Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.218
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Cell Dev Biol ; 30: 647-75, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25288119

RESUMO

Mouse embryonic stem (ES) cells perpetuate in vitro the broad developmental potential of naïve founder cells in the preimplantation embryo. ES cells self-renew relentlessly in culture but can reenter embryonic development seamlessly, differentiating on schedule to form all elements of the fetus. Here we review the properties of these remarkable cells. Arising from the stability, homogeneity, and equipotency of ES cells, we consider the concept of a pluripotent ground state. We evaluate the authenticity of ES cells in relation to cells in the embryo and examine their utility for dissecting mechanisms that confer pluripotency and that execute fate choice. We summarize current knowledge of the transcription factor circuitry that governs the ES cell state and discuss the opportunity to expose molecular logic further through iterative computational modeling and experimentation. Finally, we present a perspective on unresolved questions, including the challenge of deriving ground state pluripotent stem cells from non-rodent species.


Assuntos
Células-Tronco Embrionárias/citologia , Animais , Divisão Celular Assimétrica , Blastocisto/citologia , Técnicas de Cultura de Células , Linhagem da Célula , Células Cultivadas , Reprogramação Celular , Técnicas de Cocultura , Meios de Cultura , Meios de Cultura Livres de Soro , Células-Tronco de Carcinoma Embrionário/citologia , Células-Tronco Embrionárias/fisiologia , Fibroblastos/citologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Camadas Germinativas/citologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Fator Inibidor de Leucemia/fisiologia , Camundongos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/fisiologia , Fatores de Transcrição/farmacologia , Fatores de Transcrição/fisiologia
2.
Immunity ; 46(2): 220-232, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28228280

RESUMO

Fibroblasts are major contributors to and regulators of inflammation and dominant producers of interleukin-6 (IL-6) in inflammatory diseases like rheumatoid arthritis. Yet, compared to leukocytes, the regulation of inflammatory pathways in fibroblasts is largely unknown. Here, we report that analyses of genes coordinately upregulated with IL-6 pointed to STAT4 and leukemia inhibitory factor (LIF) as potentially linked. Gene silencing revealed that STAT4 was required for IL-6 transcription. STAT4 was recruited to the IL-6 promoter after fibroblast activation, and LIF receptor (LIFR) and STAT4 formed a molecular complex that, together with JAK1 and TYK2 kinases, controlled STAT4 activation. Importantly, a positive feedback loop involving autocrine LIF, LIFR, and STAT4 drove sustained IL-6 transcription. Besides IL-6, this autorine loop also drove the production of other key inflammatory factors including IL-8, granulocyte-colony stimulating factor (G-CSF), IL-33, IL-11, IL-1α, and IL-1ß. These findings define the transcriptional regulation of fibroblast-mediated inflammation as distinct from leukocytes.


Assuntos
Comunicação Autócrina/imunologia , Fibroblastos/imunologia , Regulação da Expressão Gênica/imunologia , Fator Inibidor de Leucemia/imunologia , Receptores de OSM-LIF/imunologia , Artrite Reumatoide/imunologia , Células Cultivadas , Citocinas/biossíntese , Perfilação da Expressão Gênica , Humanos , Inflamação/imunologia , Interleucina-6/imunologia , Fator de Transcrição STAT4/imunologia , Membrana Sinovial/imunologia , Transcriptoma
3.
PLoS Biol ; 21(5): e3002104, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37141182

RESUMO

Tumors protect themselves from immune clearance by promoting extramedullary hematopoiesis. A new study in PLOS Biology provides insights into the mechanisms underlying this process, which may hold the key to disrupting generation of the immunosuppressive tumor microenvironment.


Assuntos
Doenças Hematológicas , Hematopoese Extramedular , Neoplasias , Humanos , Fator Inibidor de Leucemia , Interleucina-1alfa , Hematopoese , Microambiente Tumoral
4.
PLoS Biol ; 21(5): e3001746, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37134077

RESUMO

Extramedullary hematopoiesis (EMH) expands hematopoietic capacity outside of the bone marrow in response to inflammatory conditions, including infections and cancer. Because of its inducible nature, EMH offers a unique opportunity to study the interaction between hematopoietic stem and progenitor cells (HSPCs) and their niche. In cancer patients, the spleen frequently serves as an EMH organ and provides myeloid cells that may worsen pathology. Here, we examined the relationship between HSPCs and their splenic niche in EMH in a mouse breast cancer model. We identify tumor produced IL-1α and leukemia inhibitory factor (LIF) acting on splenic HSPCs and splenic niche cells, respectively. IL-1α induced TNFα expression in splenic HSPCs, which then activated splenic niche activity, while LIF induced proliferation of splenic niche cells. IL-1α and LIF display cooperative effects in activating EMH and are both up-regulated in some human cancers. Together, these data expand avenues for developing niche-directed therapies and further exploring EMH accompanying inflammatory pathologies like cancer.


Assuntos
Doenças Hematológicas , Hematopoese Extramedular , Neoplasias , Humanos , Animais , Camundongos , Hematopoese Extramedular/fisiologia , Fator Inibidor de Leucemia/farmacologia , Interleucina-1alfa/farmacologia , Hematopoese
5.
EMBO Rep ; 25(6): 2592-2609, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38671295

RESUMO

Various cytokines have been implicated in cancer cachexia. One such cytokine is IL-6, deemed as a key cachectic factor in mice inoculated with colon carcinoma 26 (C26) cells, a widely used cancer cachexia model. Here we tested the causal role of IL-6 in cancer cachexia by knocking out the IL-6 gene in C26 cells. We found that the growth of IL-6 KO tumors was dramatically delayed. More strikingly, while IL-6 KO tumors eventually reached the similar size as wild-type tumors, cachexia still took place, despite no elevation in circulating IL-6. In addition, the knockout of leukemia inhibitory factor (LIF), another IL-6 family cytokine proposed as a cachectic factor in the model, also affected tumor growth but not cachexia. We further showed an increase in the infiltration of immune cell population in the IL-6 KO tumors compared with wild-type controls and the defective IL-6 KO tumor growth was rescued in immunodeficient mice while cachexia was not. Thus, IL-6 promotes tumor growth by facilitating immune evasion but is dispensable for cachexia.


Assuntos
Caquexia , Interleucina-6 , Camundongos Knockout , Animais , Camundongos , Caquexia/patologia , Caquexia/genética , Caquexia/metabolismo , Caquexia/etiologia , Caquexia/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/imunologia , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Evasão da Resposta Imune , Interleucina-6/metabolismo , Interleucina-6/genética , Fator Inibidor de Leucemia/metabolismo , Fator Inibidor de Leucemia/genética
6.
Am J Pathol ; 194(6): 941-957, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493927

RESUMO

Cholestatic injuries are accompanied by ductular reaction, initiated by proliferation and activation of biliary epithelial cells (BECs), leading to fibrosis. Sortilin (encoded by Sort1) facilitates IL-6 secretion and leukemia inhibitory factor (LIF) signaling. This study investigated the interplay between sortilin and IL-6 and LIF in cholestatic injury-induced ductular reaction, morphogenesis of new ducts, and fibrosis. Cholestatic injury was induced by bile duct ligation (BDL) in wild-type and Sort1-/- mice, with or without augmentation of IL-6 or LIF. Mice with BEC sortilin deficiency (hGFAPcre.Sort1fl/fl) and control mice were subjected to BDL and 3,5-diethoxycarbonyl-1,4-dihydrocollidine diet (DDC) induced cholestatic injury. Sort1-/- mice displayed reduced BEC proliferation and expression of BEC-reactive markers. Administration of LIF or IL-6 restored BEC proliferation in Sort1-/- mice, without affecting BEC-reactive or inflammatory markers. Sort1-/- mice also displayed impaired morphogenesis, which was corrected by LIF treatment. Similarly, hGFAPcre.Sort1fl/fl mice exhibited reduced BEC proliferation, but similar reactive and inflammatory marker expression. Serum IL-6 and LIF were comparable, yet liver pSTAT3 was reduced, indicating that sortilin is essential for co-activation of LIF receptor/gp130 signaling in BECs, but not for IL-6 secretion. hGFAPcre.Sortfl/fl mice displayed impaired morphogenesis and diminished fibrosis after BDL and DDC. In conclusion, sortilin-mediated engagement of LIF signaling in BECs promoted ductular reaction and morphogenesis during cholestatic injury. This study indicates that BEC sortilin is pivotal for the development of fibrosis.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Ductos Biliares , Colestase , Células Epiteliais , Fibrose , Animais , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Camundongos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Colestase/patologia , Colestase/metabolismo , Ductos Biliares/patologia , Proliferação de Células , Interleucina-6/metabolismo , Camundongos Knockout , Camundongos Endogâmicos C57BL , Fator Inibidor de Leucemia/metabolismo , Transdução de Sinais
7.
Nature ; 569(7754): 131-135, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30996350

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis largely owing to inefficient diagnosis and tenacious drug resistance. Activation of pancreatic stellate cells (PSCs) and consequent development of dense stroma are prominent features accounting for this aggressive biology1,2. The reciprocal interplay between PSCs and pancreatic cancer cells (PCCs) not only enhances tumour progression and metastasis but also sustains their own activation, facilitating a vicious cycle to exacerbate tumorigenesis and drug resistance3-7. Furthermore, PSC activation occurs very early during PDAC tumorigenesis8-10, and activated PSCs comprise a substantial fraction of the tumour mass, providing a rich source of readily detectable factors. Therefore, we hypothesized that the communication between PSCs and PCCs could be an exploitable target to develop effective strategies for PDAC therapy and diagnosis. Here, starting with a systematic proteomic investigation of secreted disease mediators and underlying molecular mechanisms, we reveal that leukaemia inhibitory factor (LIF) is a key paracrine factor from activated PSCs acting on cancer cells. Both pharmacologic LIF blockade and genetic Lifr deletion markedly slow tumour progression and augment the efficacy of chemotherapy to prolong survival of PDAC mouse models, mainly by modulating cancer cell differentiation and epithelial-mesenchymal transition status. Moreover, in both mouse models and human PDAC, aberrant production of LIF in the pancreas is restricted to pathological conditions and correlates with PDAC pathogenesis, and changes in the levels of circulating LIF correlate well with tumour response to therapy. Collectively, these findings reveal a function of LIF in PDAC tumorigenesis, and suggest its translational potential as an attractive therapeutic target and circulating marker. Our studies underscore how a better understanding of cell-cell communication within the tumour microenvironment can suggest novel strategies for cancer therapy.


Assuntos
Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Fator Inibidor de Leucemia/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Comunicação Parácrina , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Carcinogênese/genética , Carcinoma Ductal Pancreático/diagnóstico , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Feminino , Humanos , Fator Inibidor de Leucemia/antagonistas & inibidores , Fator Inibidor de Leucemia/sangue , Masculino , Espectrometria de Massas , Camundongos , Neoplasias Pancreáticas/diagnóstico , Comunicação Parácrina/efeitos dos fármacos , Receptores de OSM-LIF/deficiência , Receptores de OSM-LIF/genética , Receptores de OSM-LIF/metabolismo , Microambiente Tumoral
8.
Development ; 148(10)2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33999993

RESUMO

In mammals, the pre-gastrula proximal epiblast gives rise to primordial germ cells (PGCs) or somatic precursors in response to BMP4 and WNT signaling. Entry into the germline requires activation of a naïve-like pluripotency gene regulatory network (GRN). Recent work has shown that suppression of OTX2 expression in the epiblast by BMP4 allows cells to develop a PGC fate in a precise temporal window. However, the mechanisms by which OTX2 suppresses PGC fate are unknown. Here, we show that, in mice, OTX2 prevents epiblast cells from activating the pluripotency GRN by direct repression of Oct4 and Nanog. Loss of this control during PGC differentiation in vitro causes widespread activation of the pluripotency GRN and a deregulated response to LIF, BMP4 and WNT signaling. These abnormalities, in specific cell culture conditions, result in massive germline entry at the expense of somatic mesoderm differentiation. Increased generation of PGCs also occurs in mutant embryos. We propose that the OTX2-mediated repressive control of Oct4 and Nanog is the basis of the mechanism that determines epiblast contribution to germline and somatic lineage.


Assuntos
Células Germinativas/citologia , Camadas Germinativas/citologia , Proteína Homeobox Nanog/antagonistas & inibidores , Fator 3 de Transcrição de Octâmero/antagonistas & inibidores , Fatores de Transcrição Otx/metabolismo , Animais , Proteína Morfogenética Óssea 4/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento/genética , Fator Inibidor de Leucemia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Pluripotentes/citologia , Via de Sinalização Wnt/fisiologia
9.
Genes Cells ; 28(12): 868-880, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37837427

RESUMO

Primary cilia on neural stem/progenitor cells (NSPCs) play an important role in determining cell fate, although the regulatory mechanisms involved in the ciliogenesis remain largely unknown. In this study, we analyzed the effect of the leukemia inhibitory factor (LIF) for the primary cilia in immortalized human NSPCs. LIF withdrawal elongated the primary cilia length, whereas the addition of LIF shortened it. Microarray gene expression analysis revealed that differentially expressed genes (DEGs) associated with LIF treatment were related with the multiple cytokine signaling pathways. Among the DEGs, C-C motif chemokine 2 (CCL2) had the highest ranking and its increase in the protein concentration in the NSPCs-conditioned medium after the LIF treatment was confirmed by ELISA. Interestingly, we found that CCL2 was a negative regulator of cilium length, and LIF-induced shortening of primary cilia was antagonized by CCL2-specific antibody, suggesting that LIF could influence cilia length via upregulating CCL2. The shortening effect of LIF and CCL2 on primary cilia was also observed in SH-SY5Y cells. The results of the study suggested that the LIF-CCL2 axis may well be a regulator of NSPCs and its primary cilia length, which could affect multiple cellular processes, including NSPC proliferation and differentiation.


Assuntos
Células-Tronco Neurais , Neuroblastoma , Humanos , Cílios/metabolismo , Transdução de Sinais , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Fator Inibidor de Leucemia/farmacologia , Células-Tronco Neurais/metabolismo , Diferenciação Celular/fisiologia
10.
Mol Hum Reprod ; 30(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38788747

RESUMO

Uterine glands are branched, tubular structures whose secretions are essential for pregnancy success. It is known that pre-implantation glandular expression of leukemia inhibitory factor (LIF) is crucial for embryo implantation; however, the contribution of uterine gland structure to gland secretions, such as LIF, is not known. Here, we use mice deficient in estrogen receptor 1 (ESR1) signaling to uncover the role of ESR1 signaling in gland branching and the role of a branched structure in LIF secretion and embryo implantation. We observed that deletion of ESR1 in neonatal uterine epithelium, stroma, and muscle using the progesterone receptor PgrCre causes a block in uterine gland development at the gland bud stage. Embryonic epithelial deletion of ESR1 using a Müllerian duct Cre line, Pax2Cre, displays gland bud elongation but a failure in gland branching. Reduction of ESR1 in adult uterine epithelium using the lactoferrin-Cre (LtfCre) displays normally branched uterine glands. Unbranched glands from Pax2Cre Esr1flox/flox uteri fail to express glandular pre-implantation Lif, preventing implantation chamber formation and embryo alignment along the uterine mesometrial-antimesometrial axis. In contrast, branched glands from LtfCre Esr1flox/flox uteri display reduced expression of ESR1 and glandular Lif resulting in delayed implantation chamber formation and embryo-uterine axes alignment but mice deliver a normal number of pups. Finally, pre-pubertal unbranched glands in control mice express Lif in the luminal epithelium but fail to express Lif in the glandular epithelium, even in the presence of estrogen. These data strongly suggest that branched glands are necessary for pre-implantation glandular Lif expression for implantation success. Our study is the first to identify a relationship between the branched structure and secretory function of uterine glands and provides a framework for understanding how uterine gland structure-function contributes to pregnancy success.


Assuntos
Implantação do Embrião , Receptor alfa de Estrogênio , Fator Inibidor de Leucemia , Útero , Animais , Feminino , Implantação do Embrião/fisiologia , Útero/metabolismo , Camundongos , Fator Inibidor de Leucemia/metabolismo , Fator Inibidor de Leucemia/genética , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Gravidez , Camundongos Knockout , Transdução de Sinais
11.
Blood ; 140(19): 2076-2090, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-35981499

RESUMO

Graft-versus-host disease (GVHD) remains a major complication after allogeneic hematopoietic stem cell transplantation, a widely used therapy for hematologic malignancies and blood disorders. Here, we report an unexpected role of cytokine leukemia inhibitory factor (LIF) in protecting against GVHD development. Administrating recombinant LIF protein (rLIF) protects mice from GVHD-induced tissue damage and lethality without compromising the graft-versus-leukemia activity, which is crucial to prevent tumor relapse. We found that rLIF decreases the infiltration and activation of donor immune cells and protects intestinal stem cells to ameliorate GVHD. Mechanistically, rLIF downregulates IL-12-p40 expression in recipient dendritic cells after irradiation through activating STAT1 signaling, which results in decreased major histocompatibility complex II levels on intestinal epithelial cells and decreased donor T-cell activation and infiltration. This study reveals a previously unidentified protective role of LIF for GVHD-induced tissue pathology and provides a potential effective therapeutic strategy to limit tissue pathology without compromising antileukemic efficacy.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Fator Inibidor de Leucemia , Leucemia , Animais , Camundongos , Doença Enxerto-Hospedeiro/prevenção & controle , Efeito Enxerto vs Leucemia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Leucemia/terapia , Fator Inibidor de Leucemia/genética , Transplante Homólogo
12.
Mol Ther ; 31(2): 331-343, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36575793

RESUMO

Leukemia inhibitory factor (LIF) is a pleiotropic cytokine of the interleukin-6 (IL-6) superfamily. LIF was initially discovered as a factor to induce the differentiation of myeloid leukemia cells and thus inhibit their proliferation. Subsequent studies have highlighted the multi-functions of LIF under a wide variety of physiological and pathological conditions in a highly cell-, tissue-, and context-dependent manner. Emerging evidence has demonstrated that LIF plays an essential role in the stem cell niche, where it maintains the homeostasis and regeneration of multiple somatic tissues, including intestine, neuron, and muscle. Further, LIF exerts a crucial regulatory role in immunity and functions as a protective factor against many immunopathological diseases, such as infection, inflammatory bowel disease (IBD), and graft-verse-host disease (GVHD). It is worth noting that while LIF displays a tumor-suppressive function in leukemia, recent studies have highlighted the oncogenic role of LIF in many types of solid tumors, further demonstrating the complexities and context-dependent effects of LIF. In this review, we summarize the recent insights into the roles and mechanisms of LIF in stem cell homeostasis and regeneration, immunity, and cancer, and discuss the potential therapeutic options for human diseases by modulating LIF levels and functions.


Assuntos
Inibidores do Crescimento , Interleucina-6 , Humanos , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Inibidores do Crescimento/farmacologia , Inibidores do Crescimento/fisiologia , Diferenciação Celular , Subunidade alfa de Receptor de Fator Inibidor de Leucemia , Linfocinas/farmacologia , Linfocinas/fisiologia
13.
Cell Biochem Funct ; 42(4): e4031, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38760985

RESUMO

Super-enhancers play prominent roles in driving robust pathological gene expression, but they are hidden in human genome at noncoding regions, making them difficult to explore. Leukemia inhibitory factor (LIF) is a multifunctional cytokine crucially involved in acute respiratory distress syndrome (ARDS) and lung cancer progression. However, the mechanisms governing LIF regulation in disease contexts remain largely unexplored. In this study, we observed elevated levels of LIF in the bronchoalveolar lavage fluid (BALF) of patients with sepsis-related ARDS compared to those with nonsepsis-related ARDS. Furthermore, both basal and LPS-induced LIF expression were under the control of super-enhancers. Through analysis of H3K27Ac ChIP-seq data, we pinpointed three potential super-enhancers (LIF-SE1, LIF-SE2, and LIF-SE3) located proximal to the LIF gene in cells. Notably, genetic deletion of any of these three super-enhancers using CRISPR-Cas9 technology led to a significant reduction in LIF expression. Moreover, in cells lacking these super-enhancers, both cell growth and invasion capabilities were substantially impaired. Our findings highlight the critical role of three specific super-enhancers in regulating LIF expression and offer new insights into the transcriptional regulation of LIF in ARDS and lung cancer.


Assuntos
Fator Inibidor de Leucemia , Neoplasias Pulmonares , Síndrome do Desconforto Respiratório , Humanos , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/genética , Síndrome do Desconforto Respiratório/patologia , Fator Inibidor de Leucemia/metabolismo , Fator Inibidor de Leucemia/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Líquido da Lavagem Broncoalveolar/química , Elementos Facilitadores Genéticos , Proliferação de Células , Masculino
14.
Cell Mol Life Sci ; 80(9): 256, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37589744

RESUMO

BACKGROUND: Increasing evidences has indicated that primary and acquired resistance of ovarian cancer (OC) to platinum is mediated by multiple molecular and cellular factors. Understanding these mechanisms could promote the therapeutic efficiency for patients with OC. METHODS: Here, we screened the expression pattern of circRNAs in samples derived from platinum-resistant and platinum-sensitive OC patients using RNA-sequencing (RNA-seq). The expression of hsa_circ_0010467 was validated by Sanger sequencing, RT-qPCR, and fluorescence in situ hybridization (FISH) assays. Overexpression and knockdown experiments were performed to explore the function of hsa_circ_0010467. The effects of hsa_circ_0010467 on enhancing platinum treatment were validated in OC cells, mouse model and patient-derived organoid (PDO). RNA pull-down, RNA immunoprecipitation (RIP), and dual-luciferase reporter assays were performed to investigate the interaction between hsa_circ_0010467 and proteins. RESULTS: Increased expression of hsa_circ_0010467 is observed in platinum-resistant OC cells, tissues and serum exosomes, which is positively correlated with advanced tumor stage and poor prognosis of OC patients. Hsa_circ_0010467 is found to maintain the platinum resistance via inducing tumor cell stemness, and silencing hsa_circ_0010467 substantially increases the efficacy of platinum treatment on inhibiting OC cell proliferation. Further investigation reveals that hsa_circ_0010467 acts as a miR-637 sponge to mediate the repressive effect of miR-637 on leukemia inhibitory factor (LIF) and activates the LIF/STAT3 signaling pathway. We further discover that AUF1 could promote the biogenesis of hsa_circ_0010467 in OC. CONCLUSION: Our study uncovers the mechanism that hsa_circ_0010467 mediates the platinum resistance of OC through AUF1/hsa_circ_0010467/miR-637/LIF/STAT3 axis, and provides potential targets for the treatment of platinum-resistant OC patients.


Assuntos
Ribonucleoproteína Nuclear Heterogênea D0 , MicroRNAs , Neoplasias Ovarianas , RNA Circular , Animais , Feminino , Humanos , Camundongos , Hibridização in Situ Fluorescente , Fator Inibidor de Leucemia , MicroRNAs/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , RNA Circular/genética , Fator de Transcrição STAT3/genética , Ribonucleoproteína Nuclear Heterogênea D0/genética
15.
Ecotoxicol Environ Saf ; 270: 115848, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38134636

RESUMO

PURPOSE: Prolonged exposure to low dose-rate radiation (LDRR) is of growing concern to public health. Recent evidences indicates that LDRR causes deleterious health effects and is closely related to miRNAs. The aim of our study is to investigate the relationship between miRNAs and DNA damage caused by LDRR. MATERIALS AND METHODS: In this study, we irradiated C57BL/6J mice with 12.5µGy/h dose of γ ray emitted from uranium ore for 8 h a day for 120 days at a total dose of 12 mGy, and identified differentially expressed miRNAs from the mice long-term exposed to LDRR through isolating serum RNAs, constructing small RNA library, Illumina sequencing. To further investigate the role of differential miRNA under LDRR,we first built DNA damage model in Immortal B cells irradiated with 12.5µGy/h dose of γ ray for 28 days at a total dose of 9.4 mGy. Then, we chose the highly conserved miR-181c-3p among 12 miRNA and its mechanism in alleviating DNA damage induced by LDRR was studied by transfection, quantitative PCR, luciferase assay, and Western blot. RESULTS AND CONCLUSIONS: We have found that 12 differentially expressed miRNAs including miR-181c-3p in serum isolated from irradiated mice. Analysis of GO and KEGG indicated that target genes of theses 12 miRNA enriched in pathways related to membrane, protein binding and cancer. Long-term exposure to LDRR induced upregulation of gamma-H2A histone family member X (γ-H2AX) expression, a classical biomarker for DNA damage in B cells. miR-181c-3p inhibited Leukemia inhibitory factor (LIF) expression via combining its 3'UTR. LIF, MDM2, p53, and p-p53-s6 were upregulated after exposure to LDRR. In irradiated B cells, Transfection of miR-181c-3p reduced γ-H2AX expression and suppressed LIF and MDM2 protein levels, whereas p-p53-s6 expression was increased. As expected, the effect of LIF inhibition on irradiated B cells was similar to miR-181c-3p overexpression. Our results suggest that LDRR alters miRNA expression and induces DNA damage. Furthermore, miR-181c-3p can alleviate LDRR-induced DNA damage via the LIF/MDM2/p-p53-s6 pathway in human B lymphocytes. This could provide the basis for prevention and treatment of LDRR injury.


Assuntos
MicroRNAs , Proteína Supressora de Tumor p53 , Humanos , Camundongos , Animais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Fator Inibidor de Leucemia/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Linfócitos B
16.
J Biol Chem ; 298(6): 101946, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35447114

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide. However, the molecular mechanisms that promote dysregulation of hepatic triglyceride metabolism and lead to NAFLD are poorly understood, and effective treatments are limited. Leukemia inhibitory factor (LIF) is a member of the interleukin-6 cytokine family and has been shown to regulate a variety of physiological processes, although its role in hepatic triglyceride metabolism remains unknown. In the present study, we measured circulating LIF levels by ELISA in 214 patients with biopsy-diagnosed NAFLD as well as 314 normal control patients. We further investigated the potential role and mechanism of LIF on hepatic lipid metabolism in obese mice. We found that circulating LIF levels correlated with the severity of liver steatosis. Patients with ballooning, fibrosis, lobular inflammation, and abnormally elevated liver injury markers alanine transaminase and aspartate aminotransferase also had higher levels of serum LIF than control patients. Furthermore, animal studies showed that white adipose tissue-derived LIF could ameliorate liver steatosis through activation of hepatic LIF receptor signaling pathways. Together, our results suggested that targeting LIF-LIF receptor signaling might be a promising strategy for treating NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Fator Inibidor de Leucemia/sangue , Fator Inibidor de Leucemia/metabolismo , Fígado/patologia , Camundongos , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Triglicerídeos/metabolismo
17.
Lab Invest ; 103(3): 100026, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36925206

RESUMO

Repeated implantation failure is a major cause of infertility among healthy women. Uterine ß-catenin (CTNNB1) plays a critical role in implantation. However, the role of embryonic CTNNB1 during implantation remains unclear. We addressed this topic by analyzing mice carrying Ctnnb1-deficient (Ctnnb1Δ/Δ) embryos. Ctnnb1Δ/Δ embryos were produced by intercrossing mice bearing Ctnnb1-deficient eggs and sperms. We found that Ctnnb1Δ/Δ embryos developed to the blastocyst stage; thereafter, they were resorbed, leaving empty decidual capsules. Moreover, leukemia inhibitory factor, a uterine factor essential for implantation, was undetectable in Ctnnb1Δ/Δ blastocysts. Furthermore, CDX2, a transcription factor that determines the fate of trophectoderm cells, was not observed in Ctnnb1Δ/Δ blastocysts. Intrauterine injection with uterine fluids (from control mice) and recombinant mouse leukemia inhibitory factor proteins rescued the uterine response to Ctnnb1Δ/Δ blastocysts. These results suggest that embryonic CTNNB1 is required for the secretion of blastocyst-derived factor(s) that open the implantation window, indicating that the uterine response to implantation can be induced using supplemental materials. Therefore, our results may contribute to the discovery of a similar mechanism in humans, leading to a better understanding of the pathogenesis of repeated implantation failure.


Assuntos
Implantação do Embrião , beta Catenina , Animais , Feminino , Humanos , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Blastocisto/metabolismo , Implantação do Embrião/fisiologia , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Útero/metabolismo
18.
Hum Mol Genet ; 31(2): 189-206, 2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-34392367

RESUMO

Leukemia inhibitory factor (LIF) can influence development by increasing cell proliferation and inhibiting differentiation. Because of its potency for expanding stem cell populations, delivery of exogenous LIF to diseased tissue could have therapeutic value. However, systemic elevations of LIF can have negative, off-target effects. We tested whether inflammatory cells expressing a LIF transgene under control of a leukocyte-specific, CD11b promoter provide a strategy to target LIF to sites of damage in the mdx mouse model of Duchenne muscular dystrophy, leading to increased numbers of muscle stem cells and improved muscle regeneration. However, transgene expression in inflammatory cells did not increase muscle growth or increase numbers of stem cells required for regeneration. Instead, transgene expression disrupted the normal dispersion of macrophages in dystrophic muscles, leading to transient increases in muscle damage in foci where macrophages were highly concentrated during early stages of pathology. The defect in inflammatory cell dispersion reflected impaired chemotaxis of macrophages to C-C motif chemokine ligand-2 and local increases of LIF production that produced large aggregations of cytolytic macrophages. Transgene expression also induced a shift in macrophage phenotype away from a CD206+, M2-biased phenotype that supports regeneration. However, at later stages of the disease when macrophage numbers declined, they dispersed in the muscle, leading to reductions in muscle fiber damage, compared to non-transgenic mdx mice. Together, the findings show that macrophage-mediated delivery of transgenic LIF exerts differential effects on macrophage dispersion and muscle damage depending on the stage of dystrophic pathology.


Assuntos
Distrofia Muscular Animal , Distrofia Muscular de Duchenne , Animais , Humanos , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos mdx , Camundongos Transgênicos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/genética , Distrofia Muscular de Duchenne/metabolismo
19.
EMBO J ; 38(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30770344

RESUMO

T helper 17 (Th17)-cell differentiation triggered by interleukin-6 (IL-6) via STAT3 activation promotes inflammation in inflammatory bowel disease (IBD) patients. However, leukemia inhibitory factor (LIF), an IL-6 family cytokine, restricts inflammation by blocking Th17-cell differentiation via an unknown mechanism. Here, we report that microbiota dysregulation promotes LIF secretion by intestinal epithelial cells (IECs) in a mouse colitis model. LIF greatly activates STAT4 phosphorylation on multiple SPXX elements within the C-terminal transcription regulation domain. STAT4 and STAT3 act reciprocally on both canonical cis-inducible elements (SIEs) and noncanonical "AGG" elements at different loci. In lamina propria lymphocytes (LPLs), STAT4 activation by LIF blocks STAT3-dependent Il17a/Il17f promoter activation, whereas in IECs, LIF bypasses the extraordinarily low level of STAT4 to induce YAP gene expression via STAT3 activation. In addition, we found that the administration of LIF is sufficient to restore microbiome homeostasis. Thus, LIF effectively inhibits Th17 accumulation and promotes repair of damaged intestinal epithelium in inflamed colon, serves as a potential therapy for IBD.


Assuntos
Colite/prevenção & controle , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/prevenção & controle , Mucosa Intestinal/efeitos dos fármacos , Fator Inibidor de Leucemia/farmacologia , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT4/fisiologia , Animais , Células Cultivadas , Colite/induzido quimicamente , Colite/imunologia , Inflamação/induzido quimicamente , Inflamação/imunologia , Interleucina-17/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Fator de Transcrição STAT3/genética , Transdução de Sinais , Células Th17/imunologia
20.
Rheumatology (Oxford) ; 62(6): 2267-2271, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36326445

RESUMO

OBJECTIVES: Anti-melanoma differentiation-associated gene 5 (MDA5) antibody-positive rapidly progressive interstitial lung disease (RP-ILD) is a life-threatening disease, the aetiology of which remains unclear. To detect potential diagnostic markers, a transcriptome analysis of the lung sample from a patient with anti-MDA5 antibody-positive RP-ILD was performed. METHODS: RNA sequencing analyses of an autopsy lung sample from a 74-year-old woman with anti-MDA5 antibody-positive RP-ILD was performed and compared with an age- and sex-matched normal lung sample. Genes with changes of gene expression ≥5-fold were considered differentially expressed genes and analysed by Metascape. The levels of leukaemia inhibitory factor (LIF) were measured in the serum samples from 12 cases of anti-MDA5 antibody-positive ILD, 12 cases of anti-aminoacyl tRNA synthetase (ARS) antibody-positive ILD, 10 cases of anti-transcription intermediary factor 1γ/anti-Mi-2 antibody DM and 12 healthy volunteers. RESULTS: Gene ontology enrichment analysis on the RNA sequencing data showed a strong association with antigen binding. Upregulated expressions of IL-1ß, IL-6 and LIF were also detected. Serum LIF levels were significantly elevated in anti-MDA5 antibody-positive ILD patients {median 32.4 pg/ml [interquartile range (IQR) 13.2-125.7]} when compared with anti-ARS antibody-positive ILD patients [4.9 pg/ml (IQR 3.1-19.7), P < 0.05] and DM patients [5.3 pg/ml (IQR 3.9-9.7), P < 0.05]. CONCLUSION: Our present study suggested that upregulation of LIF might be a new potential disease marker specific for anti-MDA5 antibody-positive ILD.


Assuntos
Aminoacil-tRNA Sintetases , Dermatomiosite , Doenças Pulmonares Intersticiais , Feminino , Humanos , Idoso , Fator Inibidor de Leucemia/genética , Estudos Retrospectivos , Helicase IFIH1 Induzida por Interferon/genética , Doenças Pulmonares Intersticiais/etiologia , Autoanticorpos , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA