Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 497
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 627(8005): 865-872, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509377

RESUMO

Disease-associated astrocyte subsets contribute to the pathology of neurologic diseases, including multiple sclerosis and experimental autoimmune encephalomyelitis1-8 (EAE), an experimental model for multiple sclerosis. However, little is known about the stability of these astrocyte subsets and their ability to integrate past stimulation events. Here we report the identification of an epigenetically controlled memory astrocyte subset that exhibits exacerbated pro-inflammatory responses upon rechallenge. Specifically, using a combination of single-cell RNA sequencing, assay for transposase-accessible chromatin with sequencing, chromatin immunoprecipitation with sequencing, focused interrogation of cells by nucleic acid detection and sequencing, and cell-specific in vivo CRISPR-Cas9-based genetic perturbation studies we established that astrocyte memory is controlled by the metabolic enzyme ATP-citrate lyase (ACLY), which produces acetyl coenzyme A (acetyl-CoA) that is used by histone acetyltransferase p300 to control chromatin accessibility. The number of ACLY+p300+ memory astrocytes is increased in acute and chronic EAE models, and their genetic inactivation ameliorated EAE. We also detected the pro-inflammatory memory phenotype in human astrocytes in vitro; single-cell RNA sequencing and immunohistochemistry studies detected increased numbers of ACLY+p300+ astrocytes in chronic multiple sclerosis lesions. In summary, these studies define an epigenetically controlled memory astrocyte subset that promotes CNS pathology in EAE and, potentially, multiple sclerosis. These findings may guide novel therapeutic approaches for multiple sclerosis and other neurologic diseases.


Assuntos
Astrócitos , Encefalomielite Autoimune Experimental , Memória Epigenética , Esclerose Múltipla , Animais , Feminino , Humanos , Masculino , Camundongos , Acetilcoenzima A/metabolismo , Astrócitos/enzimologia , Astrócitos/metabolismo , Astrócitos/patologia , ATP Citrato (pro-S)-Liase/metabolismo , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Sequenciamento de Cromatina por Imunoprecipitação , Sistemas CRISPR-Cas , Encefalomielite Autoimune Experimental/enzimologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Inflamação/enzimologia , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Esclerose Múltipla/enzimologia , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Análise da Expressão Gênica de Célula Única , Transposases/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(24): e2117636119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35671429

RESUMO

Caspase-8 functions at the crossroad of programmed cell death and inflammation. Here, using genetic approaches and the experimental autoimmune encephalomyelitis model of inflammatory demyelination, we identified a negative regulatory pathway for caspase-8 in infiltrated macrophages whereby it functions to restrain interleukin (IL)-1ß-driven autoimmune inflammation. Caspase-8 is partially activated in macrophages/microglia in active lesions of multiple sclerosis. Selective ablation of Casp8 in myeloid cells, but not microglia, exacerbated autoimmune demyelination. Heightened IL-1ß production by caspase-8-deficient macrophages underlies exacerbated activation of encephalitogenic T cells and production of GM-CSF and interferon-γ. Mechanistically, IL-1ß overproduction by primed caspase-8-deficient macrophages was mediated by RIPK1/RIPK3 through the engagement of NLRP3 inflammasome and was independent of cell death. When instructed by autoreactive CD4 T cells in the presence of antigen, caspase-8-deficient macrophages, but not their wild-type counterparts, released significant amount of IL-1ß that in turn acted through IL-1R to amplify T cell activation. Moreover, the worsened experimental autoimmune encephalomyelitis progression in myeloid Casp8 mutant mice was completely reversed when Ripk3 was simultaneously deleted. Together, these data reveal a functional link between T cell-driven autoimmunity and inflammatory IL-1ß that is negatively regulated by caspase-8, and suggest that dysregulation of the pathway may contribute to inflammatory autoimmune diseases, such as multiple sclerosis.


Assuntos
Caspase 8 , Encefalomielite Autoimune Experimental , Esclerose Múltipla , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Linfócitos T CD4-Positivos/imunologia , Caspase 1/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Encefalomielite Autoimune Experimental/enzimologia , Encefalomielite Autoimune Experimental/imunologia , Inflamassomos/metabolismo , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/enzimologia , Esclerose Múltipla/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
3.
J Cell Physiol ; 239(5): e31230, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38403972

RESUMO

Multiple sclerosis (MS) is a chronic central nervous system (CNS) disorder characterized by demyelination, neuronal damage, and oligodendrocyte depletion. Reliable biomarkers are essential for early diagnosis and disease management. Emerging research highlights the role of mitochondrial dysfunction and oxidative stress in CNS disorders, including MS, in which mitochondria are central to the degenerative process. Adenosine monophosphate-activated protein kinase (AMPK) regulates the mitochondrial energy balance and initiates responses in neurodegenerative conditions. This systematic review, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, aimed to comprehensively assess the literature on AMPK pathways, mitochondrial dysfunction, and in vivo studies using MS animal models. The search strategy involved the use of AMPK syntaxes, MS syntaxes, and animal model syntaxes. The PubMed, Scopus, Web of Science, and Google Scholar databases were systematically searched on August 26, 2023 without publication year restrictions. The review identified and analyzed relevant papers to provide a comprehensive overview of the current state of related research. Eight studies utilizing various interventions and methodological approaches were included. Risk of bias assessment revealed some areas of low risk but lacked explicit reporting in others. These studies collectively revealed a complex relationship between AMPK, mitochondrial dysfunction, and MS pathogenesis, with both cuprizone and experimental autoimmune encephalomyelitis models demonstrating associations between AMPK and mitochondrial disorders, including oxidative stress and impaired expression of mitochondrial genes. These studies illuminate the multifaceted role of AMPK in MS animal models, involving energy metabolism, inflammatory processes, oxidative stress, and gene regulation leading to mitochondrial dysfunction. However, unanswered questions about its mechanisms and clinical applications underscore the need for further research to fully harness its potential in addressing MS-related mitochondrial dysfunction.


Assuntos
Proteínas Quinases Ativadas por AMP , Encefalomielite Autoimune Experimental , Mitocôndrias , Esclerose Múltipla , Animais , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Encefalomielite Autoimune Experimental/enzimologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Mitocôndrias/patologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Esclerose Múltipla/enzimologia , Estresse Oxidativo
4.
Trends Immunol ; 41(11): 1037-1050, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33055013

RESUMO

Polyamines (i.e., putrescine, spermidine, and spermine) are bioactive polycations capable of binding nucleic acids and proteins and modulating signaling pathways. Polyamine functions have been studied most extensively in tumors, where they can promote cell transformation and proliferation. Recently, spermidine was found to exert protective effects in an experimental model of multiple sclerosis (MS) and to confer immunoregulatory properties on dendritic cells (DCs), via the indoleamine 2,3-dioxygenase 1 (IDO1) enzyme. IDO1 converts l-tryptophan into metabolites, collectively known as kynurenines, endowed with several immunoregulatory effects via activation of the arylhydrocarbon receptor (AhR). Because AhR activation increases polyamine production, the emerging scenario has identified polyamines and kynurenines as actors of an immunoregulatory circuitry with potential implications for immunotherapy in autoimmune diseases and cancer.


Assuntos
Doenças Autoimunes , Imunomodulação , Cinurenina , Esclerose Múltipla , Poliaminas , Animais , Doenças Autoimunes/imunologia , Modelos Animais de Doenças , Humanos , Imunomodulação/imunologia , Cinurenina/imunologia , Esclerose Múltipla/enzimologia , Esclerose Múltipla/imunologia , Poliaminas/imunologia , Transdução de Sinais
5.
Proc Natl Acad Sci U S A ; 117(7): 3848-3857, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32024760

RESUMO

l-tryptophan (Trp), an essential amino acid for mammals, is the precursor of a wide array of immunomodulatory metabolites produced by the kynurenine and serotonin pathways. The kynurenine pathway is a paramount source of several immunoregulatory metabolites, including l-kynurenine (Kyn), the main product of indoleamine 2,3-dioxygenase 1 (IDO1) that catalyzes the rate-limiting step of the pathway. In the serotonin pathway, the metabolite N-acetylserotonin (NAS) has been shown to possess antioxidant, antiinflammatory, and neuroprotective properties in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). However, little is known about the exact mode of action of the serotonin metabolite and the possible interplay between the 2 Trp metabolic pathways. Prompted by the discovery that NAS neuroprotective effects in EAE are abrogated in mice lacking IDO1 expression, we investigated the NAS mode of action in neuroinflammation. We found that NAS directly binds IDO1 and acts as a positive allosteric modulator (PAM) of the IDO1 enzyme in vitro and in vivo. As a result, increased Kyn will activate the ligand-activated transcription factor aryl hydrocarbon receptor and, consequently, antiinflammatory and immunoregulatory effects. Because NAS also increased IDO1 activity in peripheral blood mononuclear cells of a significant proportion of MS patients, our data may set the basis for the development of IDO1 PAMs as first-in-class drugs in autoimmune/neuroinflammatory diseases.


Assuntos
Encefalomielite Autoimune Experimental/enzimologia , Encefalomielite Autoimune Experimental/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/química , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Regulação Alostérica , Sítio Alostérico , Animais , Biocatálise , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/genética , Feminino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Cinurenina/metabolismo , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos Knockout , Esclerose Múltipla/enzimologia , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Serotonina/análogos & derivados , Serotonina/química , Serotonina/metabolismo , Triptofano/metabolismo
6.
Hum Genomics ; 14(1): 18, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398079

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease affecting the central nervous system in young adults. Heparan sulfate proteoglycans (HSPGs) are ubiquitous to the cell surface and the extracellular matrix. HSPG biosynthesis is a complex process involving enzymatic attachment of heparan sulfate (HS) chains to a core protein. HS side chains mediate specific ligand and growth factor interactions directing cellular processes including cell adhesion, migration and differentiation. Two main families of HSPGs exist, the syndecans (SDC1-4) and glypicans (GPC1-6). The SDCs are transmembrane proteins, while the GPC family are GPI linked to the cell surface. SDC1 has well-documented interactions with numerous signalling pathways. Genome-wide association studies (GWAS) have identified regions of the genome associated with MS including a region on chromosome 13 containing GPC5 and GPC6. International studies have revealed significant associations between this region and disease development. The exostosin-1 (EXT1) and sulfatase-1 (SULF1) are key enzymes contributing to the generation of HS chains. EXT1, with documented tumour suppressor properties, is involved in the initiation and polymerisation of the growing HS chain. SULF1 removes 6-O-sulfate groups from HS chains, affecting protein-ligand interactions and subsequent downstream signalling with HS modification potentially having significant effects on MS progression. In this study, we identified significant associations between single nucleotide polymorphisms in SDC1, GPC5 and GPC6 and MS in an Australian Caucasian case-control population. Further significant associations in these genes were identified when the population was stratified by sex and disease subtype. No association was found for EXT1 or SULF1.


Assuntos
Biomarcadores/análise , Estudo de Associação Genômica Ampla , Proteoglicanas de Heparan Sulfato/química , Esclerose Múltipla/patologia , Polimorfismo de Nucleotídeo Único , População Branca/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Austrália/epidemiologia , Estudos de Casos e Controles , Feminino , Glipicanas/genética , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/enzimologia , Esclerose Múltipla/epidemiologia , Esclerose Múltipla/genética , N-Acetilglucosaminiltransferases/genética , Sulfotransferases/genética , Sindecana-1/genética , Adulto Jovem
7.
Metab Brain Dis ; 36(6): 1253-1258, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33721183

RESUMO

The brain 3ß-hydroxysteroid dehydrogenase (3ß-HSD), is the enzyme that catalyzes the biosynthesis of a neuroprotective factor, progesterone. The regulation of 3ß-HSD in response to stress exposure in the cuprizone-induced model of Multiple Sclerosis was investigated and the reaction related to the demyelination extremity. 32 female Wistar rats divided into four groups (i.e., control group (Cont), non-stress cuprizone treated (N-CPZ), physical stress- cuprizone treated (P-CPZ) and emotional stress- cuprizone treated (E-CPZ). A witness foot-shock model used to induce background stress for 5 days. An elevated-plus maze applied to validate the stress induction. Followed by 6 weeks of cuprizone treatment, the Y-maze test performed to confirm brain demyelination. 3ß-HSD gene expression as an indicator of progesterone synthesis examined. At the behavioral level, both stressed groups reflected more impaired spatial memory compared to the N-CPZ group (p < 0.01), with more severe results in the E-CPZ group (p < 0.01). The results of mRNA expression of 3ß-HSD illustrated significant elevation in all cuprizone treated groups (p < 0.001) with a higher up-regulation (p < 0.001) in the E-CPZ group. Background stress -particularly emotional type- exacerbates the demyelination caused by cuprizone treatment. The brain up-regulates the 3ß-HSD gene expression as a protective response relative to the myelin degradation extent.


Assuntos
3-Hidroxiesteroide Desidrogenases/genética , Modelos Animais de Doenças , Esclerose Múltipla/enzimologia , Angústia Psicológica , 3-Hidroxiesteroide Desidrogenases/biossíntese , Animais , Ansiedade/patologia , Ansiedade/psicologia , Cuprizona , Doenças Desmielinizantes/patologia , Eletrochoque , Feminino , Aprendizagem em Labirinto , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Neuroproteção , Desempenho Psicomotor/efeitos dos fármacos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Wistar , Regulação para Cima
8.
Proc Natl Acad Sci U S A ; 115(26): E6065-E6074, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29895691

RESUMO

Multiple sclerosis (MS) is a progressive inflammatory demyelinating disease of the CNS of unknown cause that remains incurable. Inflammasome-associated caspases mediate the maturation and release of the proinflammatory cytokines IL-1ß and IL-18 and activate the pore-forming protein gasdermin D (GSDMD). Inflammatory programmed cell death, pyroptosis, was recently shown to be mediated by GSDMD. Here, we report molecular evidence for GSDMD-mediated inflammasome activation and pyroptosis in both myeloid cells (macrophages/microglia) and, unexpectedly, in myelin-forming oligodendrocytes (ODCs) in the CNS of patients with MS and in the MS animal model, experimental autoimmune encephalomyelitis (EAE). We observed inflammasome activation and pyroptosis in human microglia and ODCs in vitro after exposure to inflammatory stimuli and demonstrate caspase-1 inhibition by the small-molecule inhibitor VX-765 in both cell types. GSDMD inhibition by siRNA transduction suppressed pyroptosis in human microglia. VX-765 treatment of EAE animals reduced the expression of inflammasome- and pyroptosis-associated proteins in the CNS, prevented axonal injury, and improved neurobehavioral performance. Thus, GSDMD-mediated pyroptosis in select glia cells is a previously unrecognized mechanism of inflammatory demyelination and represents a unique therapeutic opportunity for mitigating the disease process in MS and other CNS inflammatory diseases.


Assuntos
Caspase 1/metabolismo , Inibidores de Caspase/farmacologia , Dipeptídeos/farmacologia , Modelos Biológicos , Esclerose Múltipla/enzimologia , Oligodendroglia/enzimologia , Piroptose/efeitos dos fármacos , para-Aminobenzoatos/farmacologia , Células Cultivadas , Humanos , Esclerose Múltipla/patologia , Oligodendroglia/patologia
9.
Anal Chem ; 92(10): 7334-7342, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32253910

RESUMO

Nanobodies have been progressively replacing traditional antibodies in various immunological methods. However, the use of nanobodies as capture antibodies is greatly hampered by their poor performance after passive adsorption to polystyrene microplates, and this restricts the full use of double nanobodies in sandwich enzyme-linked immunosorbent assays (ELISAs). Herein, using the human soluble epoxide hydrolase (sEH) as a model analyte, we found that both the immobilization format and the blocking agent have a significant influence on the performance of capture nanobodies immobilized on polystyrene and the subsequent development of double-nanobody sandwich ELISAs. We first conducted epitope mapping for pairing nanobodies and then prepared a horseradish-peroxidase-labeled nanobody using a mild conjugation procedure as a detection antibody throughout the work. The resulting sandwich ELISA using a capture nanobody (A9, 1.25 µg/mL) after passive adsorption and bovine serum albumin (BSA) as a blocking agent generated a moderate sensitivity of 0.0164 OD·mL/ng and a limit of detection (LOD) of 0.74 ng/mL. However, the introduction of streptavidin as a linker to the capture nanobody at the same working concentration demonstrated a dramatic 16-fold increase in sensitivity (0.262 OD·mL/ng) and a 25-fold decrease in the LOD for sEH (0.03 ng/mL). The streptavidin-bridged double-nanobody ELISA was then successfully applied to tests for recovery, cross-reactivity, and real samples. Meanwhile, we accidentally found that blocking with skim milk could severely damage the performance of the capture nanobody by an order of magnitude compared with BSA. This work provides guidelines to retain the high effectiveness of the capture nanobody and thus to further develop the double-nanobody ELISA for various analytes.


Assuntos
Diabetes Mellitus/diagnóstico , Ensaio de Imunoadsorção Enzimática , Epóxido Hidrolases/análise , Leucócitos Mononucleares/enzimologia , Esclerose Múltipla/diagnóstico , Diabetes Mellitus/enzimologia , Epóxido Hidrolases/metabolismo , Humanos , Leucócitos Mononucleares/patologia , Esclerose Múltipla/enzimologia
10.
J Neuroinflammation ; 17(1): 102, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32248814

RESUMO

Multiple sclerosis (MS) is the most common autoimmune disease of the CNS. The etiology of MS is still unclear but it is widely recognized that both genetic and environmental factors contribute to its pathogenesis. Immune signaling and responses are critically regulated by ubiquitination, a posttranslational modification that is promoted by ubiquitinating enzymes and inhibited by deubiquitinating enzymes (DUBs). Genome-wide association studies (GWASs) identified that polymorphisms in or in the vicinity of two human DUB genes TNFAIP3 and USP18 were associated with MS susceptibility. Studies with experimental autoimmune encephalomyelitis (EAE), an animal model of MS, have provided biological rationale for the correlation between these DUBs and MS. Additional studies have shown that other DUBs are also involved in EAE by controlling distinct cell populations. Therefore, DUBs are emerging as crucial regulators of MS/EAE and might become potential therapeutic targets for the clinical treatment of MS.


Assuntos
Autoimunidade/imunologia , Enzimas Desubiquitinantes/metabolismo , Encefalomielite Autoimune Experimental/enzimologia , Esclerose Múltipla/enzimologia , Animais , Encefalomielite Autoimune Experimental/imunologia , Humanos , Esclerose Múltipla/imunologia
11.
Pharmacol Res ; 160: 105064, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32634582

RESUMO

N-Acylethanolamine acid amidase (NAAA) deactivates the endogenous peroxisome proliferator-activated receptor-α (PPAR-α) agonist palmitoylethanolamide (PEA). NAAA-regulated PEA signaling participates in the control of peripheral inflammation, but evidence suggests also a role in the modulation of neuroinflammatory pathologies such as multiple sclerosis (MS). Here we show that disease progression in the mouse experimental autoimmune encephalomyelitis (EAE) model of MS is accompanied by induction of NAAA expression in spinal cord, which in presymptomatic animals is confined to motor neurons and oligodendrocytes but, as EAE progresses, extends to microglia/macrophages and other cell types. As previously reported for NAAA inhibition, genetic NAAA deletion delayed disease onset and attenuated symptom intensity in female EAE mice, suggesting that accrued NAAA expression may contribute to pathology. To further delineate the role of NAAA in EAE, we generated a mouse line that selectively overexpresses the enzyme in macrophages, microglia and other monocyte-derived cells. Non-stimulated alveolar macrophages from these NaaaCD11b+ mice contain higher-than-normal levels of inducible nitric oxide synthase and display an activated morphology. Furthermore, intranasal lipopolysaccharide injections cause greater alveolar leukocyte accumulation in NaaaCD11b+ than in control mice. NaaaCD11b+ mice also display a more aggressive clinical response to EAE induction, compared to their wild-type littermates. The results identify NAAA as a critical control step in EAE pathogenesis, and point to this enzyme as a possible target for the treatment of MS.


Assuntos
Amidoidrolases/metabolismo , Encefalomielite Autoimune Experimental/enzimologia , Encefalomielite Autoimune Experimental/patologia , Esclerose Múltipla/enzimologia , Esclerose Múltipla/patologia , Amidoidrolases/genética , Animais , Progressão da Doença , Feminino , Lipopolissacarídeos , Macrófagos/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/enzimologia , Neurônios Motores/enzimologia , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo II/genética , Oligodendroglia/metabolismo , Medula Espinal/enzimologia
12.
Int J Mol Sci ; 21(22)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228136

RESUMO

Deimination (or citrullination) is a post-translational modification catalyzed by a calcium-dependent enzyme family of five peptidylarginine deiminases (PADs). Deimination is involved in physiological processes (cell differentiation, embryogenesis, innate and adaptive immunity, etc.) and in autoimmune diseases (rheumatoid arthritis, multiple sclerosis and lupus), cancers and neurodegenerative diseases. Intermediate filaments (IF) and associated proteins (IFAP) are major substrates of PADs. Here, we focus on the effects of deimination on the polymerization and solubility properties of IF proteins and on the proteolysis and cross-linking of IFAP, to finally expose some features of interest and some limitations of citrullinomes.


Assuntos
Artrite Reumatoide/enzimologia , Proteínas de Filamentos Intermediários/metabolismo , Filamentos Intermediários/enzimologia , Esclerose Múltipla/enzimologia , Neoplasias/enzimologia , Doenças Neurodegenerativas/enzimologia , Processamento de Proteína Pós-Traducional , Desiminases de Arginina em Proteínas/metabolismo , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Diferenciação Celular , Citrulinação , Células Epiteliais/enzimologia , Células Epiteliais/patologia , Proteínas Filagrinas , Humanos , Proteínas de Filamentos Intermediários/química , Proteínas de Filamentos Intermediários/genética , Filamentos Intermediários/ultraestrutura , Células-Tronco Mesenquimais/enzimologia , Células-Tronco Mesenquimais/patologia , Esclerose Múltipla/genética , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/patologia , Neurônios/enzimologia , Neurônios/patologia , Multimerização Proteica , Desiminases de Arginina em Proteínas/química , Desiminases de Arginina em Proteínas/genética , Proteólise , Solubilidade
13.
J Neurochem ; 148(3): 426-439, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30289974

RESUMO

Glutathione peroxidase 4 (GPx4) is the only enzyme capable of reducing toxic lipid hydroperoxides in biological membranes to the corresponding alcohols using glutathione as the electron donor. GPx4 is the major inhibitor of ferroptosis, a non-apoptotic and iron-dependent programmed cell death pathway, which has been shown to occur in various neurological disorders with severe oxidative stress. In this study, we investigate whether GPx4 expression is altered in multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE). The results clearly show that mRNA expression for all three GPx4 isoforms (cytoplasmic, mitochondrial and nuclear) decline in multiple sclerosis gray matter and in the spinal cord of MOG35-55 peptide-induced EAE. The amount of GPx4 protein is also reduced in EAE, albeit not in all cells. Neuronal GPx4 immunostaining, mostly cytoplasmic, is lower in EAE spinal cords than in control spinal cords, while oligodendrocyte GPx4 immunostaining, mainly nuclear, is unaltered. Neither control nor EAE astrocytes and microglia cells show GPx4 labeling. In addition to GPx4, two other negative modulators of ferroptosis (γ-glutamylcysteine ligase and cysteine/glutamate antiporter), which are critical to maintain physiological levels of glutathione, are diminished in EAE. The decrease in the ability to eliminate hydroperoxides was also evidenced by the accumulation of lipid peroxidation products and the reduction in the proportion of the docosahexaenoic acid in non-myelin lipids. These findings, along with presence of abnormal neuronal mitochondria morphology, which includes an irregular matrix, disrupted outer membrane and reduced/absent cristae, are consistent with the occurrence of ferroptotic damage in inflammatory demyelinating disorders.


Assuntos
Encéfalo/enzimologia , Encefalomielite Autoimune Experimental/enzimologia , Glutationa Peroxidase/metabolismo , Esclerose Múltipla/enzimologia , Medula Espinal/enzimologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Encéfalo/patologia , Morte Celular , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Esclerose Múltipla/patologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Medula Espinal/patologia
14.
Eur J Immunol ; 46(3): 570-81, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26648339

RESUMO

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. Altering the metabolism of immune cells is an attractive strategy to modify their activity during autoimmunity in MS. We investigated the effect of modulating fatty acid metabolism in an animal model of MS, EAE. Alpha-methylacyl-CoA racemase (AMACR) converts R-configuration branched fatty acids into the S-configuration, thereby preparing them for ß-oxidation. We observed a significant, disease-dependent elevation of AMACR expression in monocytes and T cells from blood, draining lymph nodes and spleen of EAE mice during the preclinical phase. In vitro analysis revealed that the proliferation of T cells was inhibited in AMACR KO mice, but T-cell polarization was switched toward a pathogenic state involving the production of more IFN-γ and IL-17, but less IL-4. These opposing effects appeared to cancel out each other in vivo, because AMACR KO EAE mice showed a marginal increase in the severity of early clinical symptoms. AMACR was not regulated in the white blood cells of MS patients. Our data show that AMACR is regulated in immune cells during EAE, but it is not a suitable target for the treatment of MS due to its opposing effects.


Assuntos
Encefalomielite Autoimune Experimental/enzimologia , Encefalomielite Autoimune Experimental/imunologia , Ácidos Graxos/metabolismo , Esclerose Múltipla/enzimologia , Esclerose Múltipla/imunologia , Racemases e Epimerases/genética , Linfócitos T/imunologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Interferon gama/imunologia , Interleucina-17/imunologia , Interleucina-4/imunologia , Camundongos , Camundongos Knockout , Monócitos/enzimologia , Racemases e Epimerases/sangue , Racemases e Epimerases/deficiência , Deleção de Sequência , Linfócitos T/enzimologia
15.
Biochim Biophys Acta ; 1854(10 Pt B): 1718-26, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25936777

RESUMO

Fam20C is an atypical kinase implicated in bio-mineralization and phosphate homeostasis disorders, and has recently been shown to account for the activity of an orphan enzyme ("genuine casein kinase", G-CK) previously characterized for its ability to phosphorylate casein and a plethora of secreted proteins at serine residues specified by the S-x-E/pS motif. Fam20C/G-CK activity is only appreciable in the presence of high Mn2+ concentration (>1 mM), and is negligible if Mn2+ is replaced by physiological Mg2+ concentrations. Here we show that sphingosine (but not its biological precursor ceramide) not only stimulates several-fold Fam20C activity in the presence of Mn2+, but also confers a comparable activity to Fam20C assayed with Mg2+. Activation by sphingosine is evident using a variety of substrates, and is accounted for by both higher Vmax and decreased KmATP, as judged from kinetics run with the ß(28-40) substrate peptide and a physiological substrate, BMP-15. Sphingosine also protects Fam20C from thermal inactivation. Consistent with the in vitro results, by treating Fam20C expressing HEK293T cells with myriocin, a potent inhibitor of the sphingosine biosynthetic pathway, the activity of Fam20C released into the conditioned medium is substantially decreased corroborating the concept that sphingosine (or related metabolite(s)) is a co-factor required by Fam20C to optimally display its biological functions. None of the small molecule kinase inhibitors tested so far were able to inhibit Fam20C. Interestingly however fingolimod, an immunosuppressive drug structurally related to sphingosine, used for the treatment of multiple sclerosis, is a powerful activator of Fam20C, both wild type and its pathogenic, loss of function, T268M mutant. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases.


Assuntos
Caseína Quinase I/genética , Proteínas da Matriz Extracelular/genética , Esclerose Múltipla/genética , Esfingosina/biossíntese , Sequência de Aminoácidos , Caseína Quinase I/química , Proteínas da Matriz Extracelular/química , Ácidos Graxos Monoinsaturados/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Esclerose Múltipla/enzimologia , Fosforilação , Esfingosina/antagonistas & inibidores , Esfingosina/metabolismo , Ativação Transcricional/efeitos dos fármacos
16.
Biol Chem ; 397(12): 1277-1286, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27533119

RESUMO

Kallikrein-related peptidase 6 (Klk6) is elevated in the serum of multiple sclerosis (MS) patients and is hypothesized to participate in inflammatory and neuropathogenic aspects of the disease. To test this hypothesis, we investigated the impact of systemic administration of recombinant Klk6 on the development and progression of MOG35-55-induced experimental autoimmune encephalomyelitis (EAE). First, we determined that Klk6 expression is elevated in the spinal cord of mice with EAE at the peak of clinical disease and in immune cells upon priming with the disease-initiating peptide in vitro. Systemic administration of recombinant Klk6 to mice during the priming phase of disease resulted in an exacerbation of clinical symptoms, including earlier onset of disease and higher levels of spinal cord inflammation and pathology. Treatment of MOG35-55-primed immune cells with Klk6 in culture enhanced expression of pro-inflammatory cytokines, interferon-γ, tumor necrosis factor, and interleukin-17, while reducing anti-inflammatory cytokines interleukin-4 and interleukin-5. Together these findings provide evidence that elevations in systemic Klk6 can bias the immune system towards pro-inflammatory responses capable of exacerbating the development of neuroinflammation and paralytic neurological deficits. We suggest that Klk6 represents an important target for conditions in which pro-inflammatory responses play a critical role in disease development, including MS.


Assuntos
Calicreínas/metabolismo , Esclerose Múltipla/enzimologia , Animais , Modelos Animais de Doenças , Feminino , Regulação Enzimológica da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Medula Espinal/enzimologia , Baço/imunologia
17.
Mult Scler ; 22(8): 999-1006, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26466946

RESUMO

BACKGROUND: Vitamin D deficit is considered an important risk factor for many inflammatory and autoimmune diseases. OBJECTIVE: To investigate the influence of the multiple sclerosis (MS)-associated regulatory variant rs10877013 on the expression of genes involved in vitamin D activation (CYP27B1), vitamin D receptor (VDR), and vitamin D degradation (CYP24A1) under inflammatory environment or vitamin D. METHODS: We used lipopolysaccharide and interferon-gamma (LPS+IFNγ) activated monocytes from 119 individuals and vitamin D-stimulated lymphoblastoid cell lines (LCLs, n = 109) of 1000 genomes to quantify the mRNA expression of vitamin D genes by quantitative reverse transcription polymerase chain reaction (RT-qPCR). RESULTS: We found that CYP27B1 mRNA expression level was associated with the rs10877013 genotypes (p = 5.0E-6) in LPS+IFNγ treated monocytes, but not in vitamin D-stimulated LCLs. Inversely, rs10877013 genotypes were associated with VDR expression in LCLs (p = 6.0E-4) but not in monocytes. Finally, CYP24A1 was highly induced by the active form of vitamin D and its expression correlated with the expression of VDR in LCLs but neither the MS-associated variant in the region (rs2248359) nor any other variant located in 1 Mb around CYP24A1 was associated with its expression. CONCLUSIONS: The MS-associated variant rs10877013 is a genetic determinant that affects the functioning of the vitamin D system linking environmental and genetic factors.


Assuntos
25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Interferon gama/farmacologia , Lipopolissacarídeos/farmacologia , Monócitos/efeitos dos fármacos , Esclerose Múltipla/genética , Polimorfismo de Nucleotídeo Único , Receptores de Calcitriol/genética , Vitamina D/farmacologia , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Monócitos/enzimologia , Monócitos/imunologia , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/enzimologia , Esclerose Múltipla/imunologia , Receptores de Calcitriol/agonistas , Receptores de Calcitriol/metabolismo , Fatores de Tempo , Vitamina D3 24-Hidroxilase/genética , Vitamina D3 24-Hidroxilase/metabolismo
18.
Acta Neuropathol ; 130(6): 799-814, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26521072

RESUMO

The functional dynamics and cellular sources of oxidative stress are central to understanding MS pathogenesis but remain elusive, due to the lack of appropriate detection methods. Here we employ NAD(P)H fluorescence lifetime imaging to detect functional NADPH oxidases (NOX enzymes) in vivo to identify inflammatory monocytes, activated microglia, and astrocytes expressing NOX1 as major cellular sources of oxidative stress in the central nervous system of mice affected by experimental autoimmune encephalomyelitis (EAE). This directly affects neuronal function in vivo, indicated by sustained elevated neuronal calcium. The systemic involvement of oxidative stress is mirrored by overactivation of NOX enzymes in peripheral CD11b(+) cells in later phases of both MS and EAE. This effect is antagonized by systemic intake of the NOX inhibitor and anti-oxidant epigallocatechin-3-gallate. Together, this persistent hyper-activation of oxidative enzymes suggests an "oxidative stress memory" both in the periphery and CNS compartments, in chronic neuroinflammation.


Assuntos
Encefalomielite Autoimune Experimental/enzimologia , Esclerose Múltipla/enzimologia , NADPH Oxidases/metabolismo , Estresse Oxidativo/fisiologia , Animais , Antioxidantes/uso terapêutico , Astrócitos/efeitos dos fármacos , Astrócitos/enzimologia , Astrócitos/patologia , Antígeno CD11b/metabolismo , Cálcio/metabolismo , Catequina/análogos & derivados , Catequina/uso terapêutico , Doença Crônica , Progressão da Doença , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Inibidores Enzimáticos/uso terapêutico , Acetato de Glatiramer/uso terapêutico , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência/métodos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/patologia , NADPH Oxidases/antagonistas & inibidores , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos
19.
Brain Behav Immun ; 50: 141-154, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26133787

RESUMO

Multiple sclerosis is a serious neurological disorder, resulting in e.g., sensory, motor and cognitive deficits. A critical pathological aspect of multiple sclerosis (MS) is the influx of immunomodulatory cells into the central nervous system (CNS). Identification of key players that regulate cellular trafficking into the CNS may lead to the development of more selective treatment to halt this process. The multifunctional enzyme tissue Transglutaminase (TG2) can participate in various inflammation-related processes, and is known to be expressed in the CNS. In the present study, we question whether TG2 activity contributes to the pathogenesis of experimental MS, and could be a novel therapeutic target. In human post-mortem material, we showed the appearance of TG2 immunoreactivity in leukocytes in MS lesions, and particular in macrophages in rat chronic-relapsing experimental autoimmune encephalomyelitis (cr-EAE), an experimental MS model. Clinical deficits as observed in mouse EAE were reduced in TG2 knock-out mice compared to littermate wild-type mice, supporting a role of TG2 in EAE pathogenesis. To establish if the enzyme TG2 represents an attractive therapeutic target, cr-EAE rats were treated with TG2 activity inhibitors during ongoing disease. Reduction of TG2 activity in cr-EAE animals dramatically attenuated clinical deficits and demyelination. The mechanism underlying these beneficial effects pointed toward a reduction in macrophage migration into the CNS due to attenuated cytoskeletal flexibility and RhoA GTPase activity. Moreover, iNOS and TNFα levels were selectively reduced in the CNS of cr-EAE rats treated with a TG2 activity inhibitor, whereas other relevant inflammatory mediators were not affected in CNS or spleen by reducing TG2 activity. We conclude that modulating TG2 activity opens new avenues for therapeutic intervention in MS which does not affect peripheral levels of inflammatory mediators.


Assuntos
Encefalomielite Autoimune Experimental/enzimologia , Proteínas de Ligação ao GTP/metabolismo , Esclerose Múltipla/enzimologia , Transglutaminases/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Movimento Celular/efeitos dos fármacos , Córtex Cerebral/enzimologia , Córtex Cerebral/patologia , Encefalomielite Autoimune Experimental/patologia , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Feminino , Proteínas de Ligação ao GTP/antagonistas & inibidores , Proteínas de Ligação ao GTP/genética , Humanos , Mediadores da Inflamação/metabolismo , Isoxazóis/farmacologia , Macrófagos/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esclerose Múltipla/patologia , Bainha de Mielina/enzimologia , Proteína 2 Glutamina gama-Glutamiltransferase , RNA Mensageiro/metabolismo , Ratos , Medula Espinal/enzimologia , Medula Espinal/patologia , Baço/metabolismo , Linfócitos T/metabolismo , Transglutaminases/antagonistas & inibidores , Transglutaminases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA