Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 195(3): 1995-2015, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38507576

RESUMO

Grapevine (Vitis vinifera L.) incurs severe quality degradation and yield loss from powdery mildew, a major fungal disease caused by Erysiphe necator. ENHANCED DISEASE RESISTANCE1 (EDR1), a Raf-like mitogen-activated protein kinase kinase kinase, negatively regulates defense responses against powdery mildew in Arabidopsis (Arabidopsis thaliana). However, little is known about the role of the putatively orthologous EDR1 gene in grapevine. In this study, we obtained grapevine VviEDR1-edited lines using CRISPR/Cas9. Plantlets containing homozygous and bi-allelic indels in VviEDR1 developed leaf lesions shortly after transplanting into the soil and died at the seedling stage. Transgenic plants expressing wild-type VviEDR1 and mutant Vviedr1 alleles as chimera (designated as VviEDR1-chi) developed normally and displayed enhanced resistance to powdery mildew. Interestingly, VviEDR1-chi plants maintained a spatiotemporally distinctive pattern of VviEDR1 mutagenesis: while almost no mutations were detected from terminal buds, ensuring normal function of the apical meristem, mutations occurred in young leaves and increased as leaves matured, resulting in resistance to powdery mildew. Further analysis showed that the resistance observed in VviEDR1-chi plants was associated with callose deposition, increased production of salicylic acid and ethylene, H2O2 production and accumulation, and host cell death. Surprisingly, no growth penalty was observed with VviEDR1-chi plants. Hence, this study demonstrated a role of VviEDR1 in the negative regulation of resistance to powdery mildew in grapevine and provided an avenue for engineering powdery mildew resistance in grapevine.


Assuntos
Ascomicetos , Resistência à Doença , Mutação , Doenças das Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Vitis , Vitis/genética , Vitis/microbiologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Mutação/genética , Ascomicetos/fisiologia , Ascomicetos/patogenicidade , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/microbiologia , Folhas de Planta/genética , Erysiphe/genética , Regulação da Expressão Gênica de Plantas , Ácido Salicílico/metabolismo , Sistemas CRISPR-Cas
2.
Plant Physiol ; 195(1): 446-461, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38366578

RESUMO

Grapevine (Vitis vinifera) is an economically important fruit crop worldwide. The widely cultivated grapevine is susceptible to powdery mildew caused by Erysiphe necator. In this study, we used CRISPR-Cas9 to simultaneously knock out VviWRKY10 and VviWRKY30 encoding two transcription factors reported to be implicated in defense regulation. We generated 53 wrky10 single mutant transgenic plants and 15 wrky10 wrky30 double mutant transgenic plants. In a 2-yr field evaluation of powdery mildew resistance, the wrky10 mutants showed strong resistance, while the wrky10 wrky30 double mutants showed moderate resistance. Further analyses revealed that salicylic acid (SA) and reactive oxygen species contents in the leaves of wrky10 and wrky10 wrky30 were substantially increased, as was the ethylene (ET) content in the leaves of wrky10. The results from dual luciferase reporter assays, electrophoretic mobility shift assays and chromatin immunoprecipitation (ChIP) assays demonstrated that VviWRKY10 could directly bind to the W-boxes in the promoter of SA-related defense genes and inhibit their transcription, supporting its role as a negative regulator of SA-dependent defense. By contrast, VviWRKY30 could directly bind to the W-boxes in the promoter of ET-related defense genes and promote their transcription, playing a positive role in ET production and ET-dependent defense. Moreover, VviWRKY10 and VviWRKY30 can bind to each other's promoters and mutually inhibit each other's transcription. Taken together, our results reveal a complex mechanism of regulation by VviWRKY10 and VviWRKY30 for activation of measured and balanced defense responses against powdery mildew in grapevine.


Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Proteínas de Plantas , Ácido Salicílico , Fatores de Transcrição , Vitis , Vitis/genética , Vitis/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Ascomicetos/fisiologia , Ascomicetos/patogenicidade , Plantas Geneticamente Modificadas , Erysiphe/genética , Etilenos/metabolismo , Folhas de Planta/microbiologia , Folhas de Planta/genética , Espécies Reativas de Oxigênio/metabolismo
3.
BMC Plant Biol ; 24(1): 155, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38424508

RESUMO

BACKGROUND: Powdery mildew (PM) is one of the important soybean diseases, and host resistance could practically contribute to soybean PM management. To date, only the Rmd locus on chromosome (Chr) 16 was identified through traditional QTL mapping and GWAS, and it remains unclear if the bulk segregant RNA-Seq (BSR-Seq) methodology is feasible to explore additional PM resistance that might exist in other varieties. RESULTS: BSR-Seq was applied to contrast genotypes and gene expressions between the resistant bulk (R bulk) and the susceptible bulk (S bulk), as well as the parents. The ∆(SNP-index) and G' value identified several QTL and significant SNPs/Indels on Chr06, Chr15, and Chr16. Differentially expressed genes (DEGs) located within these QTL were identified using HISAT2 and Kallisto, and allele-specific primers (AS-primers) were designed to validate the accuracy of phenotypic prediction. While the AS-primers on Chr06 or Chr15 cannot distinguish the resistant and susceptible phenotypes, AS-primers on Chr16 exhibited 82% accuracy prediction with an additive effect, similar to the SSR marker Satt431. CONCLUSIONS: Evaluation of additional AS-primers in the linkage disequilibrium (LD) block on Chr16 further confirmed the resistant locus, derived from the resistant parental variety 'Kaohsiung 11' ('KS11'), not only overlaps with the Rmd locus with unique up-regulated LRR genes (Glyma.16G213700 and Glyma.16G215100), but also harbors a down-regulated MLO gene (Glyma.16G145600). Accordingly, this study exemplified the feasibility of BSR-Seq in studying biotrophic disease resistance in soybean, and showed the genetic makeup of soybean variety 'KS11' comprising the Rmd locus and one MLO gene.


Assuntos
Resistência à Doença , Glycine max , Glycine max/genética , RNA-Seq , Alelos , Mapeamento Cromossômico/métodos , Fenótipo , Resistência à Doença/genética , Erysiphe , Doenças das Plantas/genética
4.
Soft Matter ; 20(5): 959-970, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38189096

RESUMO

Oak powdery mildew, caused by the biotrophic fungus Erysiphe alphitoides, is a prevalent disease affecting oak trees, such as English oak (Quercus robur). While mature oak populations are generally less susceptible to this disease, it can endanger young oak seedlings and new leaves on mature trees. Although disruptions of photosynthate and carbohydrate translocation have been observed, accurately detecting and understanding the specific biomolecular interactions between the fungus and the leaves of oak trees is currently lacking. Herein, via hybrid Raman spectroscopy combined with an advanced artificial neural network algorithm, the underpinning biomolecular interactions between biological soft matter, i.e., Quercus robur leaves and Erysiphe alphitoides, are investigated and profiled, generating a spectral library and shedding light on the changes induced by fungal infection and the tree's defence response. The adaxial surfaces of oak leaves are categorised based on either the presence or absence of Erysiphe alphitoides mildew and further distinguishing between covered or not covered infected leaf tissues, yielding three disease classes including healthy controls, non-mildew covered and mildew-covered. By analysing spectral changes between each disease category per tissue type, we identified important biomolecular interactions including disruption of chlorophyll in the non-vein and venule tissues, pathogen-induced degradation of cellulose and pectin and tree-initiated lignification of cell walls in response, amongst others, in lateral vein and mid-vein tissues. Via our developed computational algorithm, the underlying biomolecular differences between classes were identified and allowed accurate and rapid classification of disease with high accuracy of 69.6% for non-vein, 73.5% for venule, 82.1% for lateral vein and 85.6% for mid-vein tissues. Interfacial wetting differences between non-mildew covered and mildew-covered tissue were further analysed on the surfaces of non-vein and venule tissue. The overall results demonstrated the ability of Raman spectroscopy, combined with advanced AI, to act as a powerful and specific tool to probe foliar interactions between forest pathogens and host trees with the simultaneous potential to probe and catalogue molecular interactions between biological soft matter, paving the way for exploring similar relations in broader forest tree-pathogen systems.


Assuntos
Erysiphe , Folhas de Planta , Quercus , Folhas de Planta/microbiologia , Quercus/microbiologia
5.
Phytopathology ; 114(2): 418-426, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37665321

RESUMO

Our previous research showed that a powdery mildew resistant barley line (MvHV07-17) maintains its resistance to Blumeria hordei (Bh) even if plants are exposed to a long-term high temperature of 35°C for 120 h before Bh inoculation, whereas such high temperature pretreatment further increases susceptibility to infection in the susceptible barley line MvHV118-17. In the present study, we extended this approach using short-term high-temperature water treatment (49°C for 30 s) to determine how it affects powdery mildew resistance in these barley lines. We found that this short-term heat shock (HS) impaired plant defense responses, as reflected by development of Bh colonies and visible necrotic spots on leaves of MvHV07-17, which does not develop visible symptoms upon Bh inoculation under optimal growth conditions. In contrast, both HS and long-term heat stress enhanced susceptibility to Bh in MvHV118-17 plants. These results were supported by the measurement of Bh biomass using a qPCR method. Furthermore, microscopic examinations showed that HS elevated the rate of successful Bh penetration events and the spread of cell death in the surrounding mesophyll area and allowed for colony formation and sporulation in resistant barley, whereas early and effective plant defense responses, such as papilla formation and single-cell epidermal hypersensitive response, were significantly reduced. Furthermore, we found that the accumulation of hydrogen peroxide in both resistant and susceptible barley was correlated with susceptibility induced by HS and long-term heat-stress. This study may contribute to a better understanding of plant defense responses to Bh in barley exposed to heat. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Hordeum , Temperatura , Doenças das Plantas , Biomassa , Morte Celular , Erysiphe
6.
Plant Dis ; 108(3): 576-581, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37755416

RESUMO

Powdery mildews are highly destructive fungal plant pathogens that have a significant economic impact on both agricultural and ecological systems worldwide. The intricate relationship between powdery mildews and their host plants has led to cospeciation. In this study, we conducted an extensive evaluation of powdery mildew hosts to provide an updated understanding of the host ranges and distributions of these fungi. The "United States National Fungus Collections Fungus-Host Dataset" is the primary source of information for our analyses. The analysis of the dataset demonstrated the worldwide prevalence of powdery mildews; the data contained over 72,000 reports of powdery mildews, representing ∼8.7% of all host-fungal records. We have updated the taxonomy and nomenclature of powdery mildews. In total, powdery mildews infect ∼10,125 host taxa belonging to 205 families of flowering plants, which accounts for 1,970 genera in 200 countries across six continents. Furthermore, we estimate that powdery mildews infect approximately 2.9% of described angiosperm species. Our study underscores the need for regular updates on powdery mildew host information due to the continuously evolving taxonomy and the discovery of new host taxa. Since 1986, we estimate an additional 1,866 host taxa, 353 genera, and 36 families have been reported. Additionally, the identification of powdery mildew hosts provides valuable insights into the coevolutionary dynamics between the fungi and their plant hosts. Overall, this updated list provides valuable insights into the taxonomy and geographic distribution of powdery mildew species, which builds upon the previous work of Amano in 1986. Discerning the geographic spread and host range of economically significant plant pathogens is vital for biosecurity measures and identifying the origins and expansion of potentially harmful pathogens.


Assuntos
Ascomicetos , Plantas , Erysiphe , Especificidade de Hospedeiro
7.
Plant Dis ; 108(1): 62-70, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37467126

RESUMO

In order to manage agricultural pathogens, it is crucial to understand the population structure underlying epidemics. Rubber tree powdery mildew, caused by Erysiphe quercicola, is a serious threat to rubber plantations worldwide, especially in subtropical environments including all rubber tree-growing regions in China. However, the population structure of the pathogen is uncertain. In this study, 16 polymorphic microsatellite markers were used to genotype powdery mildew samples from the main rubber tree-growing regions including Yunnan (YN), Hainan (HN), western Guangdong (WG), and eastern Guangdong (EG). YN had higher genotypic diversity (Simpson's indices), genotypic evenness, Nei's gene diversity, allelic richness, and private allelic richness than the other regions. Cluster analysis, discriminant analysis of principal components, pairwise divergence, and shared multilocus genotype analyses all showed that YN differed significantly from the other regions. The genetic differentiation was small among the other three regions (HN, WG, and EG). Analysis of molecular variance indicated that the variability among regions accounted for 22.37% of the total variability. Genetic differentiation was significantly positively correlated (Rxy = 0.772, P = 0.001) with geographic distance. Linkage equilibrium analysis suggested possible occurrence of sexual recombination although asexual reproduction predominates in E. quercicola. The results suggested that although significant genetic differentiation of E. quercicola occurred between YN and the other regions, pathogen populations from the other three regions lacked genetic differentiation.


Assuntos
Ascomicetos , Erysiphe , Hevea , Hevea/genética , Doenças das Plantas , China , Ascomicetos/genética , Genética Populacional
8.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256205

RESUMO

Powdery mildew caused by Podosphaera xanthii is a serious fungal disease which causes severe damage to melon production. Unlike with chemical fungicides, managing this disease with resistance varieties is cost effective and ecofriendly. But, the occurrence of new races and a breakdown of the existing resistance genes poses a great threat. Therefore, this study aimed to identify the resistance locus responsible for conferring resistance against P. xanthii race KN2 in melon line IML107. A bi-parental F2 population was used in this study to uncover the resistance against race KN2. Genetic analysis revealed the resistance to be monogenic and controlled by a single dominant gene in IML107. Initial marker analysis revealed the position of the gene to be located on chromosome 2 where many of the resistance gene against P. xanthii have been previously reported. Availability of the whole genome of melon and its R gene analysis facilitated the identification of a F-box type Leucine Rich Repeats (LRR) to be accountable for the resistance against race KN2 in IML107. The molecular marker developed in this study can be used for marker assisted breeding programs.


Assuntos
Ascomicetos , Melhoramento Vegetal , Genes Dominantes , Erysiphe
9.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338970

RESUMO

The obligate biotrophic fungal pathogen Blumeria graminis forma specialis tritici (B.g. tritici) is the causal agent of wheat powdery mildew disease. The TOPLESS-related 1 (TPR1) corepressor regulates plant immunity, but its role in regulating wheat resistance against powdery mildew remains to be disclosed. Herein, TaTPR1 was identified as a positive regulator of wheat post-penetration resistance against powdery mildew disease. The transient overexpression of TaTPR1.1 or TaTPR1.2 confers wheat post-penetration resistance powdery mildew, while the silencing of TaTPR1.1 and TaTPR1.2 results in an enhanced wheat susceptibility to B.g. tritici. Furthermore, Defense no Death 1 (TaDND1) and Defense no Death 2 (TaDND2) were identified as wheat susceptibility (S) genes facilitating a B.g. tritici infection. The overexpression of TaDND1 and TaDND2 leads to an enhanced wheat susceptibility to B.g. tritici, while the silencing of wheat TaDND1 and TaDND2 leads to a compromised susceptibility to powdery mildew. In addition, we demonstrated that the expression of TaDND1 and TaDND2 is negatively regulated by the wheat transcriptional corepressor TaTPR1. Collectively, these results implicate that TaTPR1 positively regulates wheat post-penetration resistance against powdery mildew probably via suppressing the S genes TaDND1 and TaDND2.


Assuntos
Ascomicetos , Triticum , Triticum/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ascomicetos/genética , Erysiphe , Doenças das Plantas/microbiologia , Resistência à Doença/genética
10.
BMC Plant Biol ; 23(1): 113, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823576

RESUMO

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a serious fungal disease that critically threatens the yield and quality of wheat. Utilization of host resistance is the most effective and economical method to control this disease. In our study, a wheat breeding line ShiCG15-009, released from Hebei Province, was highly resistant to powdery mildew at all stages. To dissect its genetic basis, ShiCG15-009 was crossed with the susceptible cultivar Yannong 21 to produce F1, F2 and F2:3 progenies. After genetic analysis, a single dominant gene, tentatively designated PmCG15-009, was proved to confer resistance to Bgt isolate E09. Further molecular markers analysis showed that PmCG15-009 was located on chromosome 2BL and flanked by markers XCINAU130 and XCINAU143 with the genetic distances 0.2 and 0.4 cM, respectively, corresponding to a physic interval of 705.14-723.48 Mb referred to the Chinese Spring reference genome sequence v2.1. PmCG15-009 was most likely a new gene differed from the documented Pm genes on chromosome 2BL since its different origin, genetic diversity, and physical position. To analyze and identify the candidate genes, six genes associated with disease resistance in the candidate interval were confirmed to be associated with PmCG15-009 via qRT-PCR analysis using the parents ShiCG15-009 and Yannong 21 and time-course analysis post-inoculation with Bgt isolate E09. To accelerate the transfer of PmCG15-009 using marker-assisted selection (MAS), 18 closely or co-segregated markers were evaluated and confirmed to be suitable for tracing PmCG15-009, when it was transferred into different wheat cultivars.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Triticum/microbiologia , Mapeamento Cromossômico/métodos , Marcadores Genéticos , Genes de Plantas/genética , Resistência à Doença/genética , Erysiphe , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
11.
BMC Plant Biol ; 23(1): 134, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36882703

RESUMO

BACKGROUND: Calcium ions (Ca2+), secondary messengers, are crucial for the signal transduction process of the interaction between plants and pathogens. Ca2+ signaling also regulates autophagy. As plant calcium signal-decoding proteins, calcium-dependent protein kinases (CDPKs) have been found to be involved in biotic and abiotic stress responses. However, information on their functions in response to powdery mildew attack in wheat crops is limited. RESULT: In the present study, the expression levels of TaCDPK27, four essential autophagy-related genes (ATGs) (TaATG5, TaATG7, TaATG8, and TaATG10), and two major metacaspase genes, namely, TaMCA1 and TaMCA9, were increased by powdery mildew (Blumeria graminis f. sp. tritici, Bgt) infection in wheat seedling leaves. Silencing TaCDPK27 improves wheat seedling resistance to powdery mildew, with fewer Bgt hyphae occurring on TaCDPK27-silenced wheat seedling leaves than on normal seedlings. In wheat seedling leaves under powdery mildew infection, silencing TaCDPK27 induced excess contents of reactive oxygen species (ROS); decreased the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT); and led to an increase in programmed cell death (PCD). Silencing TaCDPK27 also inhibited autophagy in wheat seedling leaves, and silencing TaATG7 also enhanced wheat seedling resistance to powdery mildew infection. TaCDPK27-mCherry and GFP-TaATG8h colocalized in wheat protoplasts. Overexpressed TaCDPK27-mCherry fusions required enhanced autophagy activity in wheat protoplast under carbon starvation. CONCLUSION: These results suggested that TaCDPK27 negatively regulates wheat resistance to PW infection, and functionally links with autophagy in wheat.


Assuntos
Cálcio , Resistência à Doença , Doenças das Plantas , Triticum , Aminoácidos , Erysiphe , Proteínas Quinases , Plântula , Triticum/genética , Triticum/microbiologia , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Genes de Plantas
12.
Phytopathology ; 113(5): 786-790, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35997636

RESUMO

Powdery mildew (PM) diseases may severely limit the production of various crops, including members of the family Cucurbitaceae. Successful PM infection relies on the Mildew Resistance Locus O (MLO) plant gene family, which encodes susceptibility factors essential for fungus penetration into the host cell. In cucumber (Cucumis sativus), natural mutations in CsaMLO8 confer resistance to the PM pathogen Podosphaera xanthii. Here, we used CRISPR/Cas9-mediated mutagenesis to generate PM resistance in the susceptible cucumber cultivar Ilan. Two transgene-free Csamlo8 CRISPR mutant lines (Csamlo-cr-1 and Csamlo-cr-2) were isolated, the first with a 5-bp deletion in exon 1, and the second harboring a 1,280-bp deletion and 10-bp insertion between exons 1 and 5. Both lines showed high resistance to PM under semicommercial growth conditions in the summer growing seasons of 2019 and 2021. These results provide the basis for generating transgene-free powdery mildew resistance in cucumber in any genetic background. This method can directly be employed on commercial cultivars and hybrid parental lines, and thereby substantially shorten and simplify the breeding process for PM resistance in cucumber.


Assuntos
Cucumis sativus , Cucumis sativus/genética , Cucumis sativus/microbiologia , Sistemas CRISPR-Cas , Doenças das Plantas/microbiologia , Melhoramento Vegetal , Mutagênese , Erysiphe
13.
Phytopathology ; 113(2): 355-359, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36738090

RESUMO

Powdery mildew is one of the most economically destructive diseases in protected strawberry production. Here we present the first genome assembly for Podosphaera aphanis, the causal agent of powdery mildew on strawberry. This obligate-biotrophic fungal pathogen was sampled from a naturally occurring outbreak on Fragaria × ananassa 'Malling Centenary' plants grown under cover in the United Kingdom. Assembled reads resolved a 55.6 Mb genome, composed of 12,357 contigs whose annotation led to prediction of 17,239 genes encoding 17,328 proteins. The genome is highly-complete, with 97.5% of conserved single-copy Ascomycete genes shown to be present. This annotated P. aphanis genome provides a molecular resource for further investigation into host-pathogen interactions in the strawberry powdery mildew pathosystem.


Assuntos
Ascomicetos , Fragaria , Fragaria/microbiologia , Doenças das Plantas/microbiologia , Ascomicetos/genética , Erysiphe , Genômica
14.
Phytopathology ; 113(5): 884-892, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36802871

RESUMO

Reactive oxygen species (ROS)- and hypersensitive response (HR)-mediated cell death have long been known to play critical roles in plant immunity to pathogens. Wheat powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is a destructive wheat pathogen. Here, we report a quantitative analysis of the proportion of infected cells with local apoplastic ROS (apoROS) versus intracellular ROS (intraROS) accumulation in various wheat accessions that carry different disease resistance genes (R genes) at a series of time points postinfection. The proportion of apoROS accumulation was 70 to 80% of the infected wheat cells detected in both compatible and incompatible host-pathogen interactions. However, intensive intraROS accumulation followed by localized cell death responses was detected in 11 to 15% of the infected wheat cells, mainly in wheat lines that carried nucleotide-binding leucine-rich repeat R genes (e.g., Pm3F, Pm41, TdPm60, MIIW72, and Pm69). The lines that carry unconventional R genes, Pm24 (Wheat Tandem Kinase 3) and pm42 (a recessive R gene), showed fewer intraROS responses, whereas 11% of Pm24 line-infected epidermis cells still showed HR cell death, suggesting that different resistance pathways are activated there. Here, we also demonstrated that ROS could not act as a strong systemic signal for inducing high resistance to Bgt in wheat, although it induced the expression of pathogenesis-related genes. These results provide new insights into the contribution of intraROS and localized cell death to immune responses against wheat powdery mildew.


Assuntos
Doenças das Plantas , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio , Doenças das Plantas/genética , Erysiphe , Morte Celular , Imunidade , Resistência à Doença/genética
15.
Phytopathology ; 113(7): 1289-1300, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36802874

RESUMO

Apple is an important fruit crop of temperate regions. The narrow genetic base of commercially cultivated apples has resulted in its vulnerability to a large number of fungal, bacterial, and viral pathogens. Apple breeders are always seeking new sources of resistance within the cross-compatible Malus species that can be deployed into elite genetic backgrounds. We have evaluated resistance to two major fungal diseases of apples: powdery mildew and frogeye leaf spot, using a germplasm collection of 174 Malus accessions to identify novel sources of genetic resistance. In 2020 and 2021, we evaluated these accessions for the incidence and severity of powdery mildew and frogeye leaf spot diseases at Cornell AgriTech, Geneva, New York, in a partially managed orchard. The severity and incidence of powdery mildew and frogeye leaf spot, as well as weather parameters were recorded in June, July, and August. Total incidence of powdery mildew and frogeye leaf spot infections increased from 33 to 38%, and 56 to 97% in 2020 and 2021, respectively. Our analysis showed that relative humidity and precipitation correlate with powdery mildew and frogeye leaf spot susceptibility. The predictor variables with highest impact to the variability of powdery mildew were accessions and relative humidity in May. A total of 65 Malus accessions were found to be resistant to powdery mildew, and only one accession showed moderate resistance to frogeye leaf spot. Several of these accessions belong to Malus hybrid species and domesticated apples and can therefore be potential sources of novel resistance alleles for apple breeding.


Assuntos
Ascomicetos , Malus , Malus/genética , Malus/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Melhoramento Vegetal , Erysiphe
16.
Phytopathology ; 113(10): 1979-1984, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37160671

RESUMO

Powdery mildew is caused by the highly adaptive biotrophic fungus Blumeria graminis f. sp. tritici infecting wheat worldwide. Novel powdery mildew resistance genes are urgently needed that can be used rapidly in wheat cultivar development with minimal disruption of trait advances elsewhere. PI 351817 is a German cultivar exhibiting a wide spectrum of resistance to B. graminis f. sp. tritici isolates collected from different wheat-growing regions of the United States. Evaluation of an F2 population and 237 F2:3 lines derived from OK1059060-2C14 × PI 351817 for responses to B. graminis f. sp. tritici isolate OKS(14)-B-3-1 identified a single dominant gene, designated Pm351817, for powdery mildew resistance in PI 351817. Using bulked segregant analysis (BSA) and simple sequence repeat (SSR) markers, Pm351817 was mapped in the terminal region of the long arm of chromosome 2A. Deep sequencing of the genotyping-by-sequencing libraries of the two parental lines identified a set of single-nucleotide polymorphism (SNP) markers in the 2AL candidate gene region. Those SNP markers was subsequently converted to Kompetitive allele-specific PCR (KASP) markers for genotyping the mapping population. Linkage analysis delimited Pm351817 to a 634-kb interval between Stars-KASP656 (771,207,512 bp) and Stars-KASP662 (771,841,609 bp) on 2AL, based on the Chinese Spring reference sequence IWGSC RefSeq v 2.1. Tests of allelism indicated that Pm351817 is located at the Pm65 locus. Pm351817 shows resistance to all B. graminis f. sp. tritici isolates used in this study and can be used to enhance powdery mildew resistance in the United States. KASP markers flanking Pm351817 can be used to select Pm351817 in wheat breeding programs after further tests for polymorphism.


Assuntos
Resistência à Doença , Triticum , Mapeamento Cromossômico , Triticum/genética , Triticum/microbiologia , Marcadores Genéticos , Alelos , Resistência à Doença/genética , Melhoramento Vegetal , Genes de Plantas/genética , Doenças das Plantas/microbiologia , Erysiphe
17.
Plant Dis ; 107(11): 3531-3541, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37882825

RESUMO

Pear powdery mildew (PPM), caused by Phyllactinia pyri, is one of the most serious diseases affecting production in the Hebei pear-growing region of China. Iminoctadine trialbesilate and trifloxystrobin are known to have broad-spectrum activity against a wide range of plant pathogens, including P. pyri. A total of 105 P. pyri strains were isolated from 11 cities in Hebei Province from 2017 to 2019. Iminoctadine trialbesilate and trifloxystrobin significantly inhibited P. pyri growth. Microscopic observation showed that P. pyri mycelia had different degrees of desiccation and that the conidial cell contents had been released. The sensitivities of 60 P. pyri strains to iminoctadine trialbesilate and trifloxystrobin were determined in vitro, and the average EC50 values were 0.5773 ± 0.0014 and 1.2038 ± 0.0010 µg/ml, respectively. The average EC50 values for 85 and 75% of the strains with continuous single peak frequency distributions were 0.4534 ± 0.0012 and 0.8124 ± 0.0039 µg/ml, respectively. These data could be used as the baseline sensitivities of P. pyri to these two fungicides. The maximum difference multiples of the sensitivities of P. pyri strains from the different cities to iminoctadine trialbesilate and trifloxystrobin were 13.5- and 17.2-fold, respectively. Cluster analysis showed that there was no significant correlation between P. pyri sensitivity and geographical origin. The field efficacies in controlling PPM were higher than 85%. These findings can improve how we monitor iminoctadine trialbesilate and trifloxystrobin resistance and improve application efficiency.


Assuntos
Pyrus , Estrobilurinas/farmacologia , Erysiphe
18.
Plant Dis ; 107(7): 2133-2143, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36541881

RESUMO

Winter wheat line Tianmin 668 was crossed with susceptible cultivar Jingshuang 16 to develop 216 recombinant inbred lines (RILs) for dissecting its adult-plant resistance (APR) and all-stage resistance (ASR) against powdery mildew. The RIL population was genotyped on a 16K genotyping by target sequencing single-nucleotide polymorphism array and phenotyped in six field trials and in the greenhouse. Three loci-QPmtj.caas-2BL, QPmtj.caas-2AS, and QPmtj.caas-5AL-conferring APR to powdery mildew were detected on chromosomes 2BL, 2AS, and 5AL, respectively, of Tianmin 668. The effect of resistance to powdery mildew for QPmtj.caas-2BL was greater than that of the other two loci. A Kompetitive allele-specific PCR marker specific for QPmtj.caas-2BL was developed and verified on 402 wheat cultivars or breeding lines. Results of virulence and avirulence patterns to 17 Blumeria graminis f. sp. tritici isolates, bulked segregant analysis-RNA-sequencing, and a genetic linkage mapping identified a resistance allele at locus Pm4 in Tianmin 668 based on the seedling phenotypes of the RIL population. The PCR-based DNA sequence alignment and cosegregation of the functional marker with the phenotypes of the RIL population demonstrated that Pm4d was responsible for the ASR to isolate Bgt1 in Tianmin 668. The dissection of genetic loci for APR and ASR may facilitate the application of Tianmin 668 in developing powdery mildew-resistant wheat cultivars.


Assuntos
Erysiphe , Triticum , Triticum/genética , Erysiphe/genética , Plântula/genética , Genes de Plantas
19.
Plant Dis ; 107(8): 2483-2489, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36726003

RESUMO

Ultraviolet light at wavelengths from 254 to 283 nm/has been reported to effectively suppress powdery mildews in several crops, including some cucurbits. Its use to suppress powdery mildew (Podosphaera xanthii) specifically in cantaloupe has not been previously reported. We evaluated the foregoing technology in cantaloupe fields for suppression of powdery mildew and possible effects on plant growth and yield. In a controlled laboratory study, greenhouse-grown cantaloupe plants were exposed to a gradient of UV-C (254 nm) doses during darkness, and the effects upon powdery mildew development and the plant were evaluated. We also evaluated the efficacy of nighttime applications of UV-C at 100 and 200 J/m2 against powdery mildew on adaxial leaf surfaces in greenhouse, high-tunnel, and open-field plantings. UV-C at the foregoing doses reduced sporulation and germination of P. xanthii conidia without damaging plants. On cantaloupe seedlings in the greenhouse, disease severity was equivalently suppressed at all doses and frequencies of applications of the light. In high-tunnel and open-field experiments, the most effective control of powdery mildew was provided by UV-C applied at 200 J/m2 twice every week, where suppression provided by UV-C was generally equal to and sometimes better than the fungicide treatment. The foregoing UV-C dose and frequency of application also provided the highest yield under field conditions, indicating that UV-C treatment is a promising technology for commercially relevant suppression of powdery mildew on cantaloupe in a variety of growing systems.


Assuntos
Cucumis melo , Raios Ultravioleta , Erysiphe , Produtos Agrícolas , Plântula
20.
Plant Dis ; 107(5): 1452-1462, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36281020

RESUMO

Nighttime applications of germicidal ultraviolet were evaluated as a means to suppress three diseases of grapevine. In laboratory studies, UV-C light (peak 254 nm, FWHM 5 nm) applied during darkness strongly inhibited the germination of conidia of Erysiphe necator, and at a dose of 200 J/m2, germination was zero. Reciprocity of irradiance and duration of exposure with respect to conidial germination was confirmed for UV-C doses between 0 and 200 J/m2 applied at 4 or 400 s. When detached grapevine leaves were exposed during darkness to UV-C at 100 J/m2 up to 7 days before they were inoculated with zoospores of Plasmopara viticola, infection and subsequent sporulation was reduced by over 70% compared to untreated control leaves, indicating an indirect suppression of the pathogen exerted through the host. A hemicylindrical array of low-pressure discharge UV-C lamps configured for trellised grapevines was designed and fitted to both a tractor-drawn carriage and a fully autonomous robotic carriage for vineyard applications. In 2019, in a Chardonnay research vineyard with a history of high inoculum and severe disease, weekly nighttime applications of UV-C suppressed E. necator on leaves and fruit at doses of 100 and 200 J/m2. In the same vineyard in 2020, UV-C was applied once or twice weekly at doses of 70, 100, or 200 J/m2, and severity of E. necator on both leaves and fruit was significantly reduced compared to untreated controls; twice-weekly applications at 200 J/m2 provided suppression equivalent to a standard fungicide program. None of the foregoing UV-C treatments significantly reduced the severity of P. viticola on Chardonnay vines compared to the untreated control in 2020. However, twice-weekly applications of UV-C at 200 J/m2 to the more downy mildew-resistant Vitis interspecific hybrid cultivar Vignoles in 2021 significantly suppressed foliar disease severity. In commercial Chardonnay vineyards with histories of excellent disease control in Dresden, NY, E. necator remained at trace levels on foliage and was zero on fruit following weekly nighttime applications of UV-C at 200 J/m2 in 2020 and after weekly or twice-weekly application of UV-C at 100 or 200 J/m2 in 2021. In 2019, weekly nighttime applications of UV-C at 200 J/m2 also significantly reduced the severity of sour rot, a decay syndrome of complex etiology, on fruit of 'Vignoles' but not the severity of bunch rot caused by Botrytis cinerea. A similar level of suppression of sour rot was observed on 'Vignoles' vines treated twice-weekly with UV-C at 200 J/m2 in 2021. Nighttime UV-C applications did not produce detectable indications of metabolic abnormalities, phytotoxicity, growth reduction, or reductions of fruit yield or quality parameters, even at the highest doses and most frequent intervals employed.


Assuntos
Ascomicetos , Oomicetos , Vitis , Raios Ultravioleta , Erysiphe
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA