Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 15(10): e1008448, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31626631

RESUMO

Bacterial type IV pili are critical for diverse biological processes including horizontal gene transfer, surface sensing, biofilm formation, adherence, motility, and virulence. These dynamic appendages extend and retract from the cell surface. In many type IVa pilus systems, extension occurs through the action of an extension ATPase, often called PilB, while optimal retraction requires the action of a retraction ATPase, PilT. Many type IVa systems also encode a homolog of PilT called PilU. However, the function of this protein has remained unclear because pilU mutants exhibit inconsistent phenotypes among type IV pilus systems and because it is relatively understudied compared to PilT. Here, we study the type IVa competence pilus of Vibrio cholerae as a model system to define the role of PilU. We show that the ATPase activity of PilU is critical for pilus retraction in PilT Walker A and/or Walker B mutants. PilU does not, however, contribute to pilus retraction in ΔpilT strains. Thus, these data suggest that PilU is a bona fide retraction ATPase that supports pilus retraction in a PilT-dependent manner. We also found that a ΔpilU mutant exhibited a reduction in the force of retraction suggesting that PilU is important for generating maximal retraction forces. Additional in vitro and in vivo data show that PilT and PilU act as independent homo-hexamers that may form a complex to facilitate pilus retraction. Finally, we demonstrate that the role of PilU as a PilT-dependent retraction ATPase is conserved in Acinetobacter baylyi, suggesting that the role of PilU described here may be broadly applicable to other type IVa pilus systems.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas de Fímbrias/fisiologia , Fímbrias Bacterianas/enzimologia , Acinetobacter/fisiologia , Mutação , Multimerização Proteica/fisiologia , Vibrio cholerae/fisiologia
2.
Arch Microbiol ; 202(7): 1669-1675, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32285165

RESUMO

Archaea swim using archaella that are domain-specific rotary type IV pilus-like appendages. The structural components of the archaellum filament are archaellins, initially made as preproteins with type IV pilin-like signal peptides which are removed by signal peptidases that are homologues of prepilin peptidases that remove signal peptides from type IV pilins. N-terminal sequences of archaellins, including the signal peptide cleavage site, are conserved and various positions have been previously shown to be critical for signal peptide removal. Archaellins have an absolute conservation of glycine at the + 3 position from the signal peptide cleavage site. To investigate its role in signal peptide cleavage, I used archaellin variants in which the + 3 glycine was mutated to all other possibilities in in vitro cleavage reactions. Cleavage was observed with ten different amino acids at the + 3 position, indicating that the observed glycine conservation is not required for this essential processing step.


Assuntos
Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Mathanococcus/enzimologia , Mathanococcus/genética , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Proteínas Arqueais/química , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/enzimologia , Mathanococcus/metabolismo , Sinais Direcionadores de Proteínas
3.
Biochem J ; 475(11): 1979-1993, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29717025

RESUMO

The bacterial type IV pilus (T4P) is a versatile nanomachine that functions in pathogenesis, biofilm formation, motility, and horizontal gene transfer. T4P assembly is powered by the motor ATPase PilB which is proposed to hydrolyze ATP by a symmetrical rotary mechanism. This mechanism, which is deduced from the structure of PilB, is untested. Here, we report the first kinetic studies of the PilB ATPase, supporting co-ordination among the protomers of this hexameric enzyme. Analysis of the genome sequence of Chloracidobacterium thermophilum identified a pilB gene whose protein we then heterologously expressed. This PilB formed a hexamer in solution and exhibited highly robust ATPase activity. It displays complex steady-state kinetics with an incline followed by a decline over an ATP concentration range of physiological relevance. The incline is multiphasic and the decline signifies substrate inhibition. These observations suggest that variations in intracellular ATP concentrations may regulate T4P assembly and T4P-mediated functions in vivo in accordance with the physiological state of bacteria with unanticipated complexity. We also identified a mutant pilB gene in the genomic DNA of C. thermophilum from an enrichment culture. The mutant PilB variant, which is significantly less active, exhibited similar inhibition of its ATPase activity by high concentrations of ATP. Our findings here with the PilB ATPase from C. thermophilum provide the first line of biochemical evidence for the co-ordination among PilB protomers consistent with the symmetrical rotary model of catalysis based on structural studies.


Assuntos
Acidobacteria/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Fímbrias Bacterianas/enzimologia , Oxirredutases/metabolismo , Acidobacteria/química , Acidobacteria/genética , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Fímbrias Bacterianas/química , Fímbrias Bacterianas/genética , Cinética , Modelos Moleculares , Oxirredutases/química , Oxirredutases/genética , Alinhamento de Sequência
4.
Extremophiles ; 22(3): 461-471, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29464394

RESUMO

The traffic ATPase PilF of Thermus thermophilus powers pilus assembly as well as uptake of DNA. PilF differs from other traffic ATPases by a triplicated general secretory pathway II, protein E, N-terminal domain (GSPIIABC). We investigated the in vivo and in vitro roles of the GSPII domains, the Walker A motif and a catalytic glutamate by analyzing a set of PilF deletion derivatives and pilF mutants. Here, we report that PilF variants devoid of the first two or all three GSPII domains do not form stable hexamers indicating a role of the triplicated GSPII domain in complex formation and/or stability. A pilFΔGSPIIC mutant was significantly impaired in piliation which leads to the conclusion that the GSPIIC domain plays a vital role in pilus assembly. Interestingly, the pilFΔGSPIIC mutant was hypertransformable. This suggests that GSPIIC strongly affects transformation efficiency. A pilF∆GSPIIA mutant exhibited wild-type piliation but reduced pilus-mediated twitching motility, suggesting that GSPIIA plays a role in pilus dynamics. Furthermore, we report that pilF mutants with a defect in the ATP binding Walker A motif or in the catalytic glutamate residue are defective in piliation and natural transformation. These findings show that both, ATP binding and hydrolysis, are essential for the dual function of PilF in natural transformation and pilus assembly.


Assuntos
Domínio AAA , Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Fímbrias Bacterianas/enzimologia , Thermus thermophilus/enzimologia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Mutação
5.
Appl Environ Microbiol ; 83(19)2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28754709

RESUMO

Bifidobacteria are important gut commensals of mammals, including humans, of any age. However, the molecular mechanisms by which these microorganisms establish themselves in the mammalian gut and persist in this environment are largely unknown. Here, we analyzed the genetic diversity of the predicted arsenal of sortase-dependent pili of known and sequenced members of the Bifidobacterium genus and constructed a bifidobacterial sortase-dependent fimbriome database. Our analyses revealed considerable genetic variability of the sortase-dependent fimbriome among bifidobacterial (sub)species, which appears to have been due to horizontal gene transfer events and for which we were able to perform evolutionary mapping. Functional assessment by transcriptome analysis and binding assays involving different substrates demonstrates how bifidobacterial pili are pivotal in promoting various abilities for adhesion to glycans and extracellular matrix proteins, thereby supporting the ecological success of bifidobacteria in the mammalian gut.IMPORTANCE Adhesion of bifidobacterial cells to the mucosa of the large intestine is considered a hallmark for the persistence and colonization of these bacteria in the human gut. In this context, we analyzed the genetic diversity of the predicted arsenal of sortase-dependent pili of known and sequenced members of the Bifidobacterium genus, and constructed a bifidobacterial sortase-dependent fimbriome database. Our analyses revealed considerable genetic variability of the sortase-dependent fimbriome among bifidobacterial (sub)species, which appears to have been due to horizontal gene transfer events. In addition, functional assessment by transcriptome analysis and binding assays involving different substrates demonstrates how bifidobacterial pili are crucial in promoting various abilities for adhesion to glycans and extracellular matrix proteins, thereby supporting the ecological success of bifidobacteria in the mammalian gut. This study represents a complete genomic study regarding the presence of fimbriae in the genus Bifidobacterium.


Assuntos
Bifidobacterium/enzimologia , Cisteína Endopeptidases/metabolismo , Matriz Extracelular/microbiologia , Fímbrias Bacterianas/enzimologia , Aderência Bacteriana , Bifidobacterium/classificação , Bifidobacterium/genética , Bifidobacterium/fisiologia , Cisteína Endopeptidases/genética , Evolução Molecular , Fímbrias Bacterianas/genética , Trato Gastrointestinal/microbiologia , Genoma Bacteriano , Humanos , Filogenia
6.
FASEB J ; 29(11): 4629-40, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26202865

RESUMO

Group B Streptococcus (GBS) expresses 3 structurally distinct pilus types (1, 2a, and 2b) identified as important virulence factors and vaccine targets. These pili are heterotrimeric polymers, covalently assembled on the cell wall by sortase (Srt) enzymes. We investigated the pilus-2b biogenesis mechanism by using a multidisciplinary approach integrating genetic, biochemical, and structural studies to dissect the role of the 2 pilus-2b-associated Srts. We show that only 1 sortase (SrtC1-2b) is responsible for pilus protein polymerization, whereas the second one (Srt2-2b) does not act as a pilin polymerase, but similarly to the housekeeping class A Srt (SrtA), it is involved in cell-wall pilus anchoring by targeting the minor ancillary subunit. Based on its function and sequence features, Srt2-2b does not belong to class C Srts (SrtCs), nor is it a canonical member of any other known family of Srts. We also report the crystal structure of SrtC1-2b at 1.9 Å resolution. The overall fold resembles the typical structure of SrtCs except for the N-terminal lid region that appears in an open conformation displaced from the active site. Our findings reveal that GBS pilus type 2b biogenesis differs significantly from the current model of pilus assembly in gram-positive pathogens.


Assuntos
Proteínas de Bactérias/química , Cisteína Endopeptidases/química , Fímbrias Bacterianas/enzimologia , Streptococcus agalactiae/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Fímbrias Bacterianas/genética , Estrutura Terciária de Proteína , Streptococcus agalactiae/genética
7.
J Biol Chem ; 289(13): 8891-902, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24519933

RESUMO

Sortase cysteine transpeptidases covalently attach proteins to the bacterial cell wall or assemble fiber-like pili that promote bacterial adhesion. Members of this enzyme superfamily are widely distributed in Gram-positive bacteria that frequently utilize multiple sortases to elaborate their peptidoglycan. Sortases catalyze transpeptidation using a conserved active site His-Cys-Arg triad that joins a sorting signal located at the C terminus of their protein substrate to an amino nucleophile located on the cell surface. However, despite extensive study, the catalytic mechanism and molecular basis of substrate recognition remains poorly understood. Here we report the crystal structure of the Staphylococcus aureus sortase B enzyme in a covalent complex with an analog of its NPQTN sorting signal substrate, revealing the structural basis through which it displays the IsdC protein involved in heme-iron scavenging from human hemoglobin. The results of computational modeling, molecular dynamics simulations, and targeted amino acid mutagenesis indicate that the backbone amide of Glu(224) and the side chain of Arg(233) form an oxyanion hole in sortase B that stabilizes high energy tetrahedral catalytic intermediates. Surprisingly, a highly conserved threonine residue within the bound sorting signal substrate facilitates construction of the oxyanion hole by stabilizing the position of the active site arginine residue via hydrogen bonding. Molecular dynamics simulations and primary sequence conservation suggest that the sorting signal-stabilized oxyanion hole is a universal feature of enzymes within the sortase superfamily.


Assuntos
Aminoaciltransferases/química , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Simulação de Dinâmica Molecular , Oxigênio/química , Oxigênio/metabolismo , Staphylococcus aureus/enzimologia , Arginina , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Estabilidade Enzimática , Fímbrias Bacterianas/enzimologia , Ligação de Hidrogênio , Sinais Direcionadores de Proteínas , Staphylococcus aureus/citologia
8.
J Biol Chem ; 289(44): 30343-30354, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25202014

RESUMO

The traffic AAA-ATPase PilF is essential for pilus biogenesis and natural transformation of Thermus thermophilus HB27. Recently, we showed that PilF forms hexameric complexes containing six zinc atoms coordinated by conserved tetracysteine motifs. Here we report that zinc binding is essential for complex stability. However, zinc binding is neither required for pilus biogenesis nor natural transformation. A number of the mutants did not exhibit any pili during growth at 64 °C but still were transformable. This leads to the conclusion that type 4 pili and the DNA translocator are distinct systems. At lower growth temperatures (55 °C) the zinc-depleted multiple cysteine mutants were hyperpiliated but defective in pilus-mediated twitching motility. This provides evidence that zinc binding is essential for the role of PilF in pilus dynamics. Moreover, we found that zinc binding is essential for complex stability but dispensable for ATPase activity. In contrast to many polymerization ATPases from mesophilic bacteria, ATP binding is not required for PilF complex formation; however, it significantly increases complex stability. These data suggest that zinc and ATP binding increase complex stability that is important for functionality of PilF under extreme environmental conditions.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Thermus thermophilus/enzimologia , Zinco/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenilil Imidodifosfato/química , Motivos de Aminoácidos , Substituição de Aminoácidos , Aderência Bacteriana , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cisteína/genética , Estabilidade Enzimática , Fímbrias Bacterianas/enzimologia , Ligação Proteica , Multimerização Proteica , Transformação Bacteriana
9.
J Biol Chem ; 289(22): 15764-75, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24753244

RESUMO

In Gram-positive bacteria, sortase-dependent pili mediate the adhesion of bacteria to host epithelial cells and play a pivotal role in colonization, host signaling, and biofilm formation. Lactobacillus rhamnosus strain GG, a well known probiotic bacterium, also displays on its cell surface mucus-binding pilus structures, along with other LPXTG surface proteins, which are processed by sortases upon specific recognition of a highly conserved LPXTG motif. Bioinformatic analysis of all predicted LPXTG proteins encoded by the L. rhamnosus GG genome revealed a remarkable conservation of glycine residues juxtaposed to the canonical LPXTG motif. Here, we investigated and defined the role of this so-called triple glycine (TG) motif in determining sortase specificity during the pilus assembly and anchoring. Mutagenesis of the TG motif resulted in a lack or an alteration of the L. rhamnosus GG pilus structures, indicating that the TG motif is critical in pilus assembly and that they govern the pilin-specific and housekeeping sortase specificity. This allowed us to propose a regulatory model of the L. rhamnosus GG pilus biogenesis. Remarkably, the TG motif was identified in multiple pilus gene clusters of other Gram-positive bacteria, suggesting that similar signaling mechanisms occur in other, mainly pathogenic, species.


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/enzimologia , Lacticaseibacillus rhamnosus/enzimologia , Aminoaciltransferases/genética , Aderência Bacteriana/fisiologia , Proteínas de Bactérias/genética , Cisteína Endopeptidases/genética , Ativação Enzimática/fisiologia , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/ultraestrutura , Glicina/genética , Lacticaseibacillus rhamnosus/genética , Lacticaseibacillus rhamnosus/ultraestrutura , Microscopia Eletrônica de Transmissão , Mutagênese Sítio-Dirigida , Probióticos , Transdução de Sinais/fisiologia , Especificidade por Substrato
10.
FASEB J ; 27(8): 3144-54, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23631841

RESUMO

Gram-positive bacteria build pili on their cell surface via a class C sortase-catalyzed transpeptidation mechanism from pilin protein substrates. Despite the availability of several crystal structures, pilus-related C sortases remain poorly characterized to date, and their mechanisms of transpeptidation and regulation need to be further investigated. The available 3-dimensional structures of these enzymes reveal a typical sortase fold, except for the presence of a unique feature represented by an N-terminal highly flexible loop known as the "lid." This region interacts with the residues composing the catalytic triad and covers the active site, thus maintaining the enzyme in an autoinhibited state and preventing the accessibility to the substrate. It is believed that enzyme activation may occur only after lid displacement from the catalytic domain. In this work, we provide the first direct evidence of the regulatory role of the lid, demonstrating that it is possible to obtain in vitro an efficient polymerization of pilin subunits using an active C sortase lid mutant carrying a single residue mutation in the lid region. Moreover, biochemical analyses of this recombinant mutant reveal that the lid confers thermodynamic and proteolytic stability to the enzyme.


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Fímbrias Bacterianas/enzimologia , Streptococcus agalactiae/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Aminoaciltransferases/química , Aminoaciltransferases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Western Blotting , Domínio Catalítico , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fluorometria , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutação , Filogenia , Polimerização , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteólise , Streptococcus agalactiae/genética
11.
Appl Environ Microbiol ; 79(20): 6369-74, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23934497

RESUMO

Early studies with Geobacter sulfurreducens suggested that outer-surface c-type cytochromes might play a role in U(VI) reduction, but it has recently been suggested that there is substantial U(VI) reduction at the surface of the electrically conductive pili known as microbial nanowires. This phenomenon was further investigated. A strain of G. sulfurreducens, known as Aro-5, which produces pili with substantially reduced conductivity reduced U(VI) nearly as well as the wild type, as did a strain in which the gene for PilA, the structural pilin protein, was deleted. In order to reduce rates of U(VI) reduction to levels less than 20% of the wild-type rates, it was necessary to delete the genes for the five most abundant outer surface c-type cytochromes of G. sulfurreducens. X-ray absorption near-edge structure spectroscopy demonstrated that whereas 83% ± 10% of the uranium associated with wild-type cells correspond to U(IV) after 4 h of incubation, with the quintuple mutant, 89% ± 10% of uranium was U(VI). Transmission electron microscopy and X-ray energy dispersion spectroscopy revealed that wild-type cells did not precipitate uranium along pili as previously reported, but U(IV) was precipitated at the outer cell surface. These findings are consistent with those of previous studies, which have suggested that G. sulfurreducens requires outer-surface c-type cytochromes but not pili for the reduction of soluble extracellular electron acceptors.


Assuntos
Citocromos/metabolismo , Geobacter/enzimologia , Geobacter/metabolismo , Urânio/metabolismo , Citocromos/genética , Fímbrias Bacterianas/enzimologia , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/ultraestrutura , Deleção de Genes , Geobacter/genética , Geobacter/ultraestrutura , Microscopia Eletrônica de Transmissão , Oxirredução , Espectroscopia por Absorção de Raios X
12.
Biochemistry ; 51(1): 342-52, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22122269

RESUMO

Pili are surface-exposed virulence factors involved in the adhesion of bacteria to host cells. The human pathogen Streptococcus pneumoniae expresses a pilus composed of three structural proteins, RrgA, RrgB, and RrgC, and requires the action of three transpeptidase enzymes, sortases SrtC-1, SrtC-2, and SrtC-3, to covalently associate the Rrg pilins. Using a recombinant protein expression platform, we have previously shown the requirement of SrtC-1 in RrgB fiber formation and the association of RrgB with RrgC. To gain insights into the substrate specificities of the two other sortases, which remain controversial, we have exploited the same robust strategy by testing various combinations of pilins and sortases coexpressed in Escherichia coli. We demonstrate that SrtC-2 catalyzes the formation of both RrgA-RrgB and RrgB-RrgC complexes. The deletion and swapping of the RrgA-YPRTG and RrgB-IPQTG sorting motifs indicate that SrtC-2 preferentially recognizes RrgA and attaches it to the pilin motif lysine 183 of RrgB. Finally, SrtC-2 is also able to catalyze the multimerization of RrgA through the C-terminal D4 domains. Similar experiments have been performed with SrtC-3, which catalyzes the formation of RrgB-RrgC and RrgB-RrgA complexes. Altogether, these results provide evidence of the molecular mechanisms of association of RrgA and RrgC with the RrgB fiber shaft by SrtC-2 and SrtC-3 and lead to a revised model of the pneumococcal pilus architecture accounting for the respective contribution of each sortase.


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Fímbrias Bacterianas/metabolismo , Streptococcus pneumoniae/metabolismo , Catálise , Fímbrias Bacterianas/enzimologia , Humanos , Streptococcus pneumoniae/enzimologia , Streptococcus pneumoniae/patogenicidade , Especificidade por Substrato
13.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 10): 1290-302, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22993083

RESUMO

The enzyme TcpG is a periplasmic protein produced by the Gram-negative pathogen Vibrio cholerae. TcpG is essential for the production of ToxR-regulated proteins, including virulence-factor pilus proteins and cholera toxin, and is therefore a target for the development of a new class of anti-virulence drugs. Here, the 1.2 Å resolution crystal structure of TcpG is reported using a cryocooled crystal. This structure is compared with a previous crystal structure determined at 2.1 Å resolution from data measured at room temperature. The new crystal structure is the first DsbA crystal structure to be solved at a sufficiently high resolution to allow the inclusion of refined H atoms in the model. The redox properties of TcpG are also reported, allowing comparison of its oxidoreductase activity with those of other DSB proteins. One of the defining features of the Escherichia coli DsbA enzyme is its destabilizing disulfide, and this is also present in TcpG. The data presented here provide new insights into the structure and redox properties of this enzyme, showing that the binding mode identified between E. coli DsbB and DsbA is likely to be conserved in TcpG and that the ß5-α7 loop near the proposed DsbB binding site is flexible, and suggesting that the tense oxidized conformation of TcpG may be the consequence of a short contact at the active site that is induced by disulfide formation and is relieved by reduction.


Assuntos
Proteínas de Bactérias/química , Proteínas de Transporte/química , Toxina da Cólera/fisiologia , Fímbrias Bacterianas/fisiologia , Isomerases de Dissulfetos de Proteínas/química , Vibrio cholerae/enzimologia , Proteínas de Bactérias/fisiologia , Proteínas de Transporte/fisiologia , Toxina da Cólera/biossíntese , Cristalografia por Raios X , Fímbrias Bacterianas/enzimologia , Hidrogênio/química , Oxirredução , Isomerases de Dissulfetos de Proteínas/fisiologia , Vibrio cholerae/patogenicidade
14.
FASEB J ; 25(6): 1874-86, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21357525

RESUMO

In group B Streptococcus (GBS), 3 structurally distinct types of pili have been discovered as potential virulence factors and vaccine candidates. The pilus-forming proteins are assembled into high-molecular-weight polymers via a transpeptidation mechanism mediated by specific class C sortases. Using a multidisciplinary approach including bioinformatics, structural and biochemical studies, and in vivo mutagenesis, we performed a broad characterization of GBS sortase C1 of pilus island 2a. The high-resolution X-ray structure of the enzyme revealed that the active site, into the ß-barrel core of the enzyme, is made of the catalytic triad His157-Cys219-Arg228 and covered by a loop, known as the "lid." We show that the catalytic triad and the predicted N- and C-terminal transmembrane regions are required for the enzyme activity. Interestingly, by in vivo complementation mutagenesis studies, we found that the deletion of the entire lid loop or mutations in specific lid key residues had no effect on catalytic activity of the enzyme. In addition, kinetic characterizations of recombinant enzymes indicate that the lid mutants can still recognize and cleave the substrate-mimicking peptide at least as well as the wild-type protein.


Assuntos
Aminoaciltransferases/química , Aminoaciltransferases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Fímbrias Bacterianas/enzimologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Streptococcus agalactiae/enzimologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cálcio/metabolismo , Cristalografia por Raios X , Cisteína Endopeptidases/metabolismo , Teste de Complementação Genética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Filogenia , Plasmídeos , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Alinhamento de Sequência , Streptococcus agalactiae/genética
15.
Trends Microbiol ; 27(8): 658-661, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31182345

RESUMO

In the age of antibiotic resistance, strategies targeting virulence traits of bacteria are the focus of intense study. Two such studies came out independently a week apart showing that bacterial type IV pili are a promising therapeutic target.


Assuntos
Antibacterianos/farmacologia , Fímbrias Bacterianas/efeitos dos fármacos , Adenosina Trifosfatases , Animais , Sistemas de Liberação de Medicamentos , Fímbrias Bacterianas/enzimologia , Humanos
16.
J Bacteriol ; 190(1): 387-400, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17951381

RESUMO

The PilE pilin subunit protein of Neisseria gonorrhoeae undergoes unique covalent modifications with phosphoethanolamine (PE) and phosphocholine (PC). The pilin phospho-form transferase A (PptA) protein, required for these modifications, shows sequence relatedness with and architectural similarities to lipopolysaccharide PE transferases. Here, we used regulated expression and mutagenesis as means to better define the relationships between PptA structure and function, as well as to probe the mechanisms by which other factors impact the system. We show here that pptA expression is coupled at the level of transcription to its distal gene, murF, in a division/cell wall gene operon and that PptA can act in a dose-dependent fashion in PilE phospho-form modification. Molecular modeling and site-directed mutagenesis provided the first direct evidence that PptA is a member of the alkaline phosphatase superfamily of metalloenzymes with similar metal-binding sites and conserved structural folds. Through phylogenetic analyses and sequence alignments, these conclusions were extended to include the lipopolysaccharide PE transferases, including members of the disparate Lpt6 subfamily, and the MdoB family of phosphoglycerol transferases. Each of these enzymes thus likely acts as a phospholipid head group transferase whose catalytic mechanism involves a trans-esterification step generating a protein-phospho-form ester intermediate. Coexpression of PptA with PilE in Pseudomonas aeruginosa resulted in high levels of PE modification but was not sufficient for PC modification. This and other findings show that PptA-associated PC modification is governed by as-yet-undefined ancillary factors unique to N. gonorrhoeae.


Assuntos
Fímbrias Bacterianas/genética , Neisseria gonorrhoeae/genética , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Antibacterianos/farmacologia , Fímbrias Bacterianas/efeitos dos fármacos , Fímbrias Bacterianas/enzimologia , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Immunoblotting , Testes de Sensibilidade Microbiana , Mutagênese , Neisseria gonorrhoeae/enzimologia , Plasmídeos , Regiões Promotoras Genéticas , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Proteínas Recombinantes/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
19.
PLoS One ; 6(1): e15969, 2011 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-21264317

RESUMO

Sortase enzymes are cysteine transpeptidases that mediate the covalent attachment of substrate proteins to the cell walls of gram-positive bacteria, and thereby play a crucial role in virulence, infection and colonisation by pathogens. Many cell-surface proteins are anchored by the housekeeping sortase SrtA but other more specialised sortases exist that attach sub-sets of proteins or function in pilus assembly. The sortase Spy0129, or SrtC1, from the M1 SF370 strain of Streptococcus pyogenes is responsible for generating the covalent linkages between the pilin subunits in the pili of this organism. The crystal structure of Spy0129 has been determined at 2.3 Å resolution (R = 20.4%, Rfree  = 26.0%). The structure shows that Spy0129 is a class B sortase, in contrast to other characterised pilin polymerases, which belong to class C. Spy0129 lacks a flap believed to function in substrate recognition in class C enzymes and instead has an elaborated ß6/ß7 loop. The two independent Spy0129 molecules in the crystal show differences in the positions and orientations of the catalytic Cys and His residues, Cys221 and His126, correlated with movements of the ß7/ß8 and ß4/ß5 loops that respectively follow these residues. Bound zinc ions stabilise these alternative conformations in the crystal. This conformational variability is likely to be important for function although there is no evidence that zinc is involved in vivo.


Assuntos
Aminoaciltransferases/química , Proteínas de Bactérias/química , Cisteína Endopeptidases/química , Streptococcus pyogenes/enzimologia , Sequência de Aminoácidos , Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Proteínas de Fímbrias/química , Fímbrias Bacterianas/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , Dobramento de Proteína , Alinhamento de Sequência , Homologia Estrutural de Proteína , Especificidade por Substrato , Zinco/química
20.
PLoS One ; 6(8): e22995, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21912586

RESUMO

The assembly of pili on the cell wall of Gram-positive bacteria requires transpeptidase enzymes called sortases. In Streptococcus agalactiae, the PI-1 pilus island of strain 2603V/R encodes two pilus-specific sortases (SrtC1 and SrtC2) and three pilins (GBS80, GBS52 and GBS104). Although either pilus-specific sortase is sufficient for the polymerization of the major pilin, GBS80, incorporation of the minor pilins GBS52 and GBS104 into the pilus structure requires SrtC1 and SrtC2, respectively. The S. agalactiae housekeeping sortase, SrtA, whose gene is present at a different location and does not catalyze pilus polymerization, was shown to be involved in cell wall anchoring of pilus polymers. To understand the structural basis of sortases involved in such diverse functions, we determined the crystal structures of S. agalactiae SrtC1 and SrtA. Both enzymes are made of an eight-stranded beta-barrel core with variations in their active site architecture. SrtA exhibits a catalytic triad arrangement similar to that in Streptococcus pyogenes SrtA but different from that in Staphylococcus aureus SrtA. In contrast, the SrtC1 enzyme contains an N-terminal helical domain and a 'lid' in its putative active site, which is similar to that seen in Streptococcus pneumoniae pilus-specific sortases, although with subtle differences in positioning and composition. To understand the effect of such differences on substrate recognition, we have also determined the crystal structure of a SrtC1 mutant, in which the conserved DP(W/F/Y) motif was replaced with the sorting signal motif of GBS80, IPNTG. By comparing the structures of WT wild type SrtA and SrtC1 and the 'lid' mutant of SrtC1, we propose that structural elements within the active site and the lid may be important for defining the role of specific sortase in pili biogenesis.


Assuntos
Aminoaciltransferases/química , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Fímbrias Bacterianas/enzimologia , Peptidil Transferases/química , Peptidil Transferases/metabolismo , Streptococcus agalactiae/enzimologia , Sequência de Aminoácidos , Aminoaciltransferases/genética , Proteínas de Bactérias/genética , Domínio Catalítico , Cristalografia por Raios X , Cisteína Endopeptidases/genética , Estabilidade Enzimática , Fímbrias Bacterianas/genética , Genes Essenciais , Metionina , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Especificidade de Órgãos , Peptidil Transferases/genética , Streptococcus agalactiae/citologia , Streptococcus agalactiae/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA