Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 351
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(22): e2221683120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216548

RESUMO

The triplet nature of the genetic code is considered a universal feature of known organisms. However, frequent stop codons at internal mRNA positions in Euplotes ciliates ultimately specify ribosomal frameshifting by one or two nucleotides depending on the context, thus posing a nontriplet feature of the genetic code of these organisms. Here, we sequenced transcriptomes of eight Euplotes species and assessed evolutionary patterns arising at frameshift sites. We show that frameshift sites are currently accumulating more rapidly by genetic drift than they are removed by weak selection. The time needed to reach the mutational equilibrium is several times longer than the age of Euplotes and is expected to occur after a several-fold increase in the frequency of frameshift sites. This suggests that Euplotes are at an early stage of the spread of frameshifting in expression of their genome. In addition, we find the net fitness burden of frameshift sites to be noncritical for the survival of Euplotes. Our results suggest that fundamental genome-wide changes such as a violation of the triplet character of genetic code can be introduced and maintained solely by neutral evolution.


Assuntos
Cilióforos , Euplotes , Euplotes/genética , Euplotes/metabolismo , Código Genético , Sequência de Bases , Códon de Terminação/genética , Códon de Terminação/metabolismo , Cilióforos/genética , Deriva Genética
2.
Appl Environ Microbiol ; 90(3): e0190023, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38334408

RESUMO

Endosymbiosis is a widespread and important phenomenon requiring diverse model systems. Ciliates are a widespread group of protists that often form symbioses with diverse microorganisms. Endosymbioses between the ciliate Euplotes and heritable bacterial symbionts are common in nature, and four essential symbionts were described: Polynucleobacter necessarius, "Candidatus Protistobacter heckmanni," "Ca. Devosia symbiotica," and "Ca. Devosia euplotis." Among them, only the genus Polynucleobacter comprises very close free-living and symbiotic representatives, which makes it an excellent model for investigating symbiont replacements and recent symbioses. In this article, we characterized a novel endosymbiont inhabiting the cytoplasm of Euplotes octocarinatus and found that it is a close relative of the free-living bacterium Fluviibacter phosphoraccumulans (Betaproteobacteria and Rhodocyclales). We present the complete genome sequence and annotation of the symbiotic Fluviibacter. Comparative analyses indicate that the genome of symbiotic Fluviibacter is small in size and rich in pseudogenes when compared with free-living strains, which seems to fit the prediction for recently established endosymbionts undergoing genome erosion. Further comparative analysis revealed reduced metabolic capacities in symbiotic Fluviibacter, which implies that the symbiont relies on the host Euplotes for carbon sources, organic nitrogen and sulfur, and some cofactors. We also estimated substitution rates between symbiotic and free-living Fluviibacter pairs for 233 genes; the results showed that symbiotic Fluviibacter displays higher dN/dS mean value than free-living relatives, which suggested that genetic drift is the main driving force behind molecular evolution in endosymbionts. IMPORTANCE: In the long history of symbiosis research, most studies focused mainly on organelles or bacteria within multicellular hosts. The single-celled protists receive little attention despite harboring an immense diversity of symbiotic associations with bacteria and archaea. One subgroup of the ciliate Euplotes species is strictly dependent on essential symbionts for survival and has emerged as a valuable model for understanding symbiont replacements and recent symbioses. However, almost all of our knowledge about the evolution and functions of Euplotes symbioses comes from the Euplotes-Polynucleobacter system. In this article, we report a novel essential symbiont, which also has very close free-living relatives. Genome analysis indicated that it is a recently established endosymbiont undergoing genome erosion and relies on the Euplotes host for many essential molecules. Our results provide support for the notion that essential symbionts of the ciliate Euplotes evolve from free-living progenitors in the natural water environment.


Assuntos
Betaproteobacteria , Euplotes , Filogenia , Simbiose/genética , Euplotes/genética , Euplotes/microbiologia , Betaproteobacteria/genética , Bactérias/genética , Genoma Bacteriano , Genômica
3.
J Eukaryot Microbiol ; 70(2): e12945, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36039907

RESUMO

Our knowledge of ciliate endosymbiont diversity greatly expanded over the past decades due to the development of characterization methods for uncultivable bacteria. Chlamydia-like bacteria have been described as symbionts of free-living amoebae and other phylogenetically diverse eukaryotic hosts. In the present work, a systematic survey of the bacterial diversity associated with the ciliate Euplotes octocarinatus strain Zam5b-1 was performed, using metagenomic screening as well as classical full-cycle rRNA approach, and a novel chlamydial symbiont was characterized. The metagenomic screening revealed 16S rRNA gene sequences from Polynucleobacter necessarius, three previously reported accessory symbionts, and a novel chlamydia-like bacterium. Following the full-cycle rRNA approach, we obtained the full-length 16S rRNA gene sequence of this chlamydia-like bacterium and developed probes for diagnostic fluorescence in situ hybridizations. The phylogenetic analysis of the 16S rRNA gene sequences unambiguously places the new bacterium in the family Rhabdochlamydiaceae. This is the first report of chlamydia-like bacterium being found in Euplotes. Based on the obtained data, the bacterium is proposed as a new candidate genus and species: "Candidatus Euplotechlamydia quinta."


Assuntos
Chlamydia , Cilióforos , Euplotes , Filogenia , Euplotes/genética , RNA Ribossômico 16S/genética , Bactérias/genética , Chlamydia/genética , Cilióforos/genética , Simbiose , Análise de Sequência de DNA
4.
Microb Ecol ; 86(4): 3128-3132, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37433980

RESUMO

Parafrancisella adeliensis, a Francisella-like endosymbiont, was found to reside in the cytoplasm of an Antarctic strain of the bipolar ciliate species, Euplotes petzi. To inquire whether Euplotes cells collected from distant Arctic and peri-Antarctic sites host Parafrancisella bacteria, wild-type strains of the congeneric bipolar species, E. nobilii, were screened for Parafrancisella by in situ hybridization and 16S gene amplification and sequencing. Results indicate that all Euplotes strains analyzed contained endosymbiotic bacteria with 16S nucleotide sequences closely similar to the P. adeliensis 16S gene sequence. This finding suggests that Parafrancisella/Euplotes associations are not endemic to Antarctica, but are common in both the Antarctic and Arctic regions.


Assuntos
Euplotes , Francisella , Filogenia , Euplotes/genética , Euplotes/microbiologia , Citoplasma , Regiões Antárticas
5.
Microb Ecol ; 85(1): 307-316, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35048168

RESUMO

Protist-bacteria associations are extremely common. Among them, those involving ciliates of the genus Euplotes are emerging as models for symbioses between prokaryotes and eukaryotes, and a great deal of information is available from cultured representatives of this system. Even so, as for most known microbial symbioses, data on natural populations is lacking, and their ecology remains largely unexplored; how well lab cultures represent actual diversity is untested. Here, we describe a survey on natural populations of Euplotes based on a single-cell microbiomic approach, focusing on taxa that include known endosymbionts of this ciliate. The results reveal an unexpected variability in symbiotic communities, with individual hosts of the same population harboring different sets of bacterial endosymbionts. Co-occurring Euplotes individuals of the same population can even have different essential symbionts, Polynucleobacter and "Candidatus Protistobacter," which might suggest that replacement events could be more frequent in nature than previously hypothesized. Accessory symbionts are even more variable: some showed a strong affinity for one host species, some for a sampling site, and two ("Candidatus Cyrtobacter" and "Candidatus Anadelfobacter") displayed an unusual pattern of competitive exclusion. These data represent the first insight into the prevalence and patterns of bacterial symbionts in natural populations of free-living protists.


Assuntos
Burkholderiaceae , Cilióforos , Euplotes , Humanos , Filogenia , Cilióforos/microbiologia , Bactérias/genética , Meio Ambiente , Simbiose , Rickettsiales , Euplotes/microbiologia
6.
Microb Ecol ; 85(2): 544-556, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35316342

RESUMO

The single-celled eukaryote Euplotes aediculatus was chosen to test and compare the toxic effects of Cu and CuO nanoparticles (NPs). The antioxidant enzymatic activity, morphological changes, and functional groups on the membrane were determined using spectrophotometry, microscopy, and Fourier transform infrared spectroscopy after NPs treatment. The toxicity of the NPs to cells was dose-dependent, and the 24 h-LC50 values of the CuNPs and CuONPs were 0.46 µg/L and 1.24 × 103 µg/L, respectively. These NPs increased the activities of superoxide dismutase, glutathione peroxidase, and catalase and destroyed the cell structure; moreover, the CuNPs were more toxic than the CuONPs. In addition to the higher enzymatic activity, CuNPs also caused nucleoli disappearance, chromatin condensation, and mitochondrial and pellicle damage. The oxidization of the functional groups of the membrane (PO2 - , C-O-C, and δ(COH) of carbohydrates) also confirmed the severe damage caused by CuNPs. Our study showed that oxidative stress and organelle destruction played important roles in the toxic effects of these NPs on this protozoan. Compared with other aquatic organisms, E. aediculatus can be considered a potential indicator at the preliminary stage of environmental pollution.


Assuntos
Euplotes , Nanopartículas Metálicas , Nanopartículas , Nanopartículas Metálicas/toxicidade , Cobre , Estresse Oxidativo
7.
Mol Biol (Mosk) ; 57(1): 98-100, 2023.
Artigo em Russo | MEDLINE | ID: mdl-36976743

RESUMO

In most of the studied organisms, gene expression is associated with a number of evolutionary features pertaining to the protein-coding sequences. In particular, gene expression positively correlates with the average intensity of negative selection and influences codon usage. Here, we study the connection between gene expression and selection patterns in two species of ciliate protists of the genus Euplotes. We find that codon usage is influenced by gene expression in these organisms, pointing at additional evolutionary constraints on mutations in heavily expressed genes relative to the genes expressed at lower rates. At the same time, at the level of synonymous vs. non-synonymous substitutions we observe a stronger constraint on the genes expressed at lower rates relative to those with higher rates of expression. Our study adds to the discussion about the general evolutionary patterns and opens new questions about the mechanisms of control of gene expression in ciliates.


Assuntos
Euplotes , Códon , Euplotes/genética , Mutação , Expressão Gênica
8.
J Struct Biol ; 214(1): 107812, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34800649

RESUMO

In the ciliate Euplotes raikovi, water-borne protein pheromones promote the vegetative cell growth and mating by competitively binding as autocrine and heterologous signals to putative cell receptors represented by membrane-bound pheromone isoforms. A previously determined crystal structure of pheromone Er-1 supported a pheromone/receptor binding model in which strong protein-protein interactions result from the cooperative utilization of two distinct types of contact interfaces that arrange molecules into linear chains, and these into two-dimensional layers. We have now determined the crystal structure of a new pheromone, Er-13, isolated from cultures that are strongly mating reactive withculturessource of pheromone Er-1.The comparison between the Er-1 and Er-13 crystal structuresreinforces the fundamental of the cooperative model of pheromone/receptor binding, in that the molecules arrange into linear chains taking a rigorously alternate opposite orientation reflecting the presumed mutual orientation of pheromone and receptor molecules on the cell surface. In addition, the comparison provides two new lines of evidence for a univocal rationalization of observations on the differentbehaviourbetween the autocrine and heterologous pheromone/receptor complexes. (i) In the Er-13 crystal, chains do not form layers which thus appear to be an over-structureunique tothe Er-1 crystal, not essential for the pheromone signalling mechanisms. (ii) In both crystal structures, the intra-chain interfaces are equally derived from burying amino-acid side-chains mostly residing on helix-3 of the three-helical pheromonefold. This helix is thus identified as the key structural motif underlying the pheromone activity, in line with its tight intra- and interspecificstructuralconservation.


Assuntos
Euplotes , Euplotes/química , Euplotes/metabolismo , Proteínas de Membrana/química , Feromônios/química , Feromônios/metabolismo , Ligação Proteica , Proteínas de Protozoários/metabolismo
9.
BMC Microbiol ; 22(1): 133, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35578180

RESUMO

BACKGROUND: The genus Euplotes Ehrenberg, 1830, one of the most complicated and confused taxa, contains about 160 nominal species. It was once proposed to be divided into four genera, two of which were proved to be non-monophyletic. At least 19 new species have been discovered in the past decade, implying that there is a large undiscovered diversity of this genus. RESULTS: The morphology of two new freshwater euplotid ciliates, Euplotes chongmingensis n. sp. and E. paramieti n. sp., isolated from Shanghai, China, were investigated using live observations, protargol staining, and Chatton-Lwoff silver staining method. Euplotes chongmingensis is characterized by its small size (40-50 × 25-35 µm), about 24 adoral membranelles, 10 frontoventral cirri, two marginal and two caudal cirri, eight dorsolateral kineties with 11-16 dikinetids in the mid-dorsolateral kinety and a double type of silverline system. Euplotes paramieti n. sp. is 180-220 × 110-155 µm in vivo and strongly resembles E. amieti but having a difference of 57 bp in their SSU rRNA gene sequences. Phylogenetic analyses based on SSU rRNA gene sequence data were used to determine the systematic positions of these new taxa. CONCLUSIONS: The description of two new freshwater taxa and their SSU rRNA gene sequences improve knowledge of biodiversity and enrich the database of euplotids. Furthermore, it offers a reliable reference for environmental monitoring and resource investigations.


Assuntos
Cilióforos , Euplotes , China , Cilióforos/genética , DNA de Protozoário/genética , Euplotes/genética , Genes de RNAr , Filogenia
10.
Ecotoxicology ; 31(2): 271-288, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34982303

RESUMO

Heavy metal pollutants in the environment are increasing exponentially due to various anthropogenic factors including mining, industrial and agricultural wastes. Living organisms exposed to heavy metals above a certain threshold level induces deleterious effects in these organisms. To live in such severe environments, microbes have developed a range of tolerance mechanisms which include upregulation of stress-responsive genes and/or antioxidant enzymes to detoxify the metal stress. Single cell eukaryotic microorganisms, i.e., ciliates, are highly sensitive to environmental pollutants mainly due to the absence of cell wall, which make them suitable candidates for conducting ecotoxicological studies. Therefore, the present investigation describes the effects of heavy metals (cadmium and copper) on freshwater ciliate, Euplotes aediculatus. The activities of antioxidant enzymes, i.e., catalase and glutathione peroxidase in E. aediculatus were determined under heavy metal exposure. Besides, the expression of stress-responsive genes, namely, heat-shock protein 70 (hsp70) and catalase (cat), has also been determined in this freshwater ciliate species under metal stress. The present study showed that the enzyme activity and the expression of these genes increased with an increase in the heavy metal concentration and with the duration of metal exposure. Also, these stress-responsive genes were sequenced and characterized to comprehend their role in cell rescue.


Assuntos
Euplotes , Metais Pesados , Poluentes Químicos da Água , Cádmio/metabolismo , Catalase/genética , Catalase/metabolismo , Euplotes/genética , Euplotes/metabolismo , Água Doce , Metais Pesados/metabolismo , Metais Pesados/toxicidade , Estresse Oxidativo , Poluentes Químicos da Água/análise
11.
Protein Expr Purif ; 188: 105977, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34547433

RESUMO

Homoserine dehydrogenase (HSD), encoded by the hom gene, is a key enzyme in the aspartate pathway, which reversibly catalyzes the conversion of l-aspartate ß-semialdehyde to l-homoserine (l-Hse), using either NAD(H) or NADP(H) as a coenzyme. In this work, we presented the first characterization of the HSD from the symbiotic Polynucleobacter necessaries subsp. necessarius (PnHSD) produced in Escherichia coli. Sequence analysis showed that PnHSD is an ACT domain-containing monofunctional HSD with 436 amnio acid residues. SDS-PAGE and Western blot demonstrated that PnHSD could be overexpressed in E. coli BL21(DE3) cell as a soluble form by using SUMO fusion technique. It could be purified to apparent homogeneity for biochemical characterization. Size-exclusion chromatography revealed that the purified PnHSD has a native molecular mass of ∼160 kDa, indicating a homotetrameric structure. The oxidation activity of PnHSD was studied in this work. Kinetic analysis revealed that PnHSD displayed an up to 1460-fold preference for NAD+ over NADP+, in contrast to its homologs. The purified PnHSD displayed maximal activity at 35 °C and pH 11. Similar to its NAD+-dependent homolog, neither NaCl and KCl activation nor L-Thr inhibition on the enzymatic activity of PnHSD was observed. These results will contribute to a better understanding of the coenzyme specificity of the HSD family and the aspartate pathway of P. necessarius.


Assuntos
Ácido Aspártico/biossíntese , Proteínas de Bactérias/genética , Burkholderiaceae/enzimologia , Homosserina Desidrogenase/genética , NAD/metabolismo , Proteínas Recombinantes de Fusão/genética , Sequência de Aminoácidos , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/isolamento & purificação , Burkholderiaceae/química , Burkholderiaceae/genética , Cromatografia em Gel , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Euplotes/microbiologia , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Homosserina/metabolismo , Homosserina Desidrogenase/biossíntese , Homosserina Desidrogenase/isolamento & purificação , Cinética , Peso Molecular , NADP/metabolismo , Multimerização Proteica , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/isolamento & purificação , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Simbiose/fisiologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-33201796

RESUMO

Two new Euplotes species have been isolated from cold shallow sandy sediments of the extreme Southern Chilean coasts: Euplotes foissneri sp. nov., from a low-salinity site at Puerto Natales on the Pacific coast, and Euplotes warreni sp. nov., from a marine site at Punta Arenas on the Atlantic coast. Euplotes foissneri has a medium body size (53×36 µm in vivo), a dorsal surface marked by six prominent ridges, a double dargyrome, six dorsal and two ventrolateral kineties, a buccal field extending to about 3/4 of the body length, an adoral zone composed of 28-32 membranelles, and nine fronto-ventral, five transverse and two or three caudal cirri. The bulky, hook-, horseshoe- or 3-shaped macronucleus is associated with one sub-spherical micronucleus. The central body region hosts taxonomically unidentified endosymbiotic eubacteria. Euplotes warreni has a small body size (39×27 µm in vivo), a smooth dorsal surface marked by three deep grooves, a double dargyrome, four dorsal and two ventrolateral kineties, a buccal field extending to about 2/3 of the body length, an adoral zone composed of 23-25 adoral membranelles, and nine fronto-ventral, five transverse and three caudal cirri. The macronucleus is hook- or C-shaped and associated with one spherical micronucleus. Endosymbiotic bacteria belonging to the genus Francisella reside preferentially in the anterior cell region. Both species lack the fronto-ventral cirrus numbered 'V/2', whereby their cirrotype-9 conforms to the so-called 'pattern I', which is the basic distinctive trait of the genus Euplotopsis Borror and Hill, 1995. Phylogenetic analyses of small subunit rRNA gene sequences, however, classify E. warreni into its own early branching clade and E. foissneri into a late branching clade. This indicates a polyphyletic nature and taxonomic inconsistency of the genus Euplotopsis, which was erected to include Euplotes species with cirrotype-9 pattern I.


Assuntos
Euplotes/classificação , Sedimentos Geológicos , Filogenia , Composição de Bases , Chile , DNA de Protozoário/genética , Euplotes/isolamento & purificação , Genes de RNAr , Salinidade , Análise de Sequência de DNA
13.
J Eukaryot Microbiol ; 68(3): e12850, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33738894

RESUMO

In the hypotrich ciliate Euplotes, many individual basal bodies are grouped together in tightly packed clusters, forming ventral polykinetids. These groups of basal bodies (which produce compound ciliary organelles such as cirri and oral membranelles) are cross-linked into ordered arrays by scaffold structures known as "basal-body cages." The major protein comprising Euplotes cages has been previously identified and termed "cagein." Screening a E. aediculatus cDNA expression library with anti-cagein antisera identified a DNA insert containing most of a putative cagein gene; standard PCR techniques were used to complete the sequence. Probes designed from this gene identified a macronuclear "nanochromosome" of ca. 1.5 kb in Southern blots against whole-cell DNA. The protein derived from this sequence (463 residues) is predicted to be hydrophilic and highly charged; however, the native cage structures are highly resistant to salt/detergent extraction. This insolubility could be explained by the coiled-coil regions predicted to extend over much of the length of the derived cagein polypeptide. One frameshift sequence is found within the gene, as well as a short intron. BLAST searches find many ciliates with evident homologues to cagein within their derived genomic sequences.


Assuntos
Cilióforos , Euplotes , Corpos Basais , Cilióforos/genética , Euplotes/genética , Organelas , Proteínas
14.
Mar Drugs ; 19(2)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513970

RESUMO

Cold-adapted enzymes produced by psychrophilic organisms have elevated catalytic activities at low temperatures compared to their mesophilic counterparts. This is largely due to amino acids changes in the protein sequence that often confer increased molecular flexibility in the cold. Comparison of structural changes between psychrophilic and mesophilic enzymes often reveal molecular cold adaptation. In the present study, we performed an in-silico comparative analysis of 104 hydrolytic enzymes belonging to the family of lipases from two evolutionary close marine ciliate species: The Antarctic psychrophilic Euplotes focardii and the mesophilic Euplotes crassus. By applying bioinformatics approaches, we compared amino acid composition and predicted secondary and tertiary structures of these lipases to extract relevant information relative to cold adaptation. Our results not only confirm the importance of several previous recognized amino acid substitutions for cold adaptation, as the preference for small amino acid, but also identify some new factors correlated with the secondary structure possibly responsible for enhanced enzyme activity at low temperatures. This study emphasizes the subtle sequence and structural modifications that may help to transform mesophilic into psychrophilic enzymes for industrial applications by protein engineering.


Assuntos
Adaptação Fisiológica/fisiologia , Temperatura Baixa , Simulação por Computador , Euplotes/genética , Lipase/fisiologia , Sequência de Aminoácidos , Euplotes/química , Euplotes/isolamento & purificação , Lipase/química , Lipase/isolamento & purificação , Estrutura Secundária de Proteína
15.
J Eukaryot Microbiol ; 67(1): 144-149, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31419839

RESUMO

The ciliate Euplotes deviates from the universal genetic code by translating UGA as cysteine and using UAA and UAG as the termination codon. Here, we cloned and sequenced the Cathepsin B gene of Euplotes octocarinatus (Eo-CTSB) which containing several in-frame stop codons throughout the coding sequence. We provide evidences, based on 3'-RACE method and Western blot, that the Eo-CTSB gene is actively expressed. Comparison of the derived amino acid sequence with the homologs in other eukaryotes revealed that UAA and UAG may code for glutamine in Eo-CTSB. These findings imply an evolutionary complexity of stop codon reassignment in eukaryotes.


Assuntos
Catepsina B/genética , Euplotes/genética , Proteínas de Protozoários/genética , Sequência de Aminoácidos , Sequência de Bases , Catepsina B/metabolismo , Códon de Terminação , Euplotes/enzimologia , Euplotes/metabolismo , Proteínas de Protozoários/metabolismo , Alinhamento de Sequência
16.
Mar Drugs ; 18(1)2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31947807

RESUMO

The synthesis of silver nanoparticles (AgNPs) by microorganisms recently gained a greater interest due to its potential to produce them in various sizes and morphologies. In this study, for AgNP biosynthesis, we used a new Pseudomonas strain isolated from a consortium associated with the Antarctic marine ciliate Euplotes focardii. After incubation of Pseudomonas cultures with 1 mM of AgNO3 at 22 °C, we obtained AgNPs within 24 h. Scanning electron (SEM) and transmission electron microscopy (TEM) revealed spherical polydispersed AgNPs in the size range of 20-70 nm. The average size was approximately 50 nm. Energy dispersive X-ray spectroscopy (EDS) showed the presence of a high intensity absorption peak at 3 keV, a distinctive property of nanocrystalline silver products. Fourier transform infrared (FTIR) spectroscopy found the presence of a high amount of AgNP-stabilizing proteins and other secondary metabolites. X-ray diffraction (XRD) revealed a face-centred cubic (fcc) diffraction spectrum with a crystalline nature. A comparative study between the chemically synthesized and Pseudomonas AgNPs revealed a higher antibacterial activity of the latter against common nosocomial pathogen microorganisms, including Escherichia coli, Staphylococcus aureus and Candida albicans. This study reports an efficient, rapid synthesis of stable AgNPs by a new Pseudomonas strain with high antimicrobial activity.


Assuntos
Antibacterianos/biossíntese , Euplotes/microbiologia , Nanopartículas Metálicas/química , Pseudomonas/metabolismo , Prata/química , Regiões Antárticas , Antibacterianos/farmacologia , Candida albicans/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Química Verde/métodos , Nanopartículas Metálicas/administração & dosagem , Microscopia Eletrônica de Transmissão/métodos , Tamanho da Partícula , Prata/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Staphylococcus aureus/efeitos dos fármacos
17.
Proc Biol Sci ; 286(1907): 20190693, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31311477

RESUMO

Endosymbioses between bacteria and eukaryotes are enormously important in ecology and evolution, and as such are intensely studied. Despite this, the range of investigated hosts is narrow in the context of the whole eukaryotic tree of life: most of the information pertains to animal hosts, while most of the diversity is found in unicellular protists. A prominent case study is the ciliate Euplotes, which has repeatedly taken up the bacterium Polynucleobacter from the environment, triggering its transformation into obligate endosymbiont. This multiple origin makes the relationship an excellent model to understand recent symbioses, but Euplotes may host bacteria other than Polynucleobacter, and a more detailed knowledge of these additional interactions is needed in order to correctly interpret the system. Here, we present the first systematic survey of Euplotes endosymbionts, adopting a classical as well as a metagenomic approach, and review the state of knowledge. The emerging picture is indeed quite complex, with some Euplotes harbouring rich, stable prokaryotic communities not unlike those of multicellular animals. We provide insights into the distribution, evolution and diversity of these symbionts (including the establishment of six novel bacterial taxa), and outline differences and similarities with the most well-understood group of eukaryotic hosts: insects.


Assuntos
Burkholderiaceae/fisiologia , Euplotes/microbiologia , Simbiose , Burkholderiaceae/classificação , Burkholderiaceae/genética , Microbiota , Filogenia , RNA Bacteriano/análise , RNA Ribossômico 16S/análise
18.
Langmuir ; 35(23): 7337-7346, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-30198719

RESUMO

Ice-binding proteins (IBPs) bind to ice crystals and control their growth, enabling host organisms to adapt to subzero temperatures. By binding to ice, IBPs can affect the shape and recrystallization of ice crystals. The shapes of ice crystals produced by IBPs vary and are partially due to which ice planes the IBPs are bound to. Previously, we have described a bacterial IBP found in the metagenome of the symbionts of Euplotes focardii ( EfcIBP). EfcIBP shows remarkable ice recrystallization inhibition activity. As recrystallization inhibition of IBPs and other materials are important to the cryopreservation of cells and tissues, we speculate that the EfcIBP can play a future role as an ice recrystallization inhibitor in cryopreservation applications. Here we show that EfcIBP results in a Saturn-shaped ice burst pattern, which may be due to the unique ice-plane affinity of the protein that we elucidated using the fluorescent-based ice-plane affinity analysis. EfcIBP binds to ice at a speed similar to that of other moderate IBPs (5 ± 2 mM-1 s-1); however, it is unique in that it binds to the basal and previously unobserved pyramidal near-basal planes, while other moderate IBPs typically bind to the prism and pyramidal planes and not basal or near-basal planes. These insights into EfcIBP allow a better understanding of the recrystallization inhibition for this unique protein.


Assuntos
Proteínas Anticongelantes/metabolismo , Euplotes/metabolismo , Gelo , Proteínas de Protozoários/metabolismo , Proteínas Anticongelantes/genética , Cinética , Mutação , Ligação Proteica , Proteínas de Protozoários/genética
19.
J Eukaryot Microbiol ; 66(3): 376-384, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30076754

RESUMO

In Euplotes raikovi, we have determined the full-length sequences of a family of macronuclear genes that are the transcriptionally active versions of codominant alleles inherited at the mating-type (mat) locus of the micronuclear genome, and encode cell type-distinctive signaling pheromones. These genes include a 225-231-bp coding region flanked by a conserved 544-bp 5'-leader region and a more variable 3'-trailer region. Two transcription initiation start sites and two polyadenylation sites associated with nonconventional signals cooperate with a splicing phenomenon of a 326-bp intron residing in the 5'-leader region in the generation of multiple transcripts from the same gene. In two of them, the synthesis of functional products depends on the reassignment to a sense codon, or readthrough of a strictly conserved leaky UAG stop codon. That this reassignment may take place is suggested by the position this codon occupies in the transcripts, close to the transcript extremity and far from the poly(A) tail. In such a case, one product is a 69-amino acid protein in search of function and the second product is a 126-amino acid protein that represents a membrane-bound pheromone isoform candidate to function as a cell type-specific binding site (receptor) of the soluble pheromones.


Assuntos
Euplotes/genética , Expressão Gênica , Genes de Protozoários , Feromônios/genética , Sequência de Aminoácidos , Alinhamento de Sequência
20.
J Eukaryot Microbiol ; 66(2): 281-293, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30028565

RESUMO

Environmental sequences have become a major source of information. High-throughput sequencing (HTS) surveys have been used to infer biogeographic patterns and distribution of broad taxa of protists. This approach is, however, more questionable for addressing low-rank (less inclusive) taxa such as species and genera, because of the increased chance of errors in identification due to blurry taxonomic boundaries, low sequence divergence, or sequencing errors. The specious ciliate genus Euplotes partially escapes these limitations. It is a ubiquitous, monophyletic taxon, clearly differentiated from related genera, and with a relatively well-developed internal systematics. It has also been the focus of several ecological studies. We present an update on Euplotes biogeography, taking into consideration for the first time environmental sequences, both traditional (Sanger) and HTS. We inferred a comprehensive small subunit rRNA gene phylogeny of the genus including a newly described marine species, Euplotes enigma, characterized by a unique question mark-shaped macronucleus. We then added available environmental sequences to the tree, mapping associated metadata. The resulting scenario conflicts on many accounts with previously held views, suggesting, for example, that a large diversity of anaerobic Euplotes species exist, and that marine representatives of mainly freshwater lineages (and vice-versa) might be more common than previously thought.


Assuntos
Euplotes/classificação , Euplotes/citologia , Euplotes/genética , Macronúcleo/fisiologia , Microscopia de Fluorescência , Filogenia , RNA de Protozoário/análise , RNA Ribossômico/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA