Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 907
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 68(4): e0158623, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38411952

RESUMO

Increasing evidence supports the repositioning of beta-lactams for tuberculosis (TB) therapy, but further research on their interaction with conventional anti-TB agents is still warranted. Moreover, the complex cell envelope of Mycobacterium tuberculosis (Mtb) may pose an additional obstacle to beta-lactam diffusion. In this context, we aimed to identify synergies between beta-lactams and anti-TB drugs ethambutol (EMB) and isoniazid (INH) by assessing antimicrobial effects, intracellular activity, and immune responses. Checkerboard assays with H37Rv and eight clinical isolates, including four drug-resistant strains, exposed that only treatments containing EMB and beta-lactams achieved synergistic effects. Meanwhile, the standard EMB and INH association failed to produce any synergy. In Mtb-infected THP-1 macrophages, combinations of EMB with increasing meropenem (MEM) concentrations consistently displayed superior killing activities over the individual antibiotics. Flow cytometry with BODIPY FL vancomycin, which binds directly to the peptidoglycan (PG), confirmed an increased exposure of this layer after co-treatment. This was reinforced by the high IL-1ß secretion levels found in infected macrophages after incubation with MEM concentrations above 5 mg/L, indicating an exposure of the host innate response sensors to pathogen-associated molecular patterns in the PG. Our findings show that the proposed impaired access of beta-lactams to periplasmic transpeptidases is counteracted by concomitant administration with EMB. The efficiency of this combination may be attributed to the synchronized inhibition of arabinogalactan and PG synthesis, two key cell wall components. Given that beta-lactams exhibit a time-dependent bactericidal activity, a more effective pathogen recognition and killing prompted by this association may be highly beneficial to optimize TB regimens containing carbapenems.IMPORTANCEAddressing drug-resistant tuberculosis with existing therapies is challenging and the treatment success rate is lower when compared to drug-susceptible infection. This study demonstrates that pairing beta-lactams with ethambutol (EMB) significantly improves their efficacy against Mycobacterium tuberculosis (Mtb). The presence of EMB enhances beta-lactam access through the cell wall, which may translate into a prolonged contact between the drug and its targets at a concentration that effectively kills the pathogen. Importantly, we showed that the effects of the EMB and meropenem (MEM)/clavulanate combination were maintained intracellularly. These results are of high significance considering that the time above the minimum inhibitory concentration is the main determinant of beta-lactam efficacy. Moreover, a correlation was established between incubation with higher MEM concentrations during macrophage infection and increased IL-1ß secretion. This finding unveils a previously overlooked aspect of carbapenem repurposing against tuberculosis, as certain Mtb strains suppress the secretion of this key pro-inflammatory cytokine to evade host surveillance.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Etambutol/farmacologia , Etambutol/uso terapêutico , Meropeném/farmacologia , Meropeném/uso terapêutico , Ácido Clavulânico/farmacologia , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose/microbiologia , Carbapenêmicos/farmacologia , beta-Lactamas/farmacologia , beta-Lactamas/uso terapêutico , Testes de Sensibilidade Microbiana
2.
Antimicrob Agents Chemother ; 68(3): e0115723, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38259101

RESUMO

Mycobacterium avium complex pulmonary disease is treated with an azithromycin, ethambutol, and rifampicin regimen, with limited efficacy. The role of rifampicin is controversial due to inactivity, adverse effects, and drug interactions. Here, we evaluated the efficacy of clofazimine as a substitute for rifampicin in an intracellular hollow-fiber infection model. THP-1 cells, which are monocytes isolated from peripheral blood from an acute monocytic leukemia patient, were infected with M. avium ATCC 700898 and exposed to a regimen of azithromycin and ethambutol with either rifampicin or clofazimine. Intrapulmonary pharmacokinetic profiles of azithromycin, ethambutol, and rifampicin were simulated. For clofazimine, a steady-state average concentration was targeted. Drug concentrations and bacterial densities were monitored over 21 days. Exposures to azithromycin and ethambutol were 20%-40% lower than targeted but within clinically observed ranges. Clofazimine exposures were 1.7 times higher than targeted. Until day 7, both regimens were able to maintain stasis. Thereafter, regrowth was observed for the rifampicin-containing regimen, while the clofazimine-containing regimen yielded a 2 Log10 colony forming unit (CFU) per mL decrease in bacterial load. The clofazimine regimen also successfully suppressed the emergence of macrolide tolerance. In summary, substitution of rifampicin with clofazimine in the hollow-fiber model improved the antimycobacterial activity of the regimen. Clofazimine-containing regimens merit investigation in clinical trials.


Assuntos
Pneumopatias , Infecção por Mycobacterium avium-intracellulare , Humanos , Rifampina/farmacologia , Rifampina/uso terapêutico , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Etambutol/farmacologia , Etambutol/uso terapêutico , Azitromicina/farmacologia , Mycobacterium avium , Infecção por Mycobacterium avium-intracellulare/tratamento farmacológico , Quimioterapia Combinada , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Complexo Mycobacterium avium , Pneumopatias/microbiologia
3.
Antimicrob Agents Chemother ; 68(8): e0043024, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38904390

RESUMO

Infection with Mycobacterium tuberculosis remains one of the biggest causes of death from a single microorganism worldwide, and the continuous emergence of drug resistance aggravates our ability to cure the disease. New improved resistance detection methods are needed to provide adequate treatment, such as whole genome sequencing (WGS), which has been used increasingly to identify resistance-conferring mutations over the last decade. The steadily increasing knowledge of resistance-conferring mutations increases our ability to predict resistance based on genomic data alone. This study evaluates the performance of WGS to predict M. tuberculosis complex resistance. It compares WGS predictions with the phenotypic (culture-based) drug susceptibility results based on 20 years of nationwide Danish data. Analyzing 6,230 WGS-sequenced samples, the sensitivities for isoniazid, rifampicin, ethambutol, and pyrazinamide were 82.5% [78.0%-86.5%, 95% confidence interval (CI)], 97.3% (90.6%-99.7%, 95% CI), 58.0% (43.2%-71.8%, 95% CI), and 60.5% (49.0%-71.2%, 95% CI), respectively, and specificities were 99.8% (99.7%-99.9%, 95% CI), 99.8% (99.7%-99.9%, 95% CI), 99.4% (99.2%-99.6%, 95% CI), and 99.9% (99.7%-99.9%, 95% CI), respectively. A broader range of both sensitivities and specificities was observed for second-line drugs. The results conform with previously reported values and indicate that WGS is reliable for routine resistance detection in resource-rich tuberculosis low-incidence and low-resistance settings such as Denmark.


Assuntos
Antituberculosos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Sequenciamento Completo do Genoma , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Dinamarca/epidemiologia , Antituberculosos/farmacologia , Humanos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Isoniazida/farmacologia , Etambutol/farmacologia , Rifampina/farmacologia , Pirazinamida/farmacologia , Pirazinamida/uso terapêutico , Mutação , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano/genética
4.
Ann Clin Microbiol Antimicrob ; 23(1): 25, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500139

RESUMO

BACKGROUND: Mycobacterium avium complex (MAC) is a group of slow-growing mycobacteria that includes Mycobacterium avium and Mycobacterium intracellulare. MAC pulmonary disease (MAC-PD) poses a threat to immunocompromised individuals and those with structural pulmonary diseases worldwide. The standard treatment regimen for MAC-PD includes a macrolide in combination with rifampicin and ethambutol. However, the treatment failure and disease recurrence rates after successful treatment remain high. RESULTS: In the present study, we investigated the unique characteristics of small colony variants (SCVs) isolated from patients with MAC-PD. Furthermore, revertant (RVT) phenotype, emerged from the SCVs after prolonged incubation on 7H10 agar. We observed that SCVs exhibited slower growth rates than wild-type (WT) strains but had higher minimum inhibitory concentrations (MICs) against multiple antibiotics. However, some antibiotics showed low MICs for the WT, SCVs, and RVT phenotypes. Additionally, the genotypes were identical among SCVs, WT, and RVT. Based on the MIC data, we conducted time-kill kinetic experiments using various antibiotic combinations. The response to antibiotics varied among the phenotypes, with RVT being the most susceptible, WT showing intermediate susceptibility, and SCVs displaying the lowest susceptibility. CONCLUSIONS: In conclusion, the emergence of the SCVs phenotype represents a survival strategy adopted by MAC to adapt to hostile environments and persist during infection within the host. Additionally, combining the current drugs in the treatment regimen with additional drugs that promote the conversion of SCVs to RVT may offer a promising strategy to improve the clinical outcomes of patients with refractory MAC-PD.


Assuntos
Pneumopatias , Infecção por Mycobacterium avium-intracellulare , Humanos , Complexo Mycobacterium avium/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecção por Mycobacterium avium-intracellulare/tratamento farmacológico , Infecção por Mycobacterium avium-intracellulare/microbiologia , Pneumopatias/tratamento farmacológico , Pneumopatias/microbiologia , Etambutol/farmacologia , Etambutol/uso terapêutico
5.
Cell Mol Life Sci ; 80(8): 239, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37540379

RESUMO

Retinal ganglion cells (RGCs) are essential for vision perception. In glaucoma and other optic neuropathies, RGCs and their optic axons undergo degenerative change and cell death; this can result in irreversible vision loss. Here we developed a rapid protocol for directly inducing RGC differentiation from human induced pluripotent stem cells (hiPSCs) by the overexpression of ATOH7, BRN3B, and SOX4. The hiPSC-derived RGC-like cells (iRGCs) show robust expression of various RGC-specific markers by whole transcriptome profiling. A functional assessment was also carried out and this demonstrated that these iRGCs display stimulus-induced neuronal activity, as well as spontaneous neuronal activity. Ethambutol (EMB), an effective first-line anti-tuberculosis agent, is known to cause serious visual impairment and irreversible vision loss due to the RGC degeneration in a significant number of treated patients. Using our iRGCs, EMB was found to induce significant dose-dependent and time-dependent increases in cell death and neurite degeneration. Western blot analysis revealed that the expression levels of p62 and LC3-II were upregulated, and further investigations revealed that EMB caused a blockade of lysosome-autophagosome fusion; this indicates that impairment of autophagic flux is one of the adverse effects of that EMB has on iRGCs. In addition, EMB was found to elevate intracellular reactive oxygen species (ROS) levels increasing apoptotic cell death. This could be partially rescued by the co-treatment with the ROS scavenger NAC. Taken together, our findings suggest that this iRGC model, which achieves both high yield and high purity, is suitable for investigating optic neuropathies, as well as being useful when searching for potential drugs for therapeutic treatment and/or disease prevention.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças do Nervo Óptico , Humanos , Células Ganglionares da Retina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Doenças do Nervo Óptico/metabolismo , Apoptose , Etambutol/farmacologia , Etambutol/metabolismo , Fatores de Transcrição SOXC/metabolismo
6.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38892433

RESUMO

Phenotypic susceptibility testing of the Mycobacterium tuberculosis complex (MTBC) isolate requires culture growth, which can delay rapid detection of resistant cases. Whole genome sequencing (WGS) and data analysis pipelines can assist in predicting resistance to antimicrobials used in the treatment of tuberculosis (TB). This study compared phenotypic susceptibility testing results and WGS-based predictions of antimicrobial resistance (AMR) to four first-line antimicrobials-isoniazid, rifampin, ethambutol, and pyrazinamide-for MTBC isolates tested between the years 2018-2022. For this 5-year retrospective analysis, the WGS sensitivity for predicting resistance for isoniazid, rifampin, ethambutol, and pyrazinamide using Mykrobe was 86.7%, 100.0%, 100.0%, and 47.8%, respectively, and the specificity was 99.4%, 99.5%, 98.7%, and 99.9%, respectively. The predictive values improved slightly using Mykrobe corrections applied using TB Profiler, i.e., the WGS sensitivity for isoniazid, rifampin, ethambutol, and pyrazinamide was 92.31%, 100%, 100%, and 57.78%, respectively, and the specificity was 99.63%. 99.45%, 98.93%, and 99.93%, respectively. The utilization of WGS-based testing addresses concerns regarding test turnaround time and enables analysis for MTBC member identification, antimicrobial resistance prediction, detection of mixed cultures, and strain genotyping, all through a single laboratory test. WGS enables rapid resistance detection compared to traditional phenotypic susceptibility testing methods using the WHO TB mutation catalog, providing an insight into lesser-known mutations, which should be added to prediction databases as high-confidence mutations are recognized. The WGS-based methods can support TB elimination efforts in Canada and globally by ensuring the early start of appropriate treatment, rapidly limiting the spread of TB outbreaks.


Assuntos
Antituberculosos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Sequenciamento Completo do Genoma , Sequenciamento Completo do Genoma/métodos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/farmacologia , Humanos , Testes de Sensibilidade Microbiana/métodos , Estudos Retrospectivos , Farmacorresistência Bacteriana/genética , Genoma Bacteriano , Etambutol/farmacologia , Isoniazida/farmacologia , Pirazinamida/farmacologia , Tuberculose/microbiologia , Tuberculose/tratamento farmacológico , Rifampina/farmacologia
7.
Antimicrob Agents Chemother ; 67(11): e0087423, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37877693

RESUMO

Rifampicin is recommended for the treatment of Mycobacterium avium complex pulmonary disease alongside azithromycin and ethambutol. We evaluated the azithromycin-ethambutol backbone with and without rifampicin in an intracellular hollow fiber model and performed RNA sequencing to study the differences in adaptation. In an in vitro hollow fiber experiment, we simulated epithelial lining fluid pharmacokinetic profiles of the recommended 3-drug (rifampicin, ethambutol, and azithromycin) or a 2-drug (ethambutol and azithromycin) treatment. THP-1 cells infected with M. avium ATCC700898 were exposed to these regimens for 21 days. We determined intra- and extra-cellular bacterial load- and THP-1 cell densities on days 0, 3, 7, 14, and 21, alongside RNA sequencing. The emergence of macrolide resistance was studied by inoculating intra- and extra-cellular fractions of azithromycin-containing Middlebrook 7H10 agar plates. Complete pharmacokinetic profiles were determined at days 0 and 21. Both therapies maintained stasis of both intra- and extra-cellular bacterial populations for 3 days, whilst regrowth coinciding with the emergence of a macrolide-resistant subpopulation was seen after 7 days. THP-1 cell density remained static. Similar transcriptional profiles were observed for both therapies that were minimally influenced by exposure duration. Transcriptional response was slightly larger during 2-drug treatment. Rifampicin did not add to the antimycobacterial effect to the 2-drug therapy or suppression of emergence resistance. RNA transcription was not greatly altered by the addition of rifampicin, which may be due to strong transcriptional influence of azithromycin and host cells. This questions the role of rifampicin in the currently recommended therapy. These findings should be confirmed in clinical trials.


Assuntos
Pneumopatias , Infecção por Mycobacterium avium-intracellulare , Humanos , Rifampina/farmacologia , Rifampina/uso terapêutico , Mycobacterium avium , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Etambutol/farmacologia , Etambutol/uso terapêutico , Azitromicina/farmacologia , Azitromicina/uso terapêutico , Macrolídeos/farmacologia , Farmacorresistência Bacteriana/genética , Complexo Mycobacterium avium , Infecção por Mycobacterium avium-intracellulare/tratamento farmacológico , Infecção por Mycobacterium avium-intracellulare/microbiologia , Pneumopatias/tratamento farmacológico
8.
Mikrobiyol Bul ; 57(1): 45-59, 2023 Jan.
Artigo em Turco | MEDLINE | ID: mdl-36636845

RESUMO

Ethambutol (EMB) is one of the first-line drugs used in the standard combination therapy for tuberculosis (TB) caused by Mycobacterium tuberculosis complex (MTC), and resistance to drugs that play a key role in treatment is increasing worldwide. Mutations in the embCAB operon that have been confirmed to be associated with resistance are responsible for EMB resistance. In this study, it was aimed to determine the frequency and patterns of mutations in embA, embB and embC gene regions in clinical MTC isolates found to be phenotypically resistant and susceptible to EMB. A total of 64 MTC isolates, 44 of resistant to EMB and 20 of susceptible to EMB, isoniazid, rifampicin, and streptomycin by conventional phenotypic drug susceptibility test, were included in the study. Following the DNA isolation, embA, embB and embC gene regions associated with EMB resistance were amplified with specific primer sequences. The PCR products were cycle sequenced using the Bigdye Terminator v3.1 Cycle Sequencing kit (Applied Biosystems, USA) and electrophoretically separated on the ABI PRISM 3130XL Genetic Analyzer (Applied Biosystems, USA). Mutated gene regions were identified by aligning sequence analysis data in multiple sequence analysis programs. In the study, genomic mutations in the embCAB operon were detected in 68.2% (30/44) of the EMB resistant isolates. Mutations in the embB gene region were detected in 66% (29/44) of the resistant isolates, 76% (22/29) of these mutations were at codon 306 and the most common mutation patterns in this codon were determined as ATG→GTG (M306V; 58.6%; 17/29), ATG→ATA, ATC or ATT (M306I; 17.2%; 5/29). Other mutations in the embB gene region were determined as Y334H (3.4%; 1/29), D354A (6.9%; 2/29), E378A (3.4%; 1/29), G406C (3.4%; 1/29), M423I (3.4%; 1/29) and E521A (3.4%; 1/29). Of the 44 EMB-resistant isolates, mutations were detected in one (2.3%) of the isolate in the embA gene region (L330L) and in two (4.5%) of the isolates in the embC gene region (T270I in one isolate and T270I and E305E in the other isolate). Of the phenotypically EMB susceptible isolates, mutation was detected in only one (5%) of the isolates in the embA gene region (E180G). In our study, it was determined that mutations frequently occur in codon 306 of the embB gene in EMB-resistant MTC isolates and this mutation has a potential role in the development of EMB resistance. However, it was concluded that the absence of mutations does not exclude phenotypic EMB resistance. Our results will shed light on the molecular epidemiology of embCAB operon mutations that cause EMB resistance in our country.


Assuntos
Etambutol , Mycobacterium tuberculosis , Humanos , Etambutol/farmacologia , Antituberculosos/farmacologia , Farmacorresistência Bacteriana/genética , Mutação , Códon , Testes de Sensibilidade Microbiana
9.
Zhonghua Bing Li Xue Za Zhi ; 52(5): 466-471, 2023 May 08.
Artigo em Zh | MEDLINE | ID: mdl-37106288

RESUMO

Objective: To evaluate the clinical value of the MeltPro MTB assays in the diagnosis of drug-resistant tuberculosis. Methods: A cross-sectional study design was used to retrospectively collect all 4 551 patients with confirmed tuberculosis between January 2018 and December 2019 at Beijing Chest Hospital, Capital Medical University. Phenotypic drug sensitivity test and GeneXpert MTB/RIF (hereafter referred to as "Xpert") assay were used as gold standards to analyze the accuracy of the probe melting curve method. The clinical value of this technique was also evaluated as a complementary method to conventional assays of drug resistance to increase the detective rate of drug-resistant tuberculosis. Results: By taking the phenotypic drug susceptibility test as the gold standard, the sensitivity of the MeltPro MTB assays to detect resistance to rifampicin, isoniazid, ethambutol and fluoroquinolone was 14/15, 95.7%(22/23), 2/4 and 8/9,respectively; and the specificity was 92.0%(115/125), 93.2%(109/117), 90.4%(123/136) and 93.9%(123/131),respectively; the overall concordance rate was 92.1%(95%CI:89.6%-94.1%),and the Kappa value of the consistency test was 0.63(95%CI:0.55-0.72).By taking the Xpert test results as the reference, the sensitivity of this technology to the detection of rifampicin resistance was 93.6%(44/47), the specificity was100%(310/310), the concordance rate was 99.2%(95%CI:97.6%-99.7%), and the Kappa value of the consistency test was 0.96(95%CI:0.93-0.99). The MeltPro MTB assays had been used in 4 551 confirmed patients; the proportion of patients who obtained effective drug resistance results increased from 83.3% to 87.8%(P<0.01); and detection rate of rifampicin, isoniazid, ethambutol, fluoroquinolone resistance, multidrug and pre-extensive drug resistance cases were increased by 3.2%, 14.7%, 22.2%, 13.7%, 11.2% and 12.5%, respectively. Conclusion: The MeltPro MTB assays show satisfactory accuracy in the diagnosis of drug-resistant tuberculosis. This molecular pathological test is an effective complementary method in improving test positivity of drug-resistant tuberculosis.


Assuntos
Antibióticos Antituberculose , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Rifampina/farmacologia , Rifampina/uso terapêutico , Antibióticos Antituberculose/farmacologia , Antibióticos Antituberculose/uso terapêutico , Etambutol/farmacologia , Isoniazida/farmacologia , Inclusão em Parafina , Estudos Retrospectivos , Estudos Transversais , Farmacorresistência Bacteriana , Sensibilidade e Especificidade , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
10.
Antimicrob Agents Chemother ; 66(4): e0202721, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35266825

RESUMO

We evaluated the associations between the in vitro activities of ethambutol and rifampin and clinical outcomes of Mycobacterium avium complex (MAC) pulmonary disease (PD). Among 158 patients with MAC-PD, there was no relationship between high MICs for ethambutol and/or rifampin and treatment failure for MAC-PD. Ethambutol and rifampin resistance was common among MAC isolates (rates of 87% and 59%, respectively), but mutations in embB, rpoB, and rpoC were rare, with detection in only 4% of the drug-resistant MAC isolates.


Assuntos
Pneumopatias , Infecção por Mycobacterium avium-intracellulare , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Quimioterapia Combinada , Etambutol/farmacologia , Etambutol/uso terapêutico , Humanos , Pneumopatias/tratamento farmacológico , Pneumopatias/microbiologia , Complexo Mycobacterium avium/genética , Infecção por Mycobacterium avium-intracellulare/tratamento farmacológico , Infecção por Mycobacterium avium-intracellulare/microbiologia , Rifampina/farmacologia , Rifampina/uso terapêutico
11.
Microbiology (Reading) ; 168(12)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36748577

RESUMO

Tuberculosis (TB) is treated by chemotherapy with multiple anti-TB drugs for a long period, spanning 6 months even in a standard course. In perspective, to prevent the emergence of antimicrobial resistance, novel drugs that act synergistically or additively in combination with major anti-TB drugs and, if possible, shorten the duration of TB therapy are needed. However, their combinatorial effect cannot be predicted until the lead identification phase of the drug development. Clustered regularly interspaced short palindromic repeats interference (CRISPRi) is a powerful genetic tool that enables high-throughput screening of novel drug targets. The development of anti-TB drugs promises to be accelerated by CRISPRi. This study determined whether CRISPRi could be applicable for predictive screening of the combinatorial effect between major anti-TB drugs and an inhibitor of a novel target. In the checkerboard assay, isoniazid killed Mycobacterium smegmatis synergistically or additively in combinations with rifampicin or ethambutol, respectively. The susceptibility to rifampicin and ethambutol was increased by knockdown of inhA, which encodes a target molecule of isoniazid. Additionally, knockdown of rpoB, which encodes a target molecule of rifampicin, increased the susceptibility to isoniazid and ethambutol, which act synergistically with rifampicin in the checkerboard assay. Moreover, CRISPRi could successfully predict the synergistic action of cyclomarin A, a novel TB drug candidate, with isoniazid or rifampicin. These results demonstrate that CRISPRi is a useful tool not only for drug target exploration but also for screening the combinatorial effects of novel combinations of anti-TB drugs. This study provides a rationale for anti-TB drug development using CRISPRi.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Isoniazida/farmacologia , Etambutol/farmacologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Rifampina/farmacologia , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Mycobacterium tuberculosis/genética , Testes de Sensibilidade Microbiana
12.
Toxicol Appl Pharmacol ; 446: 116055, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35550883

RESUMO

Peroxisome proliferator-activated receptor-gamma (PPARγ) has been shown to have therapeutic promise in the treatment of ischemic stroke and is supported by several studies. To identify possible PPARγ activators, the current study used an in silico technique in conjunction with molecular simulations and in vivo validation. FDA-approved drugs were evaluated using molecular docking to determine their affinity for PPARγ. The findings of molecular simulations support the repurposing of rabeprazole and ethambutol for the treatment of ischemic stroke. Adult Sprague Dawley rats were subjected to transient middle cerebral artery occlusion (t-MCAO). Five groups were made as a sham-operated, t-MCAO group, rabeprazole +t-MCAO, ethambutol +t-MCAO, and pioglitazone +t-MCAO. The neuroprotective effects of these drugs were evaluated using the neurological deficit score and the infarct area. The inflammatory mediators and signaling transduction proteins were quantified using Western blotting, ELISA, and immunohistochemistry. The repurposed drugs mitigated cerebral ischemic injury by PPARγ mediated downregulation of nods like receptor protein 3 inflammasomes (NLRP3), tumor necrosis factor-alpha (TNF-α), cyclooxygenase 2 (COX-2), nuclear factor kappa-light-chain-enhancer of activated B cells (p-NF-kB), and c-Jun N-terminal kinase (p-JNK). Our data demonstrated that rabeprazole and ethambutol have neuroprotective potential via modulating the cytoprotective stress response, increasing cellular survival, and balancing homeostatic processes, and so may be suitable for future research in stroke therapy.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Animais , Encéfalo , Isquemia Encefálica/metabolismo , Etambutol/farmacologia , Etambutol/uso terapêutico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Simulação de Acoplamento Molecular , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , PPAR gama/metabolismo , Rabeprazol/farmacologia , Rabeprazol/uso terapêutico , Ratos , Ratos Sprague-Dawley
13.
BMC Infect Dis ; 22(1): 705, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002805

RESUMO

BACKGROUND: Tuberculosis (TB) is a communicable, preventable and curable disease caused by the bacterium Mycobacterium tuberculosis (MTB). Peru is amongst the 30 countries with the highest burden of multidrug-resistant tuberculosis (MDR-TB) worldwide. In the fight against drug-resistant tuberculosis, the UKMYC6 microdilution plate was developed and validated by the CRyPTIC project. The objective of the study was to evaluate the use of the broth microdilution (BMD) plate methodology for susceptibility testing of drug-resistant MTB strains in Peru. METHODS: MTB strains isolated between 2015 and 2018 in Peru were used. 496 nationally-representative strains determined as drug-resistant by the routine 7H10 Agar Proportion Method (APM) were included in the present study. The Minimum Inhibitory Concentration (MIC) of 13 antituberculosis drugs were determined for each strain using the UKMYC6 microdilution plates. Diagnostic agreement between APM and BMD plate methodology was determined for rifampicin, isoniazid, ethambutol, ethionamide, kanamycin and levofloxacin. Phenotypes were set using binary (or ternary) classification based on Epidemiological cut-off values (ECOFF/ECV) proposed by the CRyPTIC project. Whole Genome Sequencing (WGS) was performed on strains with discrepant results between both methods. RESULTS: MIC distributions were determined for 13 first- and second-line anti-TB drugs, including new (bedaquiline, delamanid) and repurposed (clofazimine, linezolid) agents. MIC results were available for 80% (397/496) of the strains at 14 days and the remainder at 21 days. The comparative analysis determined a good agreement (0.64 ≤ k ≤ 0.79) for the drugs rifampicin, ethambutol, ethionamide and kanamycin, and the best agreement (k > 0.8) for isoniazid and levofloxacin. Overall, 12% of MIC values were above the UKMYC6 plate dilution ranges, most notably for the drugs rifampicin and rifabutin. No strain presented MICs higher than the ECOFF/ECV values for the new or repurposed drugs. Discrepant analysis using genotypic susceptibility testing by WGS supported half of the results obtained by APM (52%, 93/179) and half of those obtained by BMD plate methodology (48%, 86/179). CONCLUSIONS: The BMD methodology using the UKMYC6 plate allows the complete susceptibility characterization, through the determination of MICs, of drug-resistant MTB strains in Peru. This methodology shows good diagnostic performances for rifampicin, isoniazid, ethambutol, ethionamide, kanamycin and levofloxacin. It also allows for the characterization of MICs for other drugs used in previous years against tuberculosis, as well as for new and repurposed drugs recently introduced worldwide.


Assuntos
Mycobacterium tuberculosis , Tuberculose dos Linfonodos , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos/farmacologia , Etambutol/farmacologia , Etionamida , Humanos , Isoniazida , Canamicina , Levofloxacino , Testes de Sensibilidade Microbiana , Peru , Rifampina/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
14.
PLoS Genet ; 15(8): e1008284, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31437147

RESUMO

Several important human pathogens are represented in the Corynebacterineae suborder, including Mycobacterium tuberculosis and Corynebacterium diphtheriae. These bacteria are surrounded by a multilayered cell envelope composed of a cytoplasmic membrane, a peptidoglycan (PG) cell wall, a second polysaccharide layer called the arabinogalactan (AG), and finally an outer membrane-like layer made of mycolic acids. Several anti-tuberculosis drugs target the biogenesis of this complex envelope, but their efficacy is declining due to resistance. New therapies are therefore needed to treat diseases caused by these organisms, and a better understanding of the mechanisms of envelope assembly should aid in their discovery. To this end, we generated the first high-density library of transposon insertion mutants in the model organism C. glutamicum. Transposon-sequencing was then used to define its essential gene set and identify loci that, when inactivated, confer hypersensitivity to ethambutol (EMB), a drug that targets AG biogenesis. Among the EMBs loci were genes encoding RipC and the FtsEX complex, a PG cleaving enzyme required for proper cell division and its predicted regulator, respectively. Inactivation of the conserved steAB genes (cgp_1603-1604) was also found to confer EMB hypersensitivity and cell division defects. A combination of quantitative microscopy, mutational analysis, and interaction studies indicate that SteA and SteB form a complex that localizes to the cytokinetic ring to promote cell separation by RipC-FtsEX and may coordinate its PG remodeling activity with the biogenesis of other envelope layers during cell division.


Assuntos
Antituberculosos/farmacologia , Membrana Externa Bacteriana/metabolismo , Divisão Celular/genética , Corynebacterium glutamicum/fisiologia , Farmacorresistência Bacteriana/genética , Membrana Externa Bacteriana/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Corynebacterium glutamicum/efeitos dos fármacos , Elementos de DNA Transponíveis/genética , Etambutol/farmacologia , Galactanos/biossíntese , Loci Gênicos , Mutação , Ácidos Micólicos/metabolismo , Peptidoglicano/metabolismo
15.
Pharm Biol ; 60(1): 2338-2354, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36444935

RESUMO

CONTEXT: Cichorium intybus L. (Asteraceae) formula (CF) has been applied as a folk medicine to treat hyperuricemic nephropathy (HN). However, the exact mechanism remains unclear. OBJECTIVE: To explore the therapeutic effect and mechanism of CF on HN. MATERIALS AND METHODS: Through network pharmacological methods, the targets of the active component of CF against HN were obtained. Subsequently, Male Wistar rats were divided into control, HN, allopurinol (50 mg/kg), CF high-dose (8.64 g/kg) and CF low-dose (2.16 g/kg) groups. The HN model was induced via intragastric administration of adenine (100 mg/kg) and ethambutol hydrochloride (250 mg/kg) for 3 weeks. After CF treatment, biochemical indicators including UA, UREA and CREA were measured. Then, HE staining, qRT-PCR and gut microbiota analysis were conducted to further explore the mechanism. RESULTS: The network pharmacology identified 83 key targets, 6 core genes and 200 signalling pathways involved in the treatment of HN. Compared to the HN group, CF (8.64 g/kg) significantly reduced the levels of UA, UREA and CREA (from 2.4 to 1.57 µMol/L, from 15.87 to 11.05 mMol/L and from 64.83 to 54.83 µMol/L, respectively), and mitigated renal damage. Furthermore, CF inhibited the expression of IL-6, TP53, TNF and JUN. It also altered the composition of gut microbiota, and ameliorated HN by increasing the relative abundance of some probiotics. CONCLUSIONS: This work elucidated the therapeutic effect and underlying mechanism by which CF protects against HN from the view of the biodiversity of the intestinal flora, thus providing a scientific basis for the usage of CF.


Assuntos
Cichorium intybus , Microbioma Gastrointestinal , Hiperuricemia , Masculino , Ratos , Animais , Etambutol/farmacologia , Adenina/toxicidade , Farmacologia em Rede , Ratos Wistar , China , Ureia
16.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 44(4): 555-562, 2022 Aug.
Artigo em Zh | MEDLINE | ID: mdl-36065686

RESUMO

Objective To explore the therapeutic effect of ethambutol tablets (EMB) on pulmonary tuberculosis (PTB) in rats and whether the action mechanism of EMB is related to Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway. Methods Sixty SD rats were assigned into a control group,a PTB group,a PTB+EMB group (30 mg/kg),and a PTB+EMB+Colivelin (JAK/STAT pathway activator) group (30 mg/kg+1 mg/kg) via the random number table method,with 15 rats in each group.The rats in other groups except the control group were injected with 0.2 ml of 5 mg/ml Mycobacterium tuberculosis suspension to establish the PTB model.After the modeling,the rats were administrated with corresponding drugs for 4 consecutive weeks (once a day).On days 1,14,and 28 of administration,the body weights of rats were measured and the Mycobacterium tuberculosis colonies were counted.Hematoxylin-eosin staining was carried out to detect the pathological changes in the lung tissue.Enzyme-linked immunosorbent assay was employed to measure the levels of interleukin(IL)-6,tumor necrosis factor-α (TNF-α),IL-1ß,and interferon-γ (IFN-γ) in the serum.Flow cytometry was used to determine the levels of T lymphocyte subsets CD3+,CD4+,CD8+,and CD4+/CD8+.The 16S rRNA sequencing was performed to detect the relative abundance of the intestinal microorganisms.Western blotting was employed to determine the expression of the proteins in the JAK/STAT pathway. Results Compared with the control group,the modeling of PTB reduced the rat body weight (on days 14 and 28),increased Mycobacterium tuberculosis colonies,caused severe pathological changes in the lung tissue,and elevated the levels of IL-6,TNF-α,and IL-1ß in serum and CD8+.Moreover,the modeling increased the relative abundance of Bacteroides,Peptococcus,Clostridium,Actinomyces,Lactobacillus,Verrucomicrobium,and Veillonella in the intestine,up-regulated the protein levels of phosphorylated JAK2 and phosphorylated STAT3 in the lung tissue,and lowered the levels of CD3+,CD4+,CD4+/CD8+,and IFN-γ levels (all P<0.001).Compared with the PTB group,PTB+EMB increased the rat body weight (on days 14 and 28),reduced Mycobacterium tuberculosis colonies,alleviated the pathological damage in lung tissue,lowered the levels of IL-6,TNF-α,and IL-1ß in serum and CD8+.Moreover,the treatment decreased the relative abundance of Bacteroides,Peptococcus,Clostridium,Actinomyces,Lactobacillus,Verrucomicrobium,Veillonella in the intestine,down-regulated the protein levels of phosphorylated JAK2 and phosphorylated STAT3 in the lung tissue,and elevated the levels of CD3+,CD4+,CD4+/CD8+,and IFN-γ (all P<0.001).Colivelin weakened the alleviation effect of EMB on PTB (all P<0.001). Conclusion EMB can inhibit the JAK/STAT signaling pathway to alleviate the PTB in rat.


Assuntos
Mycobacterium tuberculosis , Tuberculose Pulmonar , Animais , Peso Corporal , Etambutol/farmacologia , Interferon gama/metabolismo , Interferon gama/farmacologia , Interleucina-6/metabolismo , Janus Quinases/metabolismo , Janus Quinases/farmacologia , Mycobacterium tuberculosis/metabolismo , RNA Ribossômico 16S , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/farmacologia , Transdução de Sinais , Comprimidos/farmacologia , Tuberculose Pulmonar/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
17.
Antimicrob Agents Chemother ; 65(8): e0273020, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-33972258

RESUMO

For Mycobacterium avium complex pulmonary disease (MAC-PD), current treatment regimens yield low cure rates. To obtain an evidence-based combination therapy, we assessed the in vitro activity of six drugs, namely, clarithromycin (CLR), rifampin (RIF), ethambutol (EMB), amikacin (AMK), clofazimine (CLO), and minocycline (MIN), alone and in combination, against Mycobacterium avium and studied the contributions of individual antibiotics to efficacy. The MICs of all antibiotics against M. avium ATCC 700898 were determined by broth microdilution. We performed kinetic time-kill assays of all single drugs and clinically relevant two-, three-, four-, and five-drug combinations against M. avium. Pharmacodynamic interactions of these combinations were assessed using area under the time-kill curve-derived effect size and Bliss independence. Adding a second drug yielded an average increase of the effect size (E) of 18.7% ± 32.9%, although antagonism was seen in some combinations. Adding a third drug showed a smaller increase in effect size (+12.2% ± 11.5%). The RIF-CLO-CLR (E of 102 log10 CFU/ml · day), RIF-AMK-CLR (E of 101 log10 CFU/ml · day), and AMK-MIN-EMB (E of 97.8 log10 CFU/ml · day) regimens proved more active than the recommended RIF-EMB-CLR regimen (E of 89.1 log10 CFU/ml · day). The addition of a fourth drug had little impact on effect size (+4.54% ± 3.08%). In vitro, several two- and three-drug regimens are as effective as the currently recommended regimen for MAC-PD. Adding a fourth drug to any regimen had little additional effect. In vitro, the most promising regimen would be RIF-AMK-macrolide or RIF-CLO-macrolide.


Assuntos
Complexo Mycobacterium avium , Infecção por Mycobacterium avium-intracellulare , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Claritromicina/farmacologia , Claritromicina/uso terapêutico , Quimioterapia Combinada , Etambutol/farmacologia , Etambutol/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana , Infecção por Mycobacterium avium-intracellulare/tratamento farmacológico
18.
N Engl J Med ; 379(15): 1403-1415, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30280646

RESUMO

BACKGROUND: The World Health Organization recommends drug-susceptibility testing of Mycobacterium tuberculosis complex for all patients with tuberculosis to guide treatment decisions and improve outcomes. Whether DNA sequencing can be used to accurately predict profiles of susceptibility to first-line antituberculosis drugs has not been clear. METHODS: We obtained whole-genome sequences and associated phenotypes of resistance or susceptibility to the first-line antituberculosis drugs isoniazid, rifampin, ethambutol, and pyrazinamide for isolates from 16 countries across six continents. For each isolate, mutations associated with drug resistance and drug susceptibility were identified across nine genes, and individual phenotypes were predicted unless mutations of unknown association were also present. To identify how whole-genome sequencing might direct first-line drug therapy, complete susceptibility profiles were predicted. These profiles were predicted to be susceptible to all four drugs (i.e., pansusceptible) if they were predicted to be susceptible to isoniazid and to the other drugs or if they contained mutations of unknown association in genes that affect susceptibility to the other drugs. We simulated the way in which the negative predictive value changed with the prevalence of drug resistance. RESULTS: A total of 10,209 isolates were analyzed. The largest proportion of phenotypes was predicted for rifampin (9660 [95.4%] of 10,130) and the smallest was predicted for ethambutol (8794 [89.8%] of 9794). Resistance to isoniazid, rifampin, ethambutol, and pyrazinamide was correctly predicted with 97.1%, 97.5%, 94.6%, and 91.3% sensitivity, respectively, and susceptibility to these drugs was correctly predicted with 99.0%, 98.8%, 93.6%, and 96.8% specificity. Of the 7516 isolates with complete phenotypic drug-susceptibility profiles, 5865 (78.0%) had complete genotypic predictions, among which 5250 profiles (89.5%) were correctly predicted. Among the 4037 phenotypic profiles that were predicted to be pansusceptible, 3952 (97.9%) were correctly predicted. CONCLUSIONS: Genotypic predictions of the susceptibility of M. tuberculosis to first-line drugs were found to be correlated with phenotypic susceptibility to these drugs. (Funded by the Bill and Melinda Gates Foundation and others.).


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana/genética , Genoma Bacteriano , Mycobacterium tuberculosis/genética , Tuberculose/tratamento farmacológico , Sequenciamento Completo do Genoma , Antituberculosos/uso terapêutico , Etambutol/farmacologia , Genótipo , Humanos , Isoniazida/farmacologia , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação , Fenótipo , Pirazinamida/farmacologia , Rifampina/farmacologia , Tuberculose/microbiologia
19.
Appl Microbiol Biotechnol ; 105(24): 9167-9179, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34841463

RESUMO

Chitosan (CS) is a promising biopolymer and has been tested as a complement to the action and compensation of toxicity presented by anti-tuberculosis drugs. The present work studied the adjuvant effect of CS with the drug ethambutol (EMB) as a compound (CS-EMB), to explore its antimicrobial and cytotoxic activity, using transmission electron microscopy (TEM), to examine ultracellular changes that represent possible antimycobacterial action of CS on Mycobacterium tuberculosis (Mtb). Antimycobacterial activities were tested against reference strains Mtb ATCC® H37Rv and multidrug resistant (MDR). In vitro cytotoxicity tests were performed on Raw 264.7. For the studied compounds, morphological, ultrastructural, and physical-chemical analyses were performed. Drug-polymer interactions that occur through the H bridges were confirmed by physical-chemical analyses. The CS-EMB compound is stable at pHs of 6.5-7.5, allowing its release at physiological pH. The antibacterial activity (minimum inhibitory concentration) of the CS-EMB compound was 50% greater than that of the EMB in the H37Rv and MDR strains and the ultrastructural changes in the bacilli observed by TEM proved that the CS-EMB compound has a bactericidal action, allowing it to break down the Mtb cell wall. The cytotoxicity of CS-EMB was higher than that of isolated EMB, IC50 279, and 176 µg/mL, respectively. It is concluded that CS-EMB forms a promising composite against strains Mtb H37Rv and multidrug resistant (MDR-TB).Key points• Our study will be the first to observe ultrastructurally the effects of the CS-EMB compound on Mtb cells.• CS-EMB antimicrobial activity in a multidrug-resistant clinical strain.• The CS-EMB compound has promising potential for the development of a new drug to fight tuberculosis.


Assuntos
Quitosana , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos/toxicidade , Quitosana/farmacologia , Etambutol/farmacologia , Humanos , Testes de Sensibilidade Microbiana
20.
Pak J Pharm Sci ; 34(2(Supplementary)): 761-765, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34275812

RESUMO

The present study was planned to assess the distribution of tuberculosis in children and evaluate the antimycobacterial sensitivity pattern of Mycobacterium tuberculosis (MTB) isolates from pediatric patients. A total number of 1718 pediatric patients suspected of Mycobacterium tuberculosis were enrolled in the Institute of Child Health and Children's Hospital, Lahore during 2016-17. Out of 1718, only 710 different types of samples were tested for MTB. The samples were processed using bacteriology and GeneXpert along with the chest X-ray and clinical picture of the patients. The sensitivity pattern of Streptomycin, Isoniazid, Rifampicin and Ethambutol (SIRE) was determined using BACTEC MGIT 960. Total patients were divided into four groups including group A (birth to 12 months), B (1 to 5 years), C (6 to 10 years), and D (11 to 15 years). Out of 710, 106 (55 females and 51 males) were declared positive and 604 negative for tuberculosis. Out of 106 positive cases, 89 (83.96%) were sensitive to Rifampicin and 17 (16.04%) were resistant. Only, 04 (3.77%) were resistant to both Rifampicin and Isoniazid and declared as multidrug-resistant (MDR). It was concluded that children of age 11 to 15 years were more prone to MTB and a minimum percentage of MDR isolates was recorded in age group A (birth to 12 months).


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Pulmonar/tratamento farmacológico , Adolescente , Antituberculosos/uso terapêutico , Criança , Pré-Escolar , Etambutol/farmacologia , Etambutol/uso terapêutico , Humanos , Lactente , Recém-Nascido , Isoniazida/farmacologia , Isoniazida/uso terapêutico , Masculino , Testes de Sensibilidade Microbiana , Paquistão , Rifampina/farmacologia , Rifampina/uso terapêutico , Estreptomicina/farmacologia , Estreptomicina/uso terapêutico , Centros de Atenção Terciária/estatística & dados numéricos , Tuberculose Pulmonar/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA