Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 600(7889): 543-546, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34853469

RESUMO

Translation of the genetic code into proteins is realized through repetitions of synchronous translocation of messenger RNA (mRNA) and transfer RNAs (tRNA) through the ribosome. In eukaryotes translocation is ensured by elongation factor 2 (eEF2), which catalyses the process and actively contributes to its accuracy1. Although numerous studies point to critical roles for both the conserved eukaryotic posttranslational modification diphthamide in eEF2 and tRNA modifications in supporting the accuracy of translocation, detailed molecular mechanisms describing their specific functions are poorly understood. Here we report a high-resolution X-ray structure of the eukaryotic 80S ribosome in a translocation-intermediate state containing mRNA, naturally modified eEF2 and tRNAs. The crystal structure reveals a network of stabilization of codon-anticodon interactions involving diphthamide1 and the hypermodified nucleoside wybutosine at position 37 of phenylalanine tRNA, which is also known to enhance translation accuracy2. The model demonstrates how the decoding centre releases a codon-anticodon duplex, allowing its movement on the ribosome, and emphasizes the function of eEF2 as a 'pawl' defining the directionality of translocation3. This model suggests how eukaryote-specific elements of the 80S ribosome, eEF2 and tRNAs undergo large-scale molecular reorganizations to ensure maintenance of the mRNA reading frame during the complex process of translocation.


Assuntos
Anticódon , Eucariotos , Anticódon/genética , Anticódon/metabolismo , Códon/genética , Eucariotos/genética , Fator 2 de Elongação de Peptídeos/química , Fator 2 de Elongação de Peptídeos/genética , Fator 2 de Elongação de Peptídeos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Ribossomos/metabolismo
2.
Mol Cell ; 74(1): 88-100.e9, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30876804

RESUMO

Eukaryotic elongation factor 2 (eEF2) is an abundant and essential component of the translation machinery. The biogenesis of this 93 kDa multi-domain protein is assisted by the chaperonin TRiC/CCT. Here, we show in yeast cells that the highly conserved protein Hgh1 (FAM203 in humans) is a chaperone that cooperates with TRiC in eEF2 folding. In the absence of Hgh1, a substantial fraction of newly synthesized eEF2 is degraded or aggregates. We solved the crystal structure of Hgh1 and analyzed the interaction of wild-type and mutant Hgh1 with eEF2. These experiments revealed that Hgh1 is an armadillo repeat protein that binds to the dynamic central domain III of eEF2 via a bipartite interface. Hgh1 binding recruits TRiC to the C-terminal eEF2 module and prevents unproductive interactions of domain III, allowing efficient folding of the N-terminal GTPase module. eEF2 folding is completed upon dissociation of TRiC and Hgh1.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Chaperonas Moleculares/metabolismo , Fator 2 de Elongação de Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mutação , Fator 2 de Elongação de Peptídeos/química , Fator 2 de Elongação de Peptídeos/genética , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade
3.
Mol Cell ; 74(1): 73-87.e8, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30876805

RESUMO

The Hsp90 chaperone machinery in eukaryotes comprises a number of distinct accessory factors. Cns1 is one of the few essential co-chaperones in yeast, but its structure and function remained unknown. Here, we report the X-ray structure of the Cns1 fold and NMR studies on the partly disordered, essential segment of the protein. We demonstrate that Cns1 is important for maintaining translation elongation, specifically chaperoning the elongation factor eEF2. In this context, Cns1 interacts with the novel co-factor Hgh1 and forms a quaternary complex together with eEF2 and Hsp90. The in vivo folding and solubility of eEF2 depend on the presence of these proteins. Chaperoning of eEF2 by Cns1 is essential for yeast viability and requires a defined subset of the Hsp90 machinery as well as the identified eEF2 recruiting factor Hgh1.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Chaperonas Moleculares/metabolismo , Elongação Traducional da Cadeia Peptídica , Fator 2 de Elongação de Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cristalografia por Raios X , Peptidil-Prolil Isomerase F , Ciclofilinas/genética , Ciclofilinas/metabolismo , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/genética , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Ressonância Magnética Nuclear Biomolecular , Fator 2 de Elongação de Peptídeos/química , Fator 2 de Elongação de Peptídeos/genética , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade
4.
Nucleic Acids Res ; 51(7): 3436-3451, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36912103

RESUMO

Giardia intestinalis is a protozoan parasite that causes diarrhea in humans. Using single-particle cryo-electron microscopy, we have determined high-resolution structures of six naturally populated translocation intermediates, from ribosomes isolated directly from actively growing Giardia cells. The highly compact and uniquely GC-rich Giardia ribosomes possess eukaryotic rRNAs and ribosomal proteins, but retain some bacterial features. The translocation intermediates, with naturally bound tRNAs and eukaryotic elongation factor 2 (eEF2), display characteristic ribosomal intersubunit rotation and small subunit's head swiveling-universal for translocation. In addition, we observe the eukaryote-specific 'subunit rolling' dynamics, albeit with limited features. Finally, the eEF2·GDP state features a uniquely positioned 'leaving phosphate (Pi)' that proposes hitherto unknown molecular events of Pi and eEF2 release from the ribosome at the final stage of translocation. In summary, our study elucidates the mechanism of translocation in the protists and illustrates evolution of the translation machinery from bacteria to eukaryotes from both the structural and mechanistic perspectives.


Assuntos
Giardia lamblia , Humanos , Giardia lamblia/genética , Microscopia Crioeletrônica , Modelos Moleculares , Ribossomos/metabolismo , Proteínas Ribossômicas/metabolismo , RNA de Transferência/metabolismo , Eucariotos/metabolismo , Bactérias/metabolismo , Fator 2 de Elongação de Peptídeos/química , Biossíntese de Proteínas
5.
Nucleic Acids Res ; 51(13): 6899-6913, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37246715

RESUMO

Diphthamide (DPH), a conserved amino acid modification on eukaryotic translation elongation factor eEF2, is synthesized via a complex, multi-enzyme pathway. While DPH is non-essential for cell viability and its function has not been resolved, diphtheria and other bacterial toxins ADP-ribosylate DPH to inhibit translation. Characterizing Saccharomyces cerevisiae mutants that lack DPH or show synthetic growth defects in the absence of DPH, we show that loss of DPH increases resistance to the fungal translation inhibitor sordarin and increases -1 ribosomal frameshifting at non-programmed sites during normal translation elongation and at viral programmed frameshifting sites. Ribosome profiling of yeast and mammalian cells lacking DPH reveals increased ribosomal drop-off during elongation, and removal of out-of-frame stop codons restores ribosomal processivity on the ultralong yeast MDN1 mRNA. Finally, we show that ADP-ribosylation of DPH impairs the productive binding of eEF2 to elongating ribosomes. Our results reveal that loss of DPH impairs the fidelity of translocation during translation elongation resulting in increased rates of ribosomal frameshifting throughout elongation and leading to premature termination at out-of-frame stop codons. We propose that the costly, yet non-essential, DPH modification has been conserved through evolution to maintain translational fidelity despite being a target for inactivation by bacterial toxins.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , Fator 2 de Elongação de Peptídeos , Saccharomyces cerevisiae , Animais , Toxinas Bacterianas/metabolismo , Códon de Terminação/metabolismo , Mamíferos/genética , Fator 2 de Elongação de Peptídeos/química , Biossíntese de Proteínas , Saccharomyces cerevisiae/metabolismo
6.
J Biol Chem ; 299(6): 104813, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37172726

RESUMO

The calmodulin-activated α-kinase, eukaryotic elongation factor 2 kinase (eEF-2K), serves as a master regulator of translational elongation by specifically phosphorylating and reducing the ribosome affinity of the guanosine triphosphatase, eukaryotic elongation factor 2 (eEF-2). Given its critical role in a fundamental cellular process, dysregulation of eEF-2K has been implicated in several human diseases, including those of the cardiovascular system, chronic neuropathies, and many cancers, making it a critical pharmacological target. In the absence of high-resolution structural information, high-throughput screening efforts have yielded small-molecule candidates that show promise as eEF-2K antagonists. Principal among these is the ATP-competitive pyrido-pyrimidinedione inhibitor, A-484954, which shows high specificity toward eEF-2K relative to a panel of "typical" protein kinases. A-484954 has been shown to have some degree of efficacy in animal models of several disease states. It has also been widely deployed as a reagent in eEF-2K-specific biochemical and cell-biological studies. However, given the absence of structural information, the precise mechanism of the A-484954-mediated inhibition of eEF-2K has remained obscure. Leveraging our identification of the calmodulin-activatable catalytic core of eEF-2K, and our recent determination of its long-elusive structure, here we present the structural basis for its specific inhibition by A-484954. This structure, which represents the first for an inhibitor-bound catalytic domain of a member of the α-kinase family, enables rationalization of the existing structure-activity relationship data for A-484954 variants and lays the groundwork for further optimization of this scaffold to attain enhanced specificity/potency against eEF-2K.


Assuntos
Trifosfato de Adenosina , Calmodulina , Quinase do Fator 2 de Elongação , Animais , Humanos , Trifosfato de Adenosina/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Quinase do Fator 2 de Elongação/antagonistas & inibidores , Quinase do Fator 2 de Elongação/química , Quinase do Fator 2 de Elongação/genética , Quinase do Fator 2 de Elongação/metabolismo , Fator 2 de Elongação de Peptídeos/química , Fator 2 de Elongação de Peptídeos/metabolismo , Fosforilação , Domínio Catalítico , Relação Estrutura-Atividade , Elongação Traducional da Cadeia Peptídica
7.
J Chem Inf Model ; 63(5): 1578-1591, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36802593

RESUMO

Exotoxin A (ETA) is an extracellular secreted toxin and a single-chain polypeptide with A and B fragments that is produced by Pseudomonas aeruginosa. It catalyzes the ADP-ribosylation of a post-translationally modified histidine (diphthamide) on eukaryotic elongation factor 2 (eEF2), which results in the inactivation of the latter and the inhibition of protein biosynthesis. Studies show that the imidazole ring of diphthamide plays an important role in the ADP-ribosylation catalyzed by the toxin. In this work, we employ different in silico molecular dynamics (MD) simulation approaches to understand the role of diphthamide versus unmodified histidine in eEF2 on the interaction with ETA. Crystal structures of the eEF2-ETA complexes with three different ligands NAD+, ADP-ribose, and ßTAD were selected and compared in the diphthamide and histidine containing systems. The study shows that NAD+ bound to ETA remains very stable in comparison with other ligands, enabling the transfer of ADP-ribose to the N3 atom of the diphthamide imidazole ring in eEF2 during ribosylation. We also show that unmodified histidine in eEF2 has a negative impact on ETA binding and is not a suitable target for the attachment of ADP-ribose. Analyzing of radius of gyration and COM distances for NAD+, ßTAD, and ADP-ribose complexes revealed that unmodified His affects the structure and destabilizes the complex with all different ligands throughout the MD simulations.


Assuntos
Histidina , Simulação de Dinâmica Molecular , Fator 2 de Elongação de Peptídeos/química , Histidina/química , NAD/metabolismo , Adenosina Difosfato Ribose/metabolismo , Pseudomonas aeruginosa , Exotoxina A de Pseudomonas aeruginosa
8.
Biochemistry (Mosc) ; 86(8): 992-1002, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34488575

RESUMO

During protein synthesis, ribosome moves along mRNA to decode one codon after the other. Ribosome translocation is induced by a universally conserved protein, elongation factor G (EF-G) in bacteria and elongation factor 2 (EF-2) in eukaryotes. EF-G-induced translocation results in unwinding of the intramolecular secondary structures of mRNA by three base pairs at a time that renders the translating ribosome a processive helicase. Professor Alexander Sergeevich Spirin has made numerous seminal contributions to understanding the molecular mechanism of translocation. Here, we review Spirin's insights into the ribosomal translocation and recent advances in the field that stemmed from Spirin's pioneering work. We also discuss key remaining challenges in studies of translocase and helicase activities of the ribosome.


Assuntos
RNA Helicases/química , Ribossomos/fisiologia , Transferases/química , Transporte Biológico , Microscopia Crioeletrônica , Eucariotos/metabolismo , Transferência Ressonante de Energia de Fluorescência , Modelos Moleculares , Fator 2 de Elongação de Peptídeos/química , Fator G para Elongação de Peptídeos/química , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , RNA de Transferência/química , Ribossomos/química
9.
Nucleic Acids Res ; 46(6): 3232-3244, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29471537

RESUMO

Archaea and eukaryotes have ribosomal P stalks composed of anchor protein P0 and aP1 homodimers (archaea) or P1•P2 heterodimers (eukaryotes). These P stalks recruit translational GTPases to the GTPase-associated center in ribosomes to provide energy during translation. The C-terminus of the P stalk is known to selectively recognize GTPases. Here we investigated the interaction between the P stalk and elongation factor 2 by determining the structures of Pyrococcus horikoshii EF-2 (PhoEF-2) in the Apo-form, GDP-form, GMPPCP-form (GTP-form), and GMPPCP-form bound with 11 C-terminal residues of P1 (P1C11). Helical structured P1C11 binds to a hydrophobic groove between domain G and subdomain G' of PhoEF-2, where is completely different from that of aEF-1α in terms of both position and sequence, implying that such interaction characteristic may be requested by how GTPases perform their functions on the ribosome. Combining PhoEF-2 P1-binding assays with a structural comparison of current PhoEF-2 structures and molecular dynamics model of a P1C11-bound GDP form, the conformational changes of the P1C11-binding groove in each form suggest that in response to the translation process, the groove has three states: closed, open, and release for recruiting and releasing GTPases.


Assuntos
Proteínas Arqueais/metabolismo , Fator 2 de Elongação de Peptídeos/metabolismo , Pyrococcus horikoshii/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Fator 2 de Elongação de Peptídeos/química , Fator 2 de Elongação de Peptídeos/genética , Ligação Proteica , Conformação Proteica , Pyrococcus horikoshii/genética , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Ribossomos/química , Homologia de Sequência de Aminoácidos
10.
Biochemistry ; 58(43): 4343-4351, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31566354

RESUMO

Elongation factor 2 (EF-2), a five-domain, GTP-dependent ribosomal translocase of archaebacteria and eukaryotes, undergoes post-translational modification to form diphthamide on a specific histidine residue in domain IV prior to binding the ribosome. The first step of diphthamide biosynthesis in archaebacteria is catalyzed by Dph2, a homodimeric radical S-adenosylmethionine (SAM) enzyme having a noncanonical architecture. Here, we describe a 3.5 Å resolution crystal structure of the Methanobrevibacter smithii (Ms) Dph2 homodimer bound to two molecules of MsEF-2, one of which is ordered and the other largely disordered. MsEF-2 is bound to both protomers of MsDph2, with domain IV bound to the active site of one protomer and domain III bound to a surface α-helix of an adjacent protomer. The histidine substrate of domain IV is inserted into the active site, which reveals for the first time the architecture of the Dph2 active site in complex with its target substrate. We also determined a high-resolution crystal structure of isolated MsDph2 bound to 5'-methylthioadenosine that shows a conserved arginine residue preoriented by conserved phenylalanine and aspartate residues for binding the carboxylate group of SAM. Mutagenesis experiments suggest that the arginine plays an important role in the first step of diphthamide biosynthesis.


Assuntos
Proteínas Arqueais/metabolismo , Histidina/análogos & derivados , Oxirredutases/metabolismo , Fator 2 de Elongação de Peptídeos/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Arginina/química , Domínio Catalítico , Cristalografia por Raios X , Desoxiadenosinas/metabolismo , Histidina/química , Histidina/metabolismo , Methanobrevibacter/enzimologia , Mutagênese Sítio-Dirigida , Oxirredutases/química , Oxirredutases/genética , Fator 2 de Elongação de Peptídeos/química , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Tionucleosídeos/metabolismo
11.
Protein Expr Purif ; 158: 15-19, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30742898

RESUMO

Human elongation factor 2 is the translocase that is responsible for the movement of tRNA from the A- to P- and P- to E-site on the ribosome during the elongation phase of translation. Being a vital factor of protein biosynthesis, its function is highly controlled and regulated. It has been implicated in numerous diseases and pathologies, and as such it is important to have a source for isolated pure and active protein for biomedical and biochemical studies. Here we report development of a purification protocol for native human elongation factor 2 from HEK-293S cells. The resulting protein is active, pure, has an intact diphtamide and is obtainable in yields suitable for functional and structural studies.


Assuntos
Fator 2 de Elongação de Peptídeos/química , Fator 2 de Elongação de Peptídeos/isolamento & purificação , Células HEK293 , Humanos
12.
Biochem Biophys Res Commun ; 503(3): 1836-1840, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30057320

RESUMO

Actin bundling protein 34 (ABP34) is the one of 11 actin-crosslinking proteins identified in Dictyostelium discoideum, a novel model organism for the study of actin-associated neurodegenerative disorders such as Alzheimer's disease and Huntington's disease. ABP34 localizes at the leading and trailing edges of locomotory cells, i.e., at the cell cortex, filopodia, and pseudopodia. Functionally, it serves to stabilize membrane-associated actin at sites of cell-cell contact. In addition, this small crosslinking protein is involved in actin bundle formation, and its bundling activity is regulated by the concentration of calcium ion. Several studies have sought to determine the mechanism underlying the calcium-regulated actin bundling activity of ABP34, but it remains unclear. Using several mutational and structural analyses, we revealed that calcium binding to the EF2 motif disrupts the inter-domain interaction between the N- and C-domains, thereby inhibiting the actin bundling activity of ABP34. This finding provides clues about the pathogenesis of neurodegenerative disorders related to actin bundling.


Assuntos
Actinas/metabolismo , Cálcio/metabolismo , Proteínas dos Microfilamentos/antagonistas & inibidores , Fator 2 de Elongação de Peptídeos/metabolismo , Proteínas de Protozoários/antagonistas & inibidores , Sítios de Ligação , Cromatografia em Gel , Dictyostelium/química , Dictyostelium/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Fator 2 de Elongação de Peptídeos/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
13.
J Chem Inf Model ; 58(7): 1406-1414, 2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-29927239

RESUMO

Eukaryotic diphthine synthase, Dph5, is a promiscuous methyltransferase that catalyzes an extraordinary N, O-tetramethylation of 2-(3-carboxy-3-aminopropyl)-l-histidine (ACP) to yield diphthine methyl ester (DTM). These are intermediates in the biosynthesis of the post-translationally modified histidine residue diphthamide (DTA), a unique and essential residue part of the eukaryotic elongation factor 2 (eEF2). Herein, the promiscuity of Saccharomyces cerevisiae Dph5 has been studied with in silico approaches, including homology modeling to provide the structure of Dph5, protein-protein docking and molecular dynamics to construct the Dph5-eEF2 complex, and quantum mechanics/molecular mechanics (QM/MM) calculations to outline a plausible mechanism. The calculations show that the methylation of ACP follows a typical SN2 mechanism, initiating with a complete methylation (trimethylation) at the N-position, followed by the single O-methylation. For each of the three N-methylation reactions, our calculations support a stepwise mechanism, which first involve proton transfer through a bridging water to a conserved aspartate residue D165, followed by a methyl transfer. Once fully methylated, the trimethyl amino group forms a weak electrostatic interaction with D165, which allows the carboxylate group of diphthine to attain the right orientation for the final methylation step to be accomplished.


Assuntos
Histidina/análogos & derivados , Metiltransferases/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas de Saccharomyces cerevisiae/química , Ácido Aspártico/química , Vias Biossintéticas , Simulação por Computador , Histidina/química , Metilação , Fator 2 de Elongação de Peptídeos/química , Ligação Proteica , Conformação Proteica , Processamento de Proteína Pós-Traducional , Eletricidade Estática
14.
Proc Natl Acad Sci U S A ; 112(34): 10732-7, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26261303

RESUMO

The diphthamide on human eukaryotic translation elongation factor 2 (eEF2) is the target of ADP ribosylating diphtheria toxin (DT) and Pseudomonas exotoxin A (PE). This modification is synthesized by seven dipthamide biosynthesis proteins (DPH1-DPH7) and is conserved among eukaryotes and archaea. We generated MCF7 breast cancer cell line-derived DPH gene knockout (ko) cells to assess the impact of complete or partial inactivation on diphthamide synthesis and toxin sensitivity, and to address the biological consequence of diphthamide deficiency. Cells with heterozygous gene inactivation still contained predominantly diphthamide-modified eEF2 and were as sensitive to PE and DT as parent cells. Thus, DPH gene copy number reduction does not affect overall diphthamide synthesis and toxin sensitivity. Complete inactivation of DPH1, DPH2, DPH4, and DPH5 generated viable cells without diphthamide. DPH1ko, DPH2ko, and DPH4ko harbored unmodified eEF2 and DPH5ko ACP- (diphthine-precursor) modified eEF2. Loss of diphthamide prevented ADP ribosylation of eEF2, rendered cells resistant to PE and DT, but does not affect sensitivity toward other protein synthesis inhibitors, such as saporin or cycloheximide. Surprisingly, cells without diphthamide (independent of which the DPH gene compromised) were presensitized toward nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-κB) and death-receptor pathways without crossing lethal thresholds. In consequence, loss of diphthamide rendered cells hypersensitive toward TNF-mediated apoptosis. This finding suggests a role of diphthamide in modulating NF-κB, death receptor, or apoptosis pathways.


Assuntos
Apoptose/fisiologia , Histidina/análogos & derivados , NF-kappa B/fisiologia , Fator 2 de Elongação de Peptídeos/química , Receptores de Morte Celular/fisiologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas de Bactérias/farmacologia , Neoplasias da Mama/patologia , Carbono-Nitrogênio Ligases/deficiência , Carbono-Nitrogênio Ligases/fisiologia , Linhagem Celular Tumoral , Toxina Diftérica/farmacologia , Feminino , Dosagem de Genes , Técnicas de Inativação de Genes , Histidina/biossíntese , Histidina/deficiência , Humanos , Proteínas de Neoplasias/fisiologia , Processamento de Proteína Pós-Traducional
15.
Biochem Biophys Res Commun ; 483(1): 153-158, 2017 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-28042029

RESUMO

Ribosomes in all organisms contain oligomeric and flexible proteins called stalks, which are responsible for the recruitment of translational GTPase factors to the ribosome. Archaeal ribosomes have three stalk homodimers (aP1)2 that constitute a heptameric complex with the anchor protein aP0. We investigated the factor binding ability of aP1 proteins assembled onto aP0, by gel-retardation assays. The isolated aP0(aP1)2(aP1)2(aP1)2 complex, as well as the form bound to the Escherichia coli 50S core, as a hybrid 50S particle, interacted strongly with elongation factor aEF2, but weakly with aEF1A. These interactions were disrupted by a point mutation, F107S, at the C-terminus of aP1. To examine the ability of each copy of aP0-associated aP1 to bind to elongation factors, we constructed aP0·aP1 variant trimers, composed of an aP0 mutant and a single (aP1)2 dimer. Biochemical and quantitative analyses revealed that the resultant three trimers, aP0(aP1)2I, aP0(aP1)2II, and aP0(aP1)2III, individually bound two molecules of aEF2, suggesting that each copy of the aP1 C-terminal region in the aP0·aP1 trimers can bind tightly to aEF2. Interestingly, the unstable binding of aEF1A to each of the three aP0·aP1 trimers was remarkably stabilized in the presence of aEF2. The stability of the aEF1A binding to the stalk complex may be affected by the presence of aEF2 bound to the complex, by an unknown mechanism.


Assuntos
Proteínas Arqueais/metabolismo , Fator 2 de Elongação de Peptídeos/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Mutação , Fator 1 de Elongação de Peptídeos/química , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo , Fator 2 de Elongação de Peptídeos/química , Fator 2 de Elongação de Peptídeos/genética , Multimerização Proteica , Pyrococcus horikoshii/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Ribossomos/metabolismo
16.
J Chem Inf Model ; 56(9): 1776-86, 2016 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-27525663

RESUMO

The eukaryotic translation Elongation Factor 2 (eEF2) is an essential enzyme in protein synthesis. eEF2 contains a unique modification of a histidine (His699 in yeast; HIS) into diphthamide (DTA), obtained via 3-amino-3-carboxypropyl (ACP) and diphthine (DTI) intermediates in the biosynthetic pathway. This essential and unique modification is also vulnerable, in that it can be efficiently targeted by NAD(+)-dependent ADP-ribosylase toxins, such as diphtheria toxin (DT). However, none of the intermediates in the biosynthesis path is equally vulnerable against the toxins. This study aims to address the different susceptibility of DTA and its precursors against bacterial toxins. We have herein undertaken a detailed in silico study of the structural features and dynamic motion of different His699 intermediates along the diphthamide synthesis pathway (HIS, ACP, DTI, DTA). The study points out that DTA forms a strong hydrogen bond with an asparagine which might explain the ADP-ribosylation mechanism caused by the diphtheria toxin (DT). Finally, in silico mutagenesis studies were performed on the DTA modified protein, in order to hamper the formation of such a hydrogen bond. The results indicate that the mutant structure might in fact be less susceptible to attack by DT and thereby behave similarly to DTI in this respect.


Assuntos
Histidina/análogos & derivados , Simulação de Dinâmica Molecular , Fator 2 de Elongação de Peptídeos/metabolismo , Simulação por Computador , Histidina/biossíntese , Mutagênese , Fator 2 de Elongação de Peptídeos/química , Fator 2 de Elongação de Peptídeos/genética , Conformação Proteica , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
17.
Mol Microbiol ; 94(6): 1213-26, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25352115

RESUMO

Diphthamide is a conserved modification in archaeal and eukaryal translation elongation factor 2 (EF2). Its name refers to the target function for diphtheria toxin, the disease-causing agent that, through ADP ribosylation of diphthamide, causes irreversible inactivation of EF2 and cell death. Although this clearly emphasizes a pathobiological role for diphthamide, its physiological function is unclear, and precisely why cells need EF2 to contain diphthamide is hardly understood. Nonetheless, the conservation of diphthamide biosynthesis together with syndromes (i.e. ribosomal frame-shifting, embryonic lethality, neurodegeneration and cancer) typical of mutant cells that cannot make it strongly suggests that diphthamide-modified EF2 occupies an important and translation-related role in cell proliferation and development. Whether this is structural and/or regulatory remains to be seen. However, recent progress in dissecting the diphthamide gene network (DPH1-DPH7) from the budding yeast Saccharomyces cerevisiae has significantly advanced our understanding of the mechanisms required to initiate and complete diphthamide synthesis on EF2. Here, we review recent developments in the field that not only have provided novel, previously overlooked and unexpected insights into the pathway and the biochemical players required for diphthamide synthesis but also are likely to foster innovative studies into the potential regulation of diphthamide, and importantly, its ill-defined biological role.


Assuntos
Histidina/análogos & derivados , Saccharomyces cerevisiae/metabolismo , Evolução Molecular , Histidina/genética , Histidina/metabolismo , Fator 2 de Elongação de Peptídeos/química , Fator 2 de Elongação de Peptídeos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
J Proteome Res ; 13(3): 1744-56, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24517342

RESUMO

Post-translational lysine methylation is well established as a regulator of histone activity; however, it is emerging that these modifications are also likely to play extensive roles outside of the histone code. Here we obtain new insights into non-histone lysine methylation and protein lysine methyltransferase (PKMT) activity by elucidating absolute stoichiometries of lysine methylation, using mass spectrometry and absolute quantification (AQUA), in wild-type and 5 PKMT gene deletion strains of Saccharomyces cerevisiae. By analyzing 8 sites of methylation in 3 non-histone proteins, elongation factor 1-α (EF1α), elongation factor 2 (EF2), and 60S ribosomal protein L42-A/B (Rpl42ab), we find that production of preferred methylation states on individual lysine residues is commonplace and likely occurs through processive PKMT activity, Class I PKMTs can be associated with processive methylation, lysine residues are selectively methylated by specific PKMTs, and lysine methylation exists over a broad range of stoichiometries. Together these findings suggest that specific sites and forms of lysine methylation may play specialized roles in the regulation of non-histone protein activity. We also uncover new relationships between two proteins previously characterized as PKMTs, SEE1 and EFM1, in EF1α methylation and show that past characterizations of EFM1 as having direct PKMT activity may require reinterpretation.


Assuntos
Lisina/química , Metiltransferases/química , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Lisina/metabolismo , Metilação , Metiltransferases/metabolismo , Dados de Sequência Molecular , Fator 1 de Elongação de Peptídeos/química , Fator 1 de Elongação de Peptídeos/metabolismo , Fator 2 de Elongação de Peptídeos/química , Fator 2 de Elongação de Peptídeos/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Biochem Cell Biol ; 92(1): 23-32, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24471915

RESUMO

The eukaryotic acid ribosomal P0, P1, and P2 proteins share a conserved flexible C-terminal tail that is rich in acidic residues, which are involved in the interaction with elongation factor 2 during protein synthesis. Our previous work suggested that the acidic ribosomal P proteins from Euplotes octocarinatus have a special C-terminal domain. To further understand this characteristic feature, both P2 and elongation factor 2 from E. octocarinatus were overexpressed, for the first time, in Escherichia coli in this study. GST pull-down assay indicated that P2 protein from E. octocarinatus (EoP2) interacted specifically with the N-terminal domain of elongation factor 2 from E. octocarinatus (EoEF-2) in vitro. The interacting part of EoP2 is in the C-terminal domains, consistent with the observation in other organisms. Phosphorylation of the recombinant EoP2 was performed in vitro using multiple methods such as (31)P-NMR spectroscopy, native PAGE, and Phos-tag(TM) SDS-PAGE. Results showed that ribosomal protein EoP2 was phosphorylated by casein kinase II at serine 21 located at the N terminus. This phosphorylation site identified in EoP2 is quite different from that of P2 from other organisms, in which the phosphorylation site is located in the conserved C-terminal region.


Assuntos
Euplotes/metabolismo , Fosfoproteínas/química , Proteínas de Protozoários/química , Proteínas Ribossômicas/química , Sequência de Bases , Caseína Quinase II/química , Dados de Sequência Molecular , Fator 2 de Elongação de Peptídeos/química , Fosforilação , Estrutura Terciária de Proteína , Serina/química
20.
Biochem Biophys Res Commun ; 451(2): 229-34, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25086354

RESUMO

Here we describe the discovery of Saccharomycescerevisiae protein YJR129Cp as a new eukaryotic seven-beta-strand lysine methyltransferase. An immunoblotting screen of 21 putative methyltransferases showed a loss in the methylation of elongation factor 2 (EF2) on knockout of YJR129C. Mass spectrometric analysis of EF2 tryptic peptides localised this loss of methylation to lysine 509, in peptide LVEGLKR. In vitro methylation, using recombinant methyltransferases and purified EF2, validated YJR129Cp as responsible for methylation of lysine 509 and Efm2p as responsible for methylation at lysine 613. Contextualised on previously described protein structures, both sites of methylation were found at the interaction interface between EF2 and the 40S ribosomal subunit. In line with the recently discovered Efm1 and Efm2 we propose that YJR129C be named elongation factor methyltransferase 3 (Efm3). The human homolog of Efm3 is likely to be the putative methyltransferase FAM86A, according to sequence homology and multiple lines of literature evidence.


Assuntos
Metiltransferases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Técnicas de Inativação de Genes , Genes Fúngicos , Humanos , Lisina/química , Metilação , Metiltransferases/química , Metiltransferases/genética , Modelos Moleculares , Dados de Sequência Molecular , Fator 2 de Elongação de Peptídeos/química , Fator 2 de Elongação de Peptídeos/genética , Fator 2 de Elongação de Peptídeos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/química , Subunidades Ribossômicas Menores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA