Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Biol Reprod ; 111(4): 757-779, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-38993049

RESUMO

Spermatogonial stem cell (SSC) technologies that are currently under clinical development to reverse human infertility hold the potential to be adapted and applied for the conservation of endangered and vulnerable wildlife species. The biobanking of testis tissue containing SSCs from wildlife species, aligned with that occurring in pediatric human patients, could facilitate strategies to improve the genetic diversity and fitness of endangered populations. Approaches to utilize these SSCs could include spermatogonial transplantation or testis tissue grafting into a donor animal of the same or a closely related species, or in vitro spermatogenesis paired with assisted reproduction approaches. The primary roadblock to progress in this field is a lack of fundamental knowledge of SSC biology in non-model species. Herein, we review the current understanding of molecular mechanisms controlling SSC function in laboratory rodents and humans, and given our particular interest in the conservation of Australian marsupials, use a subset of these species as a case-study to demonstrate gaps-in-knowledge that are common to wildlife. Additionally, we review progress in the development and application of SSC technologies in fertility clinics and consider the translation potential of these techniques for species conservation pipelines.


Assuntos
Células-Tronco Germinativas Adultas , Animais Selvagens , Conservação dos Recursos Naturais , Humanos , Animais , Masculino , Conservação dos Recursos Naturais/métodos , Células-Tronco Germinativas Adultas/fisiologia , Espermatogônias/transplante , Espermatogônias/fisiologia , Espécies em Perigo de Extinção
2.
Cell Tissue Bank ; 25(1): 231-243, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37676366

RESUMO

Spermatogonia stem cells (SSCs) are a unique cell population maintaining male spermatogenesis during life, through their potential for proliferation and differentiation. The application of silicon nanoparticles (SNs) and hyaluronic acid (HA) to induce the differentiation of SSCs seems promising. Herein, we investigate the effect of SN and HA scaffolds on the progression of SSCs spermatogenesis in mice. Initially SSCs were isolated from healthy immature mice and cultured on prepared scaffolds (HA, SN, and HA/SN) in a 3D culture system. Then viability of SSCs cultured on scaffolds was examined using MTT assay and Acridine Orange staining. Then SSCs cultured on scaffolds were transplanted into epididymal adipose tissue (EAT) in mature mice and the result was studied by H&E and IHC staining 8 weeks after transplantation. MTT and Acridine Orange analysis revealed that among three different scaffolds HA/SN based scaffold causes considerable toxicity on SSCs (P < 0.05) while H&E staining showed that culture of SSCs on HA, SN, and HA/SN scaffolds has a positive effect on the progression of SSCs spermatogenesis after transplantation into EAT. IHC staining identified TP1, TEKT1, and PLZF as crucial biomarkers in the spermatogenesis development of SSCs transplanted to EAT. According to the presence of these biomarkers in different experimental groups, we found the most spermatogenesis development in SSCs cultured on HA/SN scaffold (PLZF, P < 0.01) (TEKT1, P < 0.01) (TP1, P < 0.001). Our study showed that, although the cytotoxic effect of the HA/SN scaffold decreases the viability rate of SSCs; however, SSCs that survive on HA/SN scaffold showed more ability to progress in spermatogenesis after transplantation into EAT.


Assuntos
Ácido Hialurônico , Espermatogônias , Camundongos , Animais , Masculino , Espermatogônias/transplante , Silício , Laranja de Acridina , Biomarcadores , Células-Tronco , Proliferação de Células , Testículo
3.
Proc Natl Acad Sci U S A ; 117(14): 7837-7844, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32229564

RESUMO

The blood-testis barrier (BTB) is thought to be indispensable for spermatogenesis because it creates a special environment for meiosis and protects haploid cells from the immune system. The BTB divides the seminiferous tubules into the adluminal and basal compartments. Spermatogonial stem cells (SSCs) have a unique ability to transmigrate from the adluminal compartment to the basal compartment through the BTB upon transplantation into the seminiferous tubule. Here, we analyzed the role of Cldn11, a major component of the BTB, in spermatogenesis using spermatogonial transplantation. Cldn11-deficient mice are infertile due to the cessation of spermatogenesis at the spermatocyte stage. Cldn11-deficient SSCs failed to colonize wild-type testes efficiently, and Cldn11-deficient SSCs that underwent double depletion of Cldn3 and Cldn5 showed minimal colonization, suggesting that claudins on SSCs are necessary for transmigration. However, Cldn11-deficient Sertoli cells increased SSC homing efficiency by >3-fold, suggesting that CLDN11 in Sertoli cells inhibits transmigration of SSCs through the BTB. In contrast to endogenous SSCs in intact Cldn11-deficient testes, those from WT or Cldn11-deficient testes regenerated sperm in Cldn11-deficient testes. The success of this autologous transplantation appears to depend on removal of endogenous germ cells for recipient preparation, which reprogrammed claudin expression patterns in Sertoli cells. Consistent with this idea, in vivo depletion of Cldn3/5 regenerated endogenous spermatogenesis in Cldn11-deficient mice. Thus, coordinated claudin expression in both SSCs and Sertoli cells expression is necessary for SSC homing and regeneration of spermatogenesis, and autologous stem cell transplantation can rescue congenital defects of a self-renewing tissue.


Assuntos
Fertilidade/genética , Infertilidade/terapia , Espermatogônias/transplante , Transplante de Células-Tronco , Animais , Modelos Animais de Doenças , Fertilidade/fisiologia , Humanos , Infertilidade/genética , Infertilidade/patologia , Masculino , Camundongos , Espermatogênese/genética , Espermatogônias/crescimento & desenvolvimento , Espermatozoides/crescimento & desenvolvimento , Espermatozoides/transplante , Células-Tronco/citologia , Transplante Autólogo/métodos
4.
Cell Tissue Bank ; 24(1): 153-166, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35792989

RESUMO

AIMS: This study was designed to provide both ex-vivo and in-vivo methods for the extraction and expansion of spermatogonial stem cells (SSCs). METHODS: For in-vivo experiments, azoospermic mouse model was performed with Busulfan. Isolation, culture, and characterization of neonate mouse SSC were also achieved. We performed an in-vivo injection of labeled SSCs to the testes with azoospermia. In ex-vivo experiments, extracted SSCs were seeded on the fabricated scaffold consisting of hyaluronic acid (HA) and decellularized testis tissues (DTT). Immunofluorescence staining with PLZF, TP1, and Tekt 1 was performed for SSCs differentiation and proliferation. RESULTS: Several studies demonstrated efficient spermatogenic arrest in seminiferous tubules and proved the absence of spermatogenesis. Transplanted SSCs moved and settled in the basement covering the seminiferous tubules. Most of the cells were positive for Dil, after 4 weeks. An epithelium containing spermatogonia-like cells with Sertoli-like, and Leydig cells were evident in the seminiferous tubules of biopsies, and the IHC staining was significantly positive, 4 weeks after injection of SSCs. The results of the ex-vivo experiments showed positive staining for all markers, which was significantly enhanced in scaffolds of ex-vivo experiments compared with in-vitro seeded scaffolds. CONCLUSION: Ex-vivo SSC differentiation and proliferation using cell-seeded microfluidic testis scaffolds maybe effective for treatment of the azoospermia.


Assuntos
Azoospermia , Testículo , Masculino , Humanos , Camundongos , Animais , Microfluídica , Espermatogônias/transplante , Células-Tronco , Modelos Animais
5.
Biochem Biophys Res Commun ; 535: 6-11, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33340766

RESUMO

No effective cryopreservation technique exists for fish eggs and embryos; thus, the cryopreservation of germ cells (spermatogonia or oogonia) and subsequent generation of eggs and sperm would be an alternative solution for the long-term preservation of piscine genetic resources. Nevertheless, in our previous study using rainbow trout, we showed that recipients transplanted with XY spermatogonia or XX oogonia produced unnatural sex-biased F1 offspring. To overcome these obstacles, we transplanted immature germ cells (XX oogonia or XY spermatogonia; frozen for 33 days) into the body cavities of triploid hatchlings, and the transplanted germ cells possessed a high capacity for differentiating into eggs and sperm in the ovaries and testes of recipients. Approximately 30% of triploid recipients receiving frozen germ cells generated normal salmon that displayed the donor-derived black body color phenotype, although all triploid salmon not receiving transplants were functionally sterile. Furthermore, F1 offspring obtained from insemination of the oogonia-derived eggs and spermatogonia-derived sperm show a normal sex ratio of 1:1 (female:male). Thus, this method presented a critical technique for practical conservation projects for other teleost fish species and masu salmon.


Assuntos
Criopreservação/métodos , Oncorhynchus/crescimento & desenvolvimento , Oogônios/citologia , Oogônios/transplante , Óvulo/citologia , Espermatogônias/citologia , Espermatogônias/transplante , Espermatozoides/citologia , Envelhecimento , Animais , Diferenciação Celular , Conservação dos Recursos Naturais/métodos , Feminino , Células Germinativas , Masculino , Oncorhynchus/embriologia , Oogônios/metabolismo , Óvulo/metabolismo , Razão de Masculinidade , Espermatogônias/metabolismo , Espermatozoides/metabolismo , Triploidia
6.
Fish Physiol Biochem ; 47(3): 767-776, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30937624

RESUMO

We aimed to develop a simplified protocol for transplantation of Brycon orbignyanus spermatogonial stem cells (SSCs) into Astyanax altiparanae testes. Brycon orbignyanus testes were enzymatically digested and SSC purified by a discontinuous density gradient. Endogenous spermatogenesis was suppressed in A. altiparanae using busulfan or by incubation at 35 °C water, and SSCs from B. orbignyanus labeled with PKH26 were injected into their testes via the urogenital papilla. Twenty-two hours post-transplantation, labeled spermatogonia were observed in A. altiparanae tubular lumen. After 7 days, spermatogonia proliferated in the epithelium, and 21 days post-transplantation, sperm was observed in the lumen. Of surviving host fish, nearly 67% of those treated with busulfan and 85% of those held in warm water showed labeled cells in host germinal epithelium. The present study standardized, by a simple and accessible method, germ cell transplantation between sexually mature Characiformes fish species. This is the first report of xenogenic SSC transplantation in this fish order.


Assuntos
Characidae , Espermatogônias/citologia , Espermatogônias/transplante , Transplante de Células-Tronco/métodos , Animais , Espécies em Perigo de Extinção , Feminino , Masculino , Espermatogênese , Testículo
7.
Gen Comp Endocrinol ; 289: 113341, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31954748

RESUMO

Sprmatogonial stem cells (SSCs) are valuable for preservation of endangered fish species, biological experimentation, as well as biotechnological applications. However, the rarity of SSCs in the testes has been a great obstacle in their application. Thus, establishment of an efficient in-vitro culture system to support continuous proliferation of SSCs is essential. The present study aimed to establish an efficient and simple method for in vitro culture of Caspian trout undifferentiated spermatogonial cells. Using a two-step enzymatic digestion, testicular cells were isolated from immature testes composed of mainly undifferentiated spermatogonial cells with gonadosomatic indices of <0.05%. The spermatogonial cells were purified by differential plating through serial passaging. The purified cells indicated high expression of type A spermatogonia-related genes (Ly75, Gfrα1, Nanos2, Plzf and Vasa). Proliferation of purified cells was confirmed by BrdU incorporation. Co-culture of purified cells with testicular somatic cells as a feeder layer, resulted in continuous proliferation of type A spermatogonia. The cultured cells continued to express type A spermatogonia-specific markers after one month culture. The cultured spermatogonia were successfully incorporated into the germline after being intraperitoneally transplanted into sterile triploid rainbow trout hatchlings. These results, for the first time, demonstrated that the somatic microenvironment of the rainbow trout gonad can support the colonization and survival of intraperitoneally transplanted cells derived from a fish species belonging to a different genus. Therefore, the combination of in vitro culture system and xenotransplantation can be considered as a promising strategy for conservation of Caspian trout genetic resources.


Assuntos
Oncorhynchus mykiss/genética , Espermatogônias/transplante , Animais , Células Cultivadas , Masculino
8.
Biol Reprod ; 101(2): 492-500, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31132090

RESUMO

An interspecific hybrid marine fish that developed a testis-like gonad without any germ cells, i.e., a germ cell-less gonad, was produced by hybridizing a female blue drum Nibea mitsukurii with a male white croaker Pennahia argentata. In this study, we evaluated the suitability of the germ cell-less fish as a recipient by transplanting donor testicular cells directly into the gonads through the urogenital papilla. The donor testicular cells were collected from hemizygous transgenic, green fluorescent protein (gfp) (+/-) blue drum, and transplanted into the germ cell-less gonads of the 6-month-old adult hybrid croakers. Fluorescent and histological observations showed the colonization, proliferation, and differentiation of transplanted spermatogonial cells in the gonads of hybrid croakers. The earliest production of spermatozoa in a hybrid recipient was observed at 7 weeks post-transplantation (pt), and 10% of the transplanted recipients produced donor-derived gfp-positive spermatozoa by 25 weeks pt. Sperm from the hybrid recipients were used to fertilize eggs from wild-type blue drums, and approximately 50% of the resulting offspring were gfp-positive, suggesting that all offspring originated from donor-derived sperm that were produced in the transplanted gfp (+/-) germ cells. To the best of our knowledge, this is the first report of successful spermatogonial transplantation using a germ cell-less adult fish as a recipient. This transplantation system has considerable advantages, such as the use of comparatively simple equipment and procedures, and rapid generation of donor-derived spermatogenesis and offspring, and presents numerous applications in commercial aquaculture.


Assuntos
Peixes/genética , Hibridização Genética , Espermatogônias/transplante , Espermatozoides/fisiologia , Animais , Transplante de Células , Peixes/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Sêmen/citologia
9.
Biol Reprod ; 100(4): 1108-1117, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30544188

RESUMO

Many bitterling species are facing extinction because of habitat destruction. Since cryopreservation of fish eggs is still not available to date due to their large size and high yolk content, long-term and stable storage of bitterling genetic resources is currently not possible. We recently discovered that cryopreservation of early-stage germ cells is possible in several fish species and that functional gametes derived from the frozen materials can be produced through their transplantation to embryonic recipients. However, bitterlings have uniquely shaped eggs and their embryos are extremely fragile, making it difficult to perform germ cell transplantation. Therefore, as a first step, we conducted intra-species spermatogonial transplantation using recessive albino Chinese rosy bitterling as donors and wild-type Chinese rosy bitterling as recipients to develop a system to convert freezable early-stage germ cells into functional gametes, particularly eggs. Approximately 3000 testicular cells were transplanted into the peritoneal cavity of 4-day-old germ cell-less recipient embryos produced by dead end (dnd)-knockdown. At 6 months, ten male recipients and nine female recipients produced gametes. Mating studies with the opposite sex of recessive albino control fish revealed that six males and three females produced only albino offspring, suggesting that these recipients' endogenous germ cells were completely removed by dnd-knockdown and they produced only donor-derived gametes. Thus, we successfully established a germ cell transplantation system in an iconic endangered teleost, bitterling. The technology established in this study can be directly applied to produce functional gametes of endangered bitterlings using cryopreserved donor cells.


Assuntos
Cyprinidae/fisiologia , Espermatogônias/transplante , Doadores de Tecidos , Animais , Animais Geneticamente Modificados , Transplante de Células , Conservação dos Recursos Naturais/métodos , Criopreservação/métodos , Criopreservação/veterinária , Cyprinidae/genética , Cyprinidae/crescimento & desenvolvimento , Espécies em Perigo de Extinção , Feminino , Fertilização in vitro/veterinária , Técnicas de Silenciamento de Genes , Células Germinativas/transplante , Masculino , Proteínas de Ligação a RNA/genética , Preservação do Sêmen/veterinária , Transplante Homólogo/veterinária
10.
Biol Reprod ; 100(6): 1637-1647, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30934056

RESUMO

During our previous work toward establishing surrogate broodstock that can produce donor-derived gametes by germ cell transplantation, we found that only type A spermatogonia (ASGs) have the potency to colonize recipient gonads. Therefore, the ability to visualize ASGs specifically would allow the sequential analysis of donor cell behavior in the recipient gonads. Here we produced monoclonal antibodies that could recognize the cell surface antigens of ASGs in Pacific bluefin tuna (Thunnus orientalis), with the aim of visualizing live ASGs. We generated monoclonal antibodies by inoculating Pacific bluefin tuna testicular cells containing ASGs into mice and then screened them using cell-based enzyme-linked immunosorbent assay (ELISA), immunocytochemistry, flow cytometry (FCM), and immunohistochemistry, which resulted in the selection of two antibodies (Nos. 152 and 180) from a pool of 1152 antibodies. We directly labeled these antibodies with fluorescent dye, which allowed ASG-like cells to be visualized in a one-step procedure using immunocytochemistry. Molecular marker analyses against the FCM-sorted fluorescent cells confirmed that ASGs were highly enriched in the antibody-positive fraction. To evaluate the migratory capability of the ASGs, we transplanted visualized cells into the peritoneal cavity of nibe croaker (Nibea mitsukurii) larvae. This resulted in incorporated fluorescent cells labeled with antibody No. 152 being detected in the recipient gonads, suggesting that the visualized ASGs possessed migratory and incorporation capabilities. Thus, the donor germ cell visualization method that was developed in this study will facilitate and simplify Pacific bluefin tuna germ cell transplantation.


Assuntos
Anticorpos Monoclonais/química , Corantes Fluorescentes/química , Espermatogônias/citologia , Espermatogônias/ultraestrutura , Coloração e Rotulagem/métodos , Atum , Animais , Anticorpos Monoclonais/metabolismo , Antígenos de Superfície/imunologia , Aquicultura , Rastreamento de Células/métodos , Rastreamento de Células/veterinária , Citometria de Fluxo/métodos , Citometria de Fluxo/veterinária , Corantes Fluorescentes/metabolismo , Imuno-Histoquímica/veterinária , Masculino , Microscopia de Fluorescência/métodos , Microscopia de Fluorescência/veterinária , Especificidade de Órgãos , Perciformes , Análise do Sêmen/métodos , Análise do Sêmen/veterinária , Espermatogônias/classificação , Espermatogônias/transplante , Coloração e Rotulagem/veterinária
11.
Biol Res ; 52(1): 16, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30917866

RESUMO

BACKGROUND: Sperm production is one of the most complex biological processes in the body. In vitro production of sperm is one of the most important goals of researches in the field of male infertility treatment, which is very important in male cancer patients treated with gonadotoxic methods and drugs. In this study, we examine the progression of spermatogenesis after transplantation of spermatogonial stem cells under conditions of testicular tissue culture. RESULTS: Testicular tissue samples from azoospermic patients were obtained and then these were freeze-thawed. Spermatogonial stem cells were isolated by two enzymatic digestion steps and the identification of these cells was confirmed by detecting the PLZF protein. These cells, after being labeled with DiI, were transplanted in azoospermia adult mice model. The host testes were placed on agarose gel as tissue culture system. After 8 weeks, histomorphometric, immunohistochemical and molecular studies were performed. The results of histomorphometric studies showed that the mean number of spermatogonial cells, spermatocytes and spermatids in the experimental group was significantly more than the control group (without transplantation) (P < 0.05) and most of the cells responded positively to the detection of DiI. Immunohistochemical studies in host testes fragments in the experimental group express the PLZF, SCP3 and ACRBP proteins in spermatogonial cells, spermatocyte and spermatozoa, respectively, which confirmed the human nature of these cells. Also, in molecular studies of PLZF, Tekt1 and TP1, the results indicated that the genes were positive in the test group, while not in the control group. CONCLUSION: These results suggest that the slow freezing of SSCs can support the induction of spermatogenesis to produce haploid cells under the 3-dimensional testicular tissue culture.


Assuntos
Criopreservação/métodos , Espermatogênese/fisiologia , Espermatogônias/transplante , Transplante de Células-Tronco/métodos , Testículo/citologia , Animais , Humanos , Masculino , Camundongos
12.
Int J Mol Sci ; 20(23)2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31757040

RESUMO

Fertility preservation for prepubertal boys relies exclusively on cryopreservation of immature testicular tissue (ITT) containing spermatogonia as the only cells with reproductive potential. Preclinical studies that used a nude mice model to evaluate the development of human transplanted ITT were characterized by important spermatogonial loss. We hypothesized that the encapsulation of testicular tissue in an alginate matrix supplemented with nanoparticles containing a necrosis inhibitor (NECINH-NPS) would improve tissue integrity and germ cells' survival in grafts. We performed orthotopic autotransplantation of 1 mm³ testicular tissue fragments recovered form mice (aged 4-5 weeks). Fragments were either non-encapsulated, encapsulated in an alginate matrix, or encapsulated in an alginate matrix containing NECINH-NPs. Grafts were recovered 5- and 21-days post-transplantation. We evaluated tissue integrity (hematoxylin-eosin staining), germ cells survival (immunohistochemistry for promyelocytic leukemia zinc-finger, VASA, and protein-boule-like), apoptosis (immunohistochemistry for active-caspase 3), and lipid peroxidation (immunohistochemistry for malondialdehyde). NECINH-NPs significantly improved testicular tissue integrity and germ cells' survival after 21 days. Oxidative stress was reduced after 5 days, regardless of nanoparticle incorporation. No effect on caspase-dependent apoptosis was observed. In conclusion, NECINH-NPs in an alginate matrix significantly improved tissue integrity and germ cells' survival in grafts with the perspective of higher reproductive outcomes.


Assuntos
Preservação da Fertilidade/métodos , Nanopartículas/química , Espermatogônias/efeitos dos fármacos , Inibidores do Fator de Necrose Tumoral/farmacologia , Alginatos/química , Animais , Apoptose , Sobrevivência Celular , Peroxidação de Lipídeos , Masculino , Camundongos , Espermatogônias/metabolismo , Espermatogônias/transplante , Testículo/citologia , Testículo/efeitos dos fármacos , Testículo/transplante , Inibidores do Fator de Necrose Tumoral/administração & dosagem
13.
Zhonghua Nan Ke Xue ; 25(9): 771-779, 2019 Sep.
Artigo em Zh | MEDLINE | ID: mdl-32233202

RESUMO

OBJECTIVE: To investigate the feasibility of constructing a mouse model of spermatogonial stem cell (SSC) transplant recipient by high-temperature heat stress. METHODS: Four-week-old C57BL/6 male mice and B6(Cg)-Tyrc-2J/J coat color gene homozygous mutant male mice were heat-treated at 43 ℃ for an hour in the incubator. The best transplantation time was determined by HE staining, immunohistochemistry and TUNEL and the SSCs were transplanted into the seminiferous tubules of the mice followed by regular observation of the proliferation, differentiation and spermiogenesis of the SSCs in the testis of the recipient mice. Then the recipients were mated with age-matched normal female mice and the epigenetic features of their offspring were observed. RESULTS: After 3-5 days of high-temperature heat stress, the spermatogenic cells in the testicular seminiferous tubules of the recipient mice showed obviously decreased layers, disordered and loose arrangement, massive deletion, significant apoptosis, reduced mesenchymal cells and increased autophagy, which were basically recovered in about 12 days. At 8 weeks after transplantation, the isolated and purified SSCs were differentiated into spermatogenic cells and sperm with genetic function in the testicular seminiferous tubules of the recipient mice, and normal offspring were reproduced after natural mating. CONCLUSIONS: High-temperature heat stress can be used as an efficient method for rapid construction of the mouse model of spermatogonial stem cell transplantation recipient.


Assuntos
Temperatura Alta , Espermatogênese , Espermatogônias/transplante , Transplante de Células-Tronco , Animais , Diferenciação Celular , Proliferação de Células , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Testículo/citologia
14.
Hum Reprod ; 33(1): 81-90, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29165614

RESUMO

STUDY QUESTION: Is testicular transplantation of in vitro propagated spermatogonial stem cells associated with increased cancer incidence and decreased survival rates in recipient mice? SUMMARY ANSWER: Cancer incidence was not increased and long-term survival rate was not altered after transplantation of in vitro propagated murine spermatogonial stem cells (SSCs) in busulfan-treated recipients as compared to non-transplanted busulfan-treated controls. WHAT IS KNOWN ALREADY: Spermatogonial stem cell autotransplantation (SSCT) is a promising experimental reproductive technique currently under development to restore fertility in male childhood cancer survivors. Most preclinical studies have focused on the proof-of-principle of the functionality and efficiency of this technique. The long-term health of recipients of SSCT has not been studied systematically. STUDY DESIGN, SIZE, DURATION: This study was designed as a murine equivalent of a clinical prospective study design. Long-term follow-up was performed for mice who received a busulfan treatment followed by either an intratesticular transplantation of in vitro propagated enhanced green fluorescent protein (eGFP) positive SSCs (cases, n = 34) or no transplantation (control, n = 37). Using a power calculation, we estimated that 36 animals per group would be sufficient to provide an 80% power and with a 5% level of significance to demonstrate a 25% increase in cancer incidence in the transplanted group. The survival rate and cancer incidence was investigated until the age of 18 months. PARTICIPANTS/MATERIALS, SETTING, METHODS: Neonatal male B6D2F1 actin-eGFP transgenic mouse testis were used to initiate eGFP positive germline stem (GS) cell culture, which harbor SSCs. Six-week old male C57BL/6 J mice received a single dose busulfan treatment to deplete the testis from endogenous spermatogenesis. Half of these mice received a testicular transplantation of cultured eGFP positive GS cells, while the remainder of mice served as a control group. Mice were followed up until the age of 18 months (497-517 days post-busulfan) or sacrificed earlier due to severe discomfort or illness. Survival data were collected. To evaluate cancer incidence a necropsy was performed and tissues were collected. eGFP signal in transplanted testis and in benign and malignant lesions was assessed by standard PCR. MAIN RESULTS AND THE ROLE OF CHANCE: We found 9% (95% CI: 2-25%) malignancies in the transplanted busulfan-treated animals compared to 26% (95% CI: 14-45%) in the busulfan-treated control group, indicating no statistically significant difference in incidence of malignant lesions in transplanted and control mice (OR: 0.3, 95% CI: 0.1-1.1). Furthermore, none of the malignancies that arose in the transplanted animals contained eGFP signal, suggesting that they are not derived from the in vitro propagated transplanted SSCs. Mean survival time after busulfan treatment was found to be equal, with a mean survival time for transplanted animals of 478 days and 437 days for control animals (P = 0.076). LARGE SCALE DATA: NA. LIMITATIONS, REASONS FOR CAUTION: Although we attempted to mimic the future clinical application of SSCT in humans as close as possible, the mouse model that we used might not reflect all aspects of the future clinical setting. WIDER IMPLICATIONS OF THE FINDINGS: The absence of an increase in cancer incidence and a decrease in survival of mice that received a testicular transplantation of in vitro propagated SSCs is reassuring in light of the future clinical application of SSCT in humans. STUDY FUNDING/COMPETING INTEREST(S): This study was funded by KiKa (Kika86) and ZonMw (TAS 116003002). The authors report no financial or other conflict of interest relevant to the subject of this article.


Assuntos
Espermatogônias/transplante , Transplante de Células-Tronco/métodos , Testículo/cirurgia , Animais , Células Cultivadas , Preservação da Fertilidade/efeitos adversos , Preservação da Fertilidade/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Animais , Estudos Prospectivos , Espermatogônias/citologia , Espermatogônias/metabolismo , Transplante de Células-Tronco/efeitos adversos , Testículo/citologia , Testículo/metabolismo
15.
Biol Reprod ; 97(6): 902-910, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29136097

RESUMO

Vast amounts of sperm are produced from spermatogonial stem cells (SSCs), which continuously undergo self-renewal. We examined the possible effect of laterality in male germline transmission efficiency of SSCs using a spermatogonial transplantation technique. We transplanted the same number of wild-type and Egfp transgenic SSCs in the same or different testes of individual recipient mice and compared the fertility of each type of recipient by natural mating. Transgenic mice were born within 3 months after transplantation regardless of the transplantation pattern. However, transgenic offspring were born at a significantly increased frequency when wild-type and transgenic SSCs were transplanted separately. In addition, this type of recipient sired significantly more litters that consisted exclusively of transgenic mice, which suggested that left and right testes have different time windows for fertilization. Thus, laterality plays an important role in germline transmission patterns from SSCs.


Assuntos
Células-Tronco Germinativas Adultas/transplante , Espermatogônias/transplante , Testículo/citologia , Animais , Feminino , Fertilidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
16.
Reprod Fertil Dev ; 30(1): 44-49, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29539301

RESUMO

At the foundation of spermatogenesis are the actions of spermatogonial stem cells (SSCs), and a remarkable feature of these cells is the capacity to regenerate spermatogenesis following transplantation into testes of a recipient male that lacks endogenous germline. This ability could be exploited in livestock production as a breeding tool to enhance genetic gain. A key element to success is derivation of culture conditions that support proliferation of SSCs to provide sufficient numbers of cells for transfer into multiple recipient males. Using methodology devised for rodent cells as a foundation, advances in culturing cattle SSCs have occurred over the past few years and efforts are underway to extend this capability to pig cells. Another critical component to SSC transplantation is generation of males with germline ablation but intact somatic support cell function that can serve as surrogate sires for donor-derived spermatogenesis in a natural mating scheme. Recent advances in pigs using gene editing technologies have demonstrated that knockout of a key male germ cell-specific gene, namely NANOS2, leads to male-specific germline ablation but otherwise normal physiology, including intact seminiferous tubules. Together with recent advances in culturing spermatogonia of higher-order mammals, the now efficient means of producing germline-ablated recipient males have brought the application of SSC transplantation in livestock as a production tool closer to reality than ever before.


Assuntos
Células-Tronco Germinativas Adultas/transplante , Gado , Espermatogônias/transplante , Transplante de Células-Tronco/tendências , Transplante de Células-Tronco/veterinária , Células-Tronco Germinativas Adultas/citologia , Animais , Bovinos , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/tendências , Técnicas de Cultura de Células/veterinária , Masculino , Camundongos , Espermatogônias/citologia , Transplante de Células-Tronco/métodos , Suínos
17.
Biol Reprod ; 94(1): 13, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26607720

RESUMO

Spermatogonial stem cells (SSCs) comprise a small population of germ cells with self-renewal potential. Previous studies have shown that SSCs share several common features with stem cells in other self-renewing tissues, including surface markers and proliferative machinery. However, studies of SSCs are severely handicapped by the small number of SSCs and the lack of SSC-specific markers. In the present study, we examined the utility of CDy1 and Rh123, both of which are used for the collection of stem cells in several self-renewing tissues. CDy1 stained germline stem (GS) cells, cultured spermatogonia enriched for SSC activity, after in vitro incubation without exerting toxic effects. Unlike previously reported stem cell-specific dyes, CDy1 was also useful for enrichment of SSCs in both GS cell culture and mature adult testes. Spermatogonial transplantation showed that ∼1 in 66.7 cells exhibited SSC activity after CDH1-based magnetic cell selection and CDy1 staining. In contrast, although Rh123 was previously used successfully to collect SSCs from cryptorchid testes, it was not possible to recover SSCs from both GS cell cultures and wild-type testes. Thus, CDy1 staining will provide a useful strategy for the enrichment of SSCs and may be used in conjunction with other reagents for the enrichment of SSCs.


Assuntos
Antracenos/química , Corantes Fluorescentes/química , Morfolinas/química , Espermatogônias/ultraestrutura , Células-Tronco/ultraestrutura , Animais , Proteínas Cdh1/metabolismo , Células Cultivadas , Criptorquidismo/patologia , Células Germinativas/ultraestrutura , Magnetismo , Masculino , Camundongos , Camundongos Transgênicos , Rodamina 123/química , Espermatogônias/transplante , Testículo/citologia , Tetraspanina 29/metabolismo
18.
Mol Reprod Dev ; 83(4): 298-311, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26860442

RESUMO

We previously established a spermatogonial transplantation model in fish using triploid recipients. Although triploid salmonids are sterile, they carry a limited number of immature triploid germ cells that potentially compete with the donor-derived germ cells for their niche. We therefore assessed the biological characteristics of germ cell-deficient gonads in rainbow trout for their suitability as recipients for germ cell transplantation in this study. Antisense morpholino oligonucleotides against the dead end gene were microinjected into the fertilized eggs of rainbow trout to eliminate endogenous germ cells, leaving only their supporting cells. Unlike similar approaches performed in zebrafish and medaka, these germ cell-deficient rainbow trout did not show a male-biased sex ratio. Approximately 30,000 spermatogonia were then transplanted into the body cavities of both germ cell-deficient and control recipients. The donor-derived germ cells showed significantly higher proliferation in the gonads of germ cell-deficient recipients than those in the gonads of the control recipients. Finally, the applicability of the germ cell-deficient recipients for xenogeneic transplantation was evaluated by transplanting rainbow trout spermatogonia into germ cell-deficient masu salmon recipients. The resulting recipient salmon matured normally and produced trout gametes, and early survival of the resulting trout offspring was as high as that of the control offspring. Thus, dead end-knockdown salmonids appear to be ideal recipients for the intraperitoneal transplantation of spermatogonia.


Assuntos
Oncorhynchus mykiss , Espermatogônias/transplante , Animais , Feminino , Técnicas de Silenciamento de Genes , Masculino , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/cirurgia , Espermatogônias/citologia , Transplante Heterólogo/veterinária
19.
Reprod Fertil Dev ; 28(12): 2051-2064, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26195109

RESUMO

Germ cell transplantation is an innovative technology for the production of interspecies surrogates, capable of facilitating easier and more economical management of large-bodied broodstock, such as the bluefin tuna. The present study explored the suitability of yellowtail kingfish (Seriola lalandi) as a surrogate host for transplanted southern bluefin tuna (Thunnus maccoyii) spermatogonial cells to produce tuna donor-derived gametes upon sexual maturity. Germ cell populations in testes of donor T. maccoyii males were described using basic histology and the molecular markers vasa and dead-end genes. The peripheral area of the testis was found to contain the highest proportions of dead-end-expressing transplantable Type A spermatogonia. T. maccoyii Type A spermatogonia-enriched preparations were transplanted into the coelomic cavity of 6-10-day-old post-hatch S. lalandi larvae. Fluorescence microscopy and polymerase chain reaction analysis detected the presence of tuna cells in the gonads of the transplanted kingfish fingerlings at 18, 28, 39 and 75 days after transplantation, indicating that the transplanted cells migrated to the genital ridge and had colonised the developing gonad. T. maccoyii germ cell-derived DNA or RNA was not detected at later stages, suggesting that the donor cells were not maintained in the hosts' gonads.


Assuntos
Animais Geneticamente Modificados , Peixes/fisiologia , Reprodução , Espermatogônias/transplante , Atum , Animais , Gônadas , Masculino , Testículo
20.
Reprod Fertil Dev ; 28(12): 1916-1925, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26111862

RESUMO

Intraperitoneal busulfan injections are used to prepare recipients for spermatogonial stem cell (SSC) transplantation but they are associated with haematopoietic toxicity. Testicular injections of busulfan have been proposed to overcome this limitation. To date, testicular injections have not been studied in the mouse model. Therefore, in the present study we used ICR mice as recipients for SSC transplantation and prepared these mice by testicular injection of busulfan on both sides (2, 3, 4 or 6mgkg-1 per side). Following this, donor germ cells expressing red fluorescent protein (RFP) from transgenic C57BL/6J male mice were transplanted into recipients via the efferent duct on Days 16-17 after busulfan treatment. Positive control mice were prepared by intraperitoneal injection of 40mgkg-1 busulfan and negative control mice were treated with bilateral testicular injection of 50% dimethyl sulfoxide. On Day 49 after transplantation, recipient mice that were RFP-positive by in vivo imaging were mated with ICR female mice. Donor-derived germ cell colonies with red fluorescence were observed on Day 60 after transplantation, and donor-derived offspring were obtained. The results demonstrated that endogenous germ cells were successfully eliminated in the seminiferous tubules via testicular busulfan administration, and that exogenous SSCs successfully undergo spermatogenesis in the testes of recipient mice prepared by testicular injections of busulfan. In addition to its effects on recipient preparation, this method was safe in rodents and could possibly be adapted for use in other species.


Assuntos
Bussulfano/administração & dosagem , Espermatogônias/transplante , Transplante de Células-Tronco , Testículo/efeitos dos fármacos , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Espermatogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA