Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 594(7861): 129-133, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33902108

RESUMO

Mediator is a conserved coactivator complex that enables the regulated initiation of transcription at eukaryotic genes1-3. Mediator is recruited by transcriptional activators and binds the pre-initiation complex (PIC) to stimulate the phosphorylation of RNA polymerase II (Pol II) and promoter escape1-6. Here we prepare a recombinant version of human Mediator, reconstitute a 50-subunit Mediator-PIC complex and determine the structure of the complex by cryo-electron microscopy. The head module of Mediator contacts the stalk of Pol II and the general transcription factors TFIIB and TFIIE, resembling the Mediator-PIC interactions observed in the corresponding complex in yeast7-9. The metazoan subunits MED27-MED30 associate with exposed regions in MED14 and MED17 to form the proximal part of the Mediator tail module that binds activators. Mediator positions the flexibly linked cyclin-dependent kinase (CDK)-activating kinase of the general transcription factor TFIIH near the linker to the C-terminal repeat domain of Pol II. The Mediator shoulder domain holds the CDK-activating kinase subunit CDK7, whereas the hook domain contacts a CDK7 element that flanks the kinase active site. The shoulder and hook domains reside in the Mediator head and middle modules, respectively, which can move relative to each other and may induce an active conformation of the CDK7 kinase to allosterically stimulate phosphorylation of the C-terminal domain.


Assuntos
Microscopia Crioeletrônica , Complexo Mediador/química , Complexo Mediador/ultraestrutura , RNA Polimerase II/química , RNA Polimerase II/ultraestrutura , Regulação Alostérica , Sítios de Ligação , Domínio Catalítico , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/metabolismo , DNA Complementar/genética , Humanos , Complexo Mediador/metabolismo , Modelos Moleculares , Fosforilação , Ligação Proteica , RNA Polimerase II/metabolismo , Fator de Transcrição TFIIB/química , Fator de Transcrição TFIIB/metabolismo , Fatores de Transcrição TFII/química , Fatores de Transcrição TFII/metabolismo , Iniciação da Transcrição Genética , Quinase Ativadora de Quinase Dependente de Ciclina
2.
Nature ; 518(7539): 376-80, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25652824

RESUMO

The conserved co-activator complex Mediator enables regulated transcription initiation by RNA polymerase (Pol) II. Here we reconstitute an active 15-subunit core Mediator (cMed) comprising all essential Mediator subunits from Saccharomyces cerevisiae. The cryo-electron microscopic structure of cMed bound to a core initiation complex was determined at 9.7 Å resolution. cMed binds Pol II around the Rpb4-Rpb7 stalk near the carboxy-terminal domain (CTD). The Mediator head module binds the Pol II dock and the TFIIB ribbon and stabilizes the initiation complex. The Mediator middle module extends to the Pol II foot with a 'plank' that may influence polymerase conformation. The Mediator subunit Med14 forms a 'beam' between the head and middle modules and connects to the tail module that is predicted to bind transcription activators located on upstream DNA. The Mediator 'arm' and 'hook' domains contribute to a 'cradle' that may position the CTD and TFIIH kinase to stimulate Pol II phosphorylation.


Assuntos
Microscopia Crioeletrônica , Complexo Mediador/química , Complexo Mediador/ultraestrutura , RNA Polimerase II/química , RNA Polimerase II/ultraestrutura , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestrutura , Regulação Alostérica , Sítios de Ligação , DNA/química , DNA/metabolismo , Ativação Enzimática , Complexo Mediador/metabolismo , Modelos Moleculares , Fosforilação , Estabilidade Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Fator de Transcrição TFIIB/química , Fator de Transcrição TFIIB/metabolismo , Fator de Transcrição TFIIH/química , Fator de Transcrição TFIIH/metabolismo , Iniciação da Transcrição Genética
3.
Mol Cell ; 45(4): 439-46, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22365827

RESUMO

Recent studies of the three eukaryotic transcription machineries revealed that all initiation complexes share a conserved core. This core consists of the RNA polymerase (I, II, or III), the TATA box-binding protein (TBP), and transcription factors TFIIB, TFIIE, and TFIIF (for Pol II) or proteins structurally and functionally related to parts of these factors (for Pol I and Pol III). The conserved core initiation complex stabilizes the open DNA promoter complex and directs initial RNA synthesis. The periphery of the core initiation complex is decorated by additional polymerase-specific factors that account for functional differences in promoter recognition and opening, and gene class-specific regulation. This review outlines the similarities and differences between these important molecular machines.


Assuntos
RNA Polimerase III/metabolismo , RNA Polimerase II/metabolismo , RNA Polimerase I/metabolismo , Transcrição Gênica , Sequência Conservada , Modelos Moleculares , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , RNA Polimerase I/química , RNA Polimerase I/fisiologia , RNA Polimerase II/química , RNA Polimerase II/fisiologia , RNA Polimerase III/química , RNA Polimerase III/fisiologia , Proteína de Ligação a TATA-Box/química , Proteína de Ligação a TATA-Box/fisiologia , Fator de Transcrição TFIIB/química , Fator de Transcrição TFIIB/fisiologia , Fatores de Transcrição TFII/química , Fatores de Transcrição TFII/fisiologia
4.
Nucleic Acids Res ; 46(19): 10066-10081, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30102372

RESUMO

Transcription initiation by archaeal RNA polymerase (RNAP) and eukaryotic RNAP II requires the general transcription factor (TF) B/ IIB. Structural analyses of eukaryotic transcription initiation complexes locate the B-reader domain of TFIIB in close proximity to the active site of RNAP II. Here, we present the first crosslinking mapping data that describe the dynamic transitions of an archaeal TFB to provide evidence for structural rearrangements within the transcription complex during transition from initiation to early elongation phase of transcription. Using a highly specific UV-inducible crosslinking system based on the unnatural amino acid para-benzoyl-phenylalanine allowed us to analyze contacts of the Pyrococcus furiosus TFB B-reader domain with site-specific radiolabeled DNA templates in preinitiation and initially transcribing complexes. Crosslink reactions at different initiation steps demonstrate interactions of TFB with DNA at registers +6 to +14, and reduced contacts at +15, with structural transitions of the B-reader domain detected at register +10. Our data suggest that the B-reader domain of TFB interacts with nascent RNA at register +6 and +8 and it is displaced from the transcribed-strand during the transition from +9 to +10, followed by the collapse of the transcription bubble and release of TFB from register +15 onwards.


Assuntos
Proteínas Arqueais/química , DNA/química , RNA Polimerase II/química , Fator de Transcrição TFIIB/química , Proteínas Arqueais/genética , DNA/genética , Domínios Proteicos , Pyrococcus furiosus/química , Pyrococcus furiosus/genética , RNA Polimerase II/genética , Fator de Transcrição TFIIB/genética , Transcrição Gênica
5.
J Biol Chem ; 293(5): 1651-1665, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29158257

RESUMO

Functional cross-talk between the promoter and terminator of a gene has long been noted. Promoters and terminators are juxtaposed to form gene loops in several organisms, and gene looping is thought to be involved in transcriptional regulation. The general transcription factor IIB (TFIIB) and the C-terminal domain phosphatase Ssu72, essential factors of the transcription preinitiation complex and the mRNA processing and polyadenylation complex, respectively, are important for gene loop formation. TFIIB and Ssu72 interact both genetically and physically, but the molecular basis of this interaction is not known. Here we present a crystal structure of the core domain of TFIIB in two new conformations that differ in the relative distance and orientation of the two cyclin-like domains. The observed extraordinary conformational plasticity may underlie the binding of TFIIB to multiple transcription factors and promoter DNAs that occurs in distinct stages of transcription, including initiation, reinitiation, and gene looping. We mapped the binding interface of the TFIIB-Ssu72 complex using a series of systematic, structure-guided in vitro binding and site-specific photocross-linking assays. Our results indicate that Ssu72 competes with acidic activators for TFIIB binding and that Ssu72 disrupts an intramolecular TFIIB complex known to impede transcription initiation. We also show that the TFIIB-binding site on Ssu72 overlaps with the binding site of symplekin, a component of the mRNA processing and polyadenylation complex. We propose a hand-off model in which Ssu72 mediates a conformational transition in TFIIB, accounting for the role of Ssu72 in transcription reinitiation, gene looping, and promoter-terminator cross-talk.


Assuntos
Proteínas de Transporte/química , Modelos Moleculares , Complexos Multiproteicos/química , Elementos de Resposta , Fator de Transcrição TFIIB/química , Iniciação da Transcrição Genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Humanos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Fosfoproteínas Fosfatases , Domínios Proteicos , Estrutura Quaternária de Proteína , Fator de Transcrição TFIIB/genética , Fator de Transcrição TFIIB/metabolismo
6.
Nature ; 493(7432): 437-40, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23151482

RESUMO

The general transcription factor (TF) IIB is required for RNA polymerase (Pol) II initiation and extends with its B-reader element into the Pol II active centre cleft. Low-resolution structures of the Pol II-TFIIB complex indicated how TFIIB functions in DNA recruitment, but they lacked nucleic acids and half of the B-reader, leaving other TFIIB functions enigmatic. Here we report crystal structures of the Pol II-TFIIB complex from the yeast Saccharomyces cerevisiae at 3.4 Å resolution and of an initially transcribing complex that additionally contains the DNA template and a 6-nucleotide RNA product. The structures reveal the entire B-reader and protein-nucleic acid interactions, and together with functional data lead to a more complete understanding of transcription initiation. TFIIB partially closes the polymerase cleft to position DNA and assist in its opening. The B-reader does not reach the active site but binds the DNA template strand upstream to assist in the recognition of the initiator sequence and in positioning the transcription start site. TFIIB rearranges active-site residues, induces binding of the catalytic metal ion B, and stimulates initial RNA synthesis allosterically. TFIIB then prevents the emerging DNA-RNA hybrid duplex from tilting, which would impair RNA synthesis. When the RNA grows beyond 6 nucleotides, it is separated from DNA and is directed to its exit tunnel by the B-reader loop. Once the RNA grows to 12-13 nucleotides, it clashes with TFIIB, triggering TFIIB displacement and elongation complex formation. Similar mechanisms may underlie all cellular transcription because all eukaryotic and archaeal RNA polymerases use TFIIB-like factors, and the bacterial initiation factor sigma has TFIIB-like topology and contains the loop region 3.2 that resembles the B-reader loop in location, charge and function. TFIIB and its counterparts may thus account for the two fundamental properties that distinguish RNA from DNA polymerases: primer-independent chain initiation and product separation from the template.


Assuntos
RNA Polimerase II/química , RNA Polimerase II/metabolismo , Fator de Transcrição TFIIB/química , Fator de Transcrição TFIIB/metabolismo , Iniciação da Transcrição Genética , Sequência de Aminoácidos , Biocatálise , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/enzimologia , Relação Estrutura-Atividade , Moldes Genéticos
7.
Nature ; 475(7356): 403-7, 2011 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-21734658

RESUMO

Swi2/Snf2-type ATPases regulate genome-associated processes such as transcription, replication and repair by catalysing the disruption, assembly or remodelling of nucleosomes or other protein-DNA complexes. It has been suggested that ATP-driven motor activity along DNA disrupts target protein-DNA interactions in the remodelling reaction. However, the complex and highly specific remodelling reactions are poorly understood, mostly because of a lack of high-resolution structural information about how remodellers bind to their substrate proteins. Mot1 (modifier of transcription 1 in Saccharomyces cerevisiae, denoted BTAF1 in humans) is a Swi2/Snf2 enzyme that specifically displaces the TATA box binding protein (TBP) from the promoter DNA and regulates transcription globally by generating a highly dynamic TBP pool in the cell. As a Swi2/Snf2 enzyme that functions as a single polypeptide and interacts with a relatively simple substrate, Mot1 offers an ideal system from which to gain a better understanding of this important enzyme family. To reveal how Mot1 specifically disrupts TBP-DNA complexes, we combined crystal and electron microscopy structures of Mot1-TBP from Encephalitozoon cuniculi with biochemical studies. Here we show that Mot1 wraps around TBP and seems to act like a bottle opener: a spring-like array of 16 HEAT (huntingtin, elongation factor 3, protein phosphatase 2A and lipid kinase TOR) repeats grips the DNA-distal side of TBP via loop insertions, and the Swi2/Snf2 domain binds to upstream DNA, positioned to weaken the TBP-DNA interaction by DNA translocation. A 'latch' subsequently blocks the DNA-binding groove of TBP, acting as a chaperone to prevent DNA re-association and ensure efficient promoter clearance. This work shows how a remodelling enzyme can combine both motor and chaperone activities to achieve functional specificity using a conserved Swi2/Snf2 translocase.


Assuntos
Encephalitozoon cuniculi/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteína de Ligação a TATA-Box/química , Proteína de Ligação a TATA-Box/metabolismo , Sítios de Ligação , Cristalização , Cristalografia por Raios X , DNA/química , DNA/genética , DNA/metabolismo , DNA/ultraestrutura , Proteínas Fúngicas/ultraestrutura , Microscopia Eletrônica , Modelos Biológicos , Modelos Moleculares , Regiões Promotoras Genéticas/genética , Conformação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato , Proteína de Ligação a TATA-Box/ultraestrutura , Fator de Transcrição TFIIB/química , Fator de Transcrição TFIIB/metabolismo
8.
Biochem Soc Trans ; 44(4): 1177-82, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27528766

RESUMO

The determination of detailed 3D structures of large and transient multicomponent complexes remains challenging. Here I describe the approaches that were used and developed by our laboratory to achieve structure solution of eukaryotic transcription complexes. I hope this collection serves as a resource for structural biologists seeking solutions for difficult structure determination projects.


Assuntos
Complexos Multiproteicos/química , Conformação Proteica , RNA Polimerase II/química , Fator de Transcrição TFIIB/química , Transcrição Gênica , Microscopia Crioeletrônica , Cristalização , Cristalografia por Raios X , Modelos Moleculares , Complexos Multiproteicos/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIB/metabolismo
9.
Inorg Chem ; 54(12): 5942-8, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26016528

RESUMO

Zinc finger transcription factors are the largest class of metalloproteins in the human genome. Binding of Zn(II) to their canonical Cys2His2, Cys3His1, or Cys4 sites results in metal-induced protein folding events required to achieve their biologically active structures. However, the coupled nature of metal binding and protein folding obscures the individual free energy contributions of each process toward overall zinc finger stabilization. Herein, we separate the energetic contributions of metal-ligand interactions from those of protein-protein interactions using a natural protein scaffold that retains essentially identical structures with and without Zn(II) bound, the 59 amino acid zinc binding domain of human transcription factor IIB (ZBD-TFIIB). The formation constant of Zn(II)-ZBD-TFIIB, which contains a single Cys3His1 site, was determined to be 1.5 × 10(15) M(-1) via fluorimetry and isothermal titration calorimetry. Isothermal titration calorimetry showed that Zn(II) binding is entropically favored at pH 5.5, 7.0, and 8.0 and enthalpically favored at pH 8.0 but slightly enthalpically disfavored at pH 5.5 and 7.0. The conditional dissociation constants of Zn(II)-ZBD-TFIIB and natural Cys3His1 zinc finger proteins were compared to determine the free energy cost of protein folding in the latter. Our analysis reveals that the energetic cost to fold zinc finger proteins is minimal relative to the contribution of Zn(II) binding and suggests that the true role of Zn(II) binding may be to modulate protein dynamics and/or kinetically template the protein folding process.


Assuntos
Dobramento de Proteína , Fator de Transcrição TFIIB/química , Fator de Transcrição TFIIB/metabolismo , Zinco/metabolismo , Sítios de Ligação , Calorimetria/métodos , Humanos , Concentração de Íons de Hidrogênio , Espectrofotometria Ultravioleta , Termodinâmica , Zinco/química
10.
Nature ; 462(7271): 323-30, 2009 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-19820686

RESUMO

To initiate gene transcription, RNA polymerase II (Pol II) requires the transcription factor IIB (B). Here we present the crystal structure of the complete Pol II-B complex at 4.3 A resolution, and complementary functional data. The results indicate the mechanism of transcription initiation, including the transition to RNA elongation. Promoter DNA is positioned over the Pol II active centre cleft with the 'B-core' domain that binds the wall at the end of the cleft. DNA is then opened with the help of the 'B-linker' that binds the Pol II rudder and clamp coiled-coil at the edge of the cleft. The DNA template strand slips into the cleft and is scanned for the transcription start site with the help of the 'B-reader' that approaches the active site. Synthesis of the RNA chain and rewinding of upstream DNA displace the B-reader and B-linker, respectively, to trigger B release and elongation complex formation.


Assuntos
DNA Polimerase II/química , DNA Polimerase II/metabolismo , Modelos Moleculares , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIB/química , Fator de Transcrição TFIIB/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Humanos , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Alinhamento de Sequência , Proteína de Ligação a TATA-Box/química , Proteína de Ligação a TATA-Box/metabolismo
11.
Biochim Biophys Acta ; 1829(3-4): 265-73, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22960599

RESUMO

Eukaryotic RNA polymerases (Pol) I, II, III and archaeal Pol use a related set of general transcription factors to recognize promoter sequences and recruit Pol to promoters and to function at key points in the transcription initiation mechanism. The TFIIB-like general transcription factors (GTFs) function during several important and conserved steps in the initiation pathway for Pols II, III, and archaeal Pol. Until recently, the mechanism of Pol I initiation seemed unique, since it appeared to lack a GTF paralogous to the TFIIB-like proteins. The surprising recent discovery of TFIIB-related Pol I general factors in yeast and humans highlights the evolutionary conservation of transcription initiation mechanisms for all eukaryotic and archaeal Pols. These findings reveal new roles for the function of the Pol I GTFs and insight into the function of TFIIB-related factors. Models for Pol I transcription initiation are reexamined in light of these recent findings. This article is part of a Special Issue entitled: Transcription by Odd Pols.


Assuntos
RNA Polimerase I/metabolismo , Fator de Transcrição TFIIB/metabolismo , Transcrição Gênica , Animais , Eucariotos/metabolismo , Humanos , Domínios e Motivos de Interação entre Proteínas , RNA Polimerase I/química , Homologia de Sequência de Aminoácidos , Fator de Transcrição TFIIB/química
12.
Biochim Biophys Acta ; 1834(1): 342-50, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22906532

RESUMO

Human nucleolar phosphoprotein p140 (hNopp 140) is a highly phosphorylated protein inhibitor of casein kinase 2 (CK2). As in the case of many kinase-inhibitor systems, the inhibitor has been described to belong to the family of intrinsically disordered proteins (IDPs), which often utilize transient structural elements to bind their cognate enzyme. Here we investigated the structural status of this protein both to provide distinct lines of evidence for its disorder and to point out its transient structure potentially involved in interactions and also its tendency to aggregate. Structural disorder of hNopp140 is apparent by its anomalous electrophoretic mobility, protease sensitivity, heat stability, hydrodynamic behavior on size-exclusion chromatography, (1)H NMR spectrum and differential scanning calorimetry scan. hNopp140 has a significant tendency to aggregate and the change of its circular dichroism spectrum in the presence of 0-80% TFE suggests a tendency to form local helical structures. Wide-line NMR measurements suggest the overall disordered character of the protein. In all, our data suggest that this protein falls into the pre-molten globule state of IDPs, with a significant tendency to become ordered in the presence of its partner as demonstrated in the presence of transcription factor IIB (TFIIB).


Assuntos
Proteínas Nucleares/química , Fosfoproteínas/química , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/química , Caseína Quinase II/metabolismo , Dicroísmo Circular , Humanos , Ressonância Magnética Nuclear Biomolecular , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Fator de Transcrição TFIIB/química , Fator de Transcrição TFIIB/metabolismo
13.
Nucleic Acids Res ; 40(14): 6495-507, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22510268

RESUMO

The basal eukaryotic transcription machinery for protein coding genes is highly conserved from unicellular yeast to higher eukaryotes. Whereas TATA-containing promoters in human cells usually contain a single transcription start site (TSS) located ∼ 30 bp downstream of the TATA element, transcription in the yeast Schizosaccharomyces pombe and Saccharomyces cerevisiae typically initiates at multiple sites within a window ranging from 30 to 70 bp or 40 to 200 bp downstream of a TATA element, respectively. By exchanging highly purified factors between reconstituted S. pombe and S. cerevisiae transcription systems, we confirmed previous observations that the dual exchange of RNA polymerase II (RNAPII) and transcription factor IIB (TFIIB) confer the distinct initiation patterns between these yeast species. Surprisingly, however, further genetic and biochemical assays of TFIIB chimeras revealed that TFIIB and the proposed B-finger/reader domain do not play a role in determining the distinct initiation patterns between S. pombe and S. cerevisiae, but rather, these patterns are solely due to differences in RNAPII. These results are discussed within the context of a proposed model for the mechanistic coupling of the efficiency of early phosphodiester bond formation during productive TSS utilization and intrinsic elongation proficiency.


Assuntos
RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Fator de Transcrição TFIIB/metabolismo , Transcrição Gênica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/enzimologia , Schizosaccharomyces/enzimologia , Especificidade da Espécie , Fator de Transcrição TFIIB/química , Sítio de Iniciação de Transcrição
14.
Nucleic Acids Res ; 39(2): 464-74, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20851833

RESUMO

RNA polymerases (RNAPs) require basal transcription factors to assist them during transcription initiation. One of these factors, TFIIB, combines promoter recognition, recruitment of RNAP, promoter melting, start site selection and various post-initiation functions. The ability of 381 site-directed mutants in the TFIIB 'linker domain' to stimulate abortive transcription was systematically quantitated using promoter-independent dinucleotide extension assays. The results revealed two distinct clusters (mjTFIIB E78-R80 and mjTFIIB R90-G94, respectively) that were particularly sensitive to substitutions. In contrast, a short sequence (mjTFIIB A81-K89) between these two clusters tolerated radical single amino acid substitutions; short deletions in that region even caused a marked increase in the ability of TFIIB to stimulate abortive transcription ('superstimulation'). The superstimulating activity did, however, not correlate with increased recruitment of the TFIIB/RNAP complex because substitutions in a particular residue (mjTFIIB K87) increased recruitment by more than 5-fold without affecting the rate of abortive transcript stimulation. Our work demonstrates that highly localized changes within the TFIIB linker have profound, yet surprisingly disconnected, effects on RNAP recruitment, TFIIB/RNAP complex stability and the rate of transcription initiation. The identification of superstimulating TFIIB variants reveals the existence of a previously unknown rate-limiting step acting on the earliest stages of gene expression.


Assuntos
Fator de Transcrição TFIIB/química , Fator de Transcrição TFIIB/metabolismo , Ativação Transcricional , Substituição de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Methanococcales/genética , Mutação , Fenótipo , Estrutura Terciária de Proteína , RNA Polimerase II/metabolismo , Deleção de Sequência , Fator de Transcrição TFIIB/genética
15.
Proc Natl Acad Sci U S A ; 106(32): 13242-7, 2009 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-19666603

RESUMO

In trypanosomes, the production of mRNA relies on the synthesis of the spliced leader (SL) RNA. Expression of the SL RNA is initiated at the only known RNA polymerase II promoter in these parasites. In the pathogenic trypanosome, Trypanosoma brucei, transcription factor IIB (tTFIIB) is essential for SL RNA gene transcription and cell viability, but has a highly divergent primary sequence in comparison to TFIIB in well-studied eukaryotes. Here we describe the 2.3 A resolution structure of the C-terminal domain of tTFIIB (tTFIIB(C)). The tTFIIB(C) structure consists of 2 closely packed helical modules followed by a C-terminal extension of 32 aa. Using the structure as a guide, alanine substitutions of basic residues in regions analogous to functionally important regions of the well-studied eukaryotic TFIIB support conservation of a general mechanism of TFIIB function in eukaryotes. Strikingly, tTFIIB(C) contains additional loops and helices, and, in contrast to the highly basic DNA binding surface of human TFIIB, contains a neutral surface in the corresponding region. These attributes probably mediate trypanosome-specific interactions and have implications for the apparent bidirectional transcription by RNA polymerase II in protein-encoding gene expression in these organisms.


Assuntos
Fator de Transcrição TFIIB/química , Trypanosoma brucei brucei/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , DNA/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica , Dobramento de Proteína , Estabilidade Proteica , Estrutura Terciária de Proteína , Eletricidade Estática , Homologia Estrutural de Proteína , Fator de Transcrição TFIIB/isolamento & purificação , Fator de Transcrição TFIIB/metabolismo , Transcrição Gênica
16.
Nat Methods ; 5(11): 965-71, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18849988

RESUMO

Very often, the positions of flexible domains within macromolecules as well as within macromolecular complexes cannot be determined by standard structural biology methods. To overcome this problem, we developed a method that uses probabilistic data analysis to combine single-molecule measurements with X-ray crystallography data. The method determines not only the most likely position of a fluorescent dye molecule attached to the domain but also the complete three-dimensional probability distribution depicting the experimental uncertainty. With this approach, single-pair fluorescence resonance energy transfer measurements can now be used as a quantitative tool for investigating the position and dynamics of flexible domains within macromolecular complexes. We applied this method to find the position of the 5' end of the nascent RNA exiting transcription elongation complexes of yeast (Saccharomyces cerevisiae) RNA polymerase II and studied the influence of transcription factor IIB on the position of the RNA.


Assuntos
Cristalografia por Raios X/métodos , Nanotecnologia/instrumentação , RNA Polimerase II/metabolismo , RNA/metabolismo , Fator de Transcrição TFIIB/metabolismo , Simulação por Computador , Transferência Ressonante de Energia de Fluorescência , Modelos Moleculares , Conformação Molecular , Ligação Proteica , RNA/biossíntese , RNA/química , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIB/química
17.
Proc Natl Acad Sci U S A ; 105(1): 135-40, 2008 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-18162559

RESUMO

Single-pair fluorescence resonance energy transfer was used to track RNA exiting from RNA polymerase II (Pol II) in elongation complexes. Measuring the distance between the RNA 5' end and three known locations within the elongation complex allows us determine its position by means of triangulation. RNA leaves the polymerase active center cleft via the previously proposed exit tunnel and then disengages from the enzyme surface. When the RNA reaches lengths of 26 and 29 nt, its 5' end associates with Pol II at the base of the dock domain. Because the initiation factor TFIIB binds to the dock domain and exit tunnel, exiting RNA may prevent TFIIB reassociation during elongation. RNA further extends toward the linker connecting to the polymerase C-terminal repeat domain (CTD), which binds the 5'-capping enzyme and other RNA processing factors.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas Fúngicas/química , RNA Polimerase II/química , RNA Mensageiro/química , Cisteína/química , DNA Polimerase II/química , Lasers , Modelos Moleculares , Modelos Estatísticos , Conformação Molecular , Mutagênese Sítio-Dirigida , Mutação , Oligonucleotídeos/química , Estrutura Terciária de Proteína , RNA/química , Fator de Transcrição TFIIB/química
18.
J Biol Chem ; 284(37): 24754-66, 2009 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-19590095

RESUMO

The "B-finger" of transcription factor IIB (TFIIB) is highly conserved and believed to play a role in the initiation process. We performed alanine substitutions across the B-finger of human TFIIB, made change-of-charge mutations in selected residues, and substituted the B-finger sequence from other organisms. Mutant proteins were examined in two minimal promoter systems (containing only RNA polymerase II, TATA-binding protein, and TFIIB) and in a complex system, using TFIIB-immunodepleted HeLa cell nuclear extract (NE). Mutations in conserved residues located on the sides of the B-finger had the greatest effect on activity in both minimal promoter systems, with mutations in residues Glu-51 and Arg-66 eliminating activity. The double change-of-charge mutant (E51R:R66E) did not show activity in either minimal promoter system. Mutations in the nonconserved residues at the tip of the B-finger did not significantly affect activity. However, all of the mutations in the B-finger showed at least 25% activity in the HeLa cell NE. Chimeric proteins, containing B-finger sequences from species with conserved residues on the side of the B-finger, showed wild-type activity in a minimal promoter system and in the HeLa cell NE. However, chimeric proteins whose sequence showed divergence on the sides of the B-finger had reduced activity. Transcription factor IIF (TFIIF) partially restored activity of the inactive mutants in the minimal promoter system, suggesting that TFIIF in HeLa cell NE helps to rescue the inactive mutations by interacting with either the B-finger or another component of the initiation complex that is influenced by the B-finger.


Assuntos
Regiões Promotoras Genéticas , Fator de Transcrição TFIIB/metabolismo , Sequência de Aminoácidos , Soluções Tampão , Núcleo Celular/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Mutagênese , Mutação , Peptídeos/química , Plasmídeos/metabolismo , Estrutura Terciária de Proteína , Fator de Transcrição TFIIB/química , Transcrição Gênica
19.
Nature ; 424(6951): 965-9, 2003 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-12931194

RESUMO

Acetylation is a well-known regulatory post-translational modification, but a biological function for acetylation in regulating basal transcription factors has not been reported. Here we show that the general transcription factor TFIIB, which is required for the initiation of eukaryotic polymerase II transcription, is acetylated. TFIIB is also an autoacetyltransferase, although it shares no sequence homology with any known acetyltransferases. In the absence of other enzymes, it binds acetyl-coenzyme A (acetyl-CoA), and catalyses the transfer of the acetyl group onto a specific lysine residue (K238). Both recombinant and cellular TFIIB can autoacetylate, markedly stabilizing the interaction between TFIIB and transcription factor TFIIF and activating transcription in vitro and in cells. A K238A mutant, which cannot be autoacetylated, does not show this activation of transcription. Our findings suggest that there is a regulatory pathway controlling acetylation of TFIIB, and they link acetyl-CoA with basal gene transcription.


Assuntos
Acetiltransferases/metabolismo , Regulação da Expressão Gênica , Fator de Transcrição TFIIB/metabolismo , Transcrição Gênica , Acetilcoenzima A/metabolismo , Acetilação , Acetiltransferases/química , Acetiltransferases/genética , Sequência de Aminoácidos , Células HeLa , Humanos , Cinética , Dados de Sequência Molecular , Mutação/genética , Ligação Proteica , Estrutura Terciária de Proteína , Fator de Transcrição TFIIB/química , Fator de Transcrição TFIIB/genética , Fatores de Transcrição TFII/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA