and protein abundance between the two strains, which were most prominent in the initial stages of erythromycin production. Enzymes involved in erythromycin biosynthesis, metabolism of branched chain amino acids and proteolysis were most strongly upregulated in the HP strain. Interestingly, genes related to TCA cycle and DNA-repair were downregulated. Additionally, comprehensive data analysis uncovered significant correlations in expression profiles of the erythromycin-biosynthetic genes, other biosynthetic gene clusters and previously unidentified putative regulatory genes. Based on this information, we demonstrated that overexpression of several genes involved in amino acid metabolism can contribute to increased yield of erythromycin, confirming the validity of our systems biology approach. CONCLUSIONS: Our comprehensive omics approach, carried out in industrially relevant conditions, enabled the identification of key pathways affecting erythromycin yield and suggests strategies for rapid increase in the production of secondary metabolites in industrial environment.


Assuntos
Antibacterianos/biossíntese , Eritromicina/biossíntese , Saccharopolyspora/metabolismo , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Eritromicina/química , Perfilação da Expressão Gênica , Genes Bacterianos , Genômica , Espectrometria de Massas , Engenharia Metabólica , Proteômica
15.
Appl Microbiol Biotechnol ; 100(3): 1209-1220, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26432460

RESUMO

Polyketides, such as erythromycin, are complex natural products with diverse therapeutic applications. They are synthesized by multi-modular megaenzymes, so-called polyketide synthases (PKSs). The macrolide core of erythromycin, 6-deoxyerythronolide B (6dEB), is produced by the deoxyerythronolide B synthase (DEBS) that consists of three proteins each with a size of 330-370 kDa. We cloned and investigated the expression of the corresponding gene cluster from Saccharopolyspora erythraea, which comprises more than 30 kb, in Bacillus subtilis. It is shown that the DEBS genes are functionally expressed in B. subtilis when the native eryAI-III operon was separated into three individual expression cassettes with optimized ribosomal binding sites. A synthesis of 6dEB could be detected by using the acetoin-inducible acoA promoter and a fed-batch simulating EnBase-cultivation strategy. B. subtilis was capable of the secretion of 6dEB into the medium. In order to improve the 6dEB production, several genomic modifications of this production strain were tested. This included the knockout of the native secondary metabolite clusters of B. subtilis for the synthesis of surfactin (26 kb), bacillaene (76 kb), and plipastatin (38 kb). It is revealed that the deletion of the prpBD operon, responsible for propionyl-CoA utilization, resulted in a significant increase of the 6dEB product yield when exogenous propionate is provided. Although the presented B. subtilis 6dEB production strain is not competitive with established Escherichia coli 6dEB production strains, the results of this study indicate that B. subtilis is a suitable heterologous host for the secretory production of a complex polyketide.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Eritromicina/análogos & derivados , Policetídeos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Eritromicina/biossíntese , Engenharia Metabólica , Saccharopolyspora/enzimologia , Saccharopolyspora/genética
16.
Bioprocess Biosyst Eng ; 39(2): 255-65, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26615414

RESUMO

The aim of the present study was to optimize the feeding proportion of glucose and propanol for erythromycin biosynthesis by real-time monitoring and exploring its limited ratio by the on-line multi-frequency permittivity measurement. It was found that the capacitance values were sensitive to the variation of biomass concentration and microbial morphology as well as the true state of cell growth. It was most favorable to both cell growth and secondary metabolism to keep the ratio of glucose to propanol at 4.3 (g/g). The specific growth rate calculated by the capacitance measurement correctly and accurately reflected the cell physiological state. An appropriate feed rate of propanol was crucial for cell growth and secondary metabolism, as well as to improve the quality of erythromycin-A. In addition, the erythromycin production titer (10,950 U/mL) was further enhanced by 4 % when the propanol feed was regulated by step-down strategy based on both OUR (oxygen uptake rate) and the on-line monitoring capacitance.


Assuntos
1-Propanol/metabolismo , Eritromicina/biossíntese , Consumo de Oxigênio/fisiologia , Saccharopolyspora/crescimento & desenvolvimento , 1-Propanol/farmacologia , Consumo de Oxigênio/efeitos dos fármacos
17.
Appl Environ Microbiol ; 81(24): 8402-13, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26431970

RESUMO

Bacteria in the genus Streptomyces and its close relatives are prolific producers of secondary metabolites with antibiotic activity. Genome sequencing of these bacteria has revealed a rich source of potentially new antibiotic pathways, whose products have never been observed. Moreover, these new pathways can provide novel genes that could be used in combinatorial biosynthesis approaches to generate unnatural analogues of existing antibiotics. We explore here the use of multiple orthologous integrating plasmid systems, based on the int/attP loci from phages TG1, SV1, and ϕBT1, to express the polyketide synthase (PKS) for erythromycin in a heterologous Streptomyces host. Streptomyces strains containing the three polyketide synthase genes eryAI, eryAII, and eryAIII expressed from three different integrated plasmids produced the aglycone intermediate, 6-deoxyerythronolide B (6-dEB). A further pair of integrating plasmids, both derived from the ϕC31 int/attP locus, were constructed carrying a gene cassette for glycosylation of the aglycone intermediates, with or without the tailoring gene, eryF, required for the synthesis of erythronolide B (EB). Liquid chromatography-mass spectrometry of the metabolites indicated the production of angolosaminyl-6-dEB and angolosaminyl-EB. The advantages of using multiplexed integrating plasmids for engineering expression and for combinatorial biosynthesis were demonstrated.


Assuntos
Antibacterianos/biossíntese , Proteínas de Bactérias/genética , Eritromicina/metabolismo , Plasmídeos/genética , Streptomyces/metabolismo , Proteínas de Bactérias/biossíntese , Cromatografia Líquida , Eritromicina/análogos & derivados , Eritromicina/biossíntese , Engenharia Genética , Glicosilação , Espectrometria de Massas , Complexos Multienzimáticos/metabolismo , Família Multigênica/genética , Streptomyces/genética
18.
Appl Microbiol Biotechnol ; 99(6): 2683-92, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25549616

RESUMO

BldD (SACE_2077), a key developmental regulator in actinomycetes, is the first identified transcriptional factor in Saccharopolyspora erythraea positively regulating erythromycin production and morphological differentiation. Although the BldD of S. erythraea binds to the promoters of erythromycin biosynthetic genes, the interaction affinities are relatively low, implying the existence of its other target genes in S. erythraea. Through the genomic systematic evolution of ligands by exponential enrichment (SELEX) method that we herein improved, four DNA sequences of S. erythraea A226, corresponding to the promoter regions of SACE_0306 (beta-galactosidase), SACE_0811 (50S ribosomal protein L25), SACE_3410 (fumarylacetoacetate hydrolase), and SACE_6014 (aldehyde dehydrogenase), were captured with all three BldD concentrations of 0.5, 1, and 2 µM, while the previously identified intergenic regions of eryBIV-eryAI and ermE-eryCI plus the promoter region of SACE_7115, the amfC homolog for aerial mycelium formation, could be captured only when the BldD's concentration reached 2 µM. Electrophoretic mobility shift assay (EMSA) analysis indicated that BldD specifically bound to above seven DNA sequences, and quantitative real-time PCR (qRT-PCR) assay showed that the transcriptional levels of the abovementioned target genes decreased when bldD was disrupted in A226. Furthermore, SACE_7115 and SACE_0306 in A226 were individually inactivated, showing that SACE_7115 was predominantly involved in aerial mycelium formation, while SACE_0306 mainly controlled erythromycin production. This study provides valuable information for better understanding of the pleiotropic regulator BldD in S. erythraea, and the improved method may be useful for uncovering regulatory networks of other transcriptional factors.


Assuntos
Proteínas de Bactérias/genética , DNA Bacteriano/genética , Genes Bacterianos , Saccharopolyspora/genética , DNA Intergênico , Eritromicina/biossíntese , Fermentação , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Genômica , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Fatores de Transcrição/genética , beta-Galactosidase/genética
19.
Appl Microbiol Biotechnol ; 99(23): 10215-24, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26272095

RESUMO

The GntR-family transcription regulator, DasR, was previously identified as pleiotropic, controlling the primary amino sugar N-acetylglucosamine (GlcNAc) and chitin metabolism in Saccharopolyspora erythraea and Streptomyces coelicolor. Due to the remarkable regulatory impact of DasR on antibiotic production and development in the model strain of S. coelicolor, we here identified and characterized the role of DasR to secondary metabolite production and morphological development in industrial erythromycin-producing S. erythraea. The physiological studies have shown that a constructed deletion of dasR in S. erythraea resulted in antibiotic, pigment, and aerial hyphae production deficit in a nutrient-rich condition. DNA microarray assay, combined with quantitative real-time reverse transcription PCR (qRT-PCR), confirmed these results by showing the downregulation of the genes relating to secondary metabolite production in the dasR null mutant. Notably, electrophoretic mobility shift assays (EMSA) showed DasR as being the first identified regulator that directly regulates the pigment biosynthesis rpp gene cluster. In addition, further studies indicated that GlcNAc, the major nutrient signal of DasR-responsed regulation, blocked secondary metabolite production and morphological development. The effects of GlcNAc were shown to be caused by DasR mediation. These findings demonstrated that DasR is an important pleiotropic regulator for both secondary metabolism and morphological development in S. erythraea, providing new insights for the genetic engineering of S. erythraea with increased erythromycin production.


Assuntos
Antibacterianos/biossíntese , Genes Reguladores , Pigmentos Biológicos/biossíntese , Saccharopolyspora/genética , Saccharopolyspora/metabolismo , Acetilglucosamina/metabolismo , DNA Bacteriano/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Eritromicina/biossíntese , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Análise em Microsséries , Ligação Proteica , Reação em Cadeia da Polimerase em Tempo Real , Saccharopolyspora/crescimento & desenvolvimento
20.
Bioprocess Biosyst Eng ; 38(1): 105-12, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25042891

RESUMO

In this paper, glucose respiratory quotient (RQ)-feedback control was developed for erythromycin production with a recombinant strain Saccharopolyspora erythraea ZL1004. RQ was confirmed to be an ideal online parameter for regulating glucose feed rate. Through feeding glucose to control RQ at 0.85 during 45-100 h and 0.95 during 100-185 h, erythromycin titer and erythromycin A concentration were reached 11.88 and 8.82 g l(-1) in 50 l fermenter, which were increased by 8.3 and 6.1 % as compared to that with glucose pH-feedback control, respectively. When glucose RQ-feedback control was scaled up to 372-m(3) fermenter, erythromycin titer and erythromycin A concentration at 155 h were reached 9.12 and 7.12 g l(-1), respectively, which were 10.5 and 9.4 % higher than that with the original technology (glucose pH-feedback control). To the best of our knowledge, this is the first report on the successful application of glucose RQ-feedback control in erythromycin production, especially in 372-m(3) fermenter.


Assuntos
Reatores Biológicos , Eritromicina/biossíntese , Fermentação , Glucose/metabolismo , Saccharopolyspora/metabolismo , Recombinação Genética , Saccharopolyspora/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA