Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 882
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 121(5): 895-911, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38372210

RESUMO

The site-specific recombination pathway of bacteriophage λ encompasses isoenergetic but highly directional and tightly regulated integrative and excisive reactions that integrate and excise the vial chromosome into and out of the bacterial chromosome. The reactions require 240 bp of phage DNA and 21 bp of bacterial DNA comprising 16 protein binding sites that are differentially used in each pathway by the phage-encoded Int and Xis proteins and the host-encoded integration host factor and factor for inversion stimulation proteins. Structures of higher-order protein-DNA complexes of the four-way Holliday junction recombination intermediates provided clarifying insights into the mechanisms, directionality, and regulation of these two pathways, which are tightly linked to the physiology of the bacterial host cell. Here we review our current understanding of the mechanisms responsible for regulating and executing λ site-specific recombination, with an emphasis on key studies completed over the last decade.


Assuntos
Bacteriófago lambda , Recombinação Genética , Bacteriófago lambda/genética , Bacteriófago lambda/fisiologia , DNA Viral/genética , DNA Viral/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , DNA Bacteriano/metabolismo , DNA Bacteriano/genética , Sítios de Ligação , Fatores Hospedeiros de Integração/metabolismo , Fatores Hospedeiros de Integração/genética
2.
Nucleic Acids Res ; 51(9): 4519-4535, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37078593

RESUMO

CRISPR-associated transposases (CASTs) direct DNA integration downstream of target sites using the RNA-guided DNA binding activity of nuclease-deficient CRISPR-Cas systems. Transposition relies on several key protein-protein and protein-DNA interactions, but little is known about the explicit sequence requirements governing efficient transposon DNA integration activity. Here, we exploit pooled library screening and high-throughput sequencing to reveal novel sequence determinants during transposition by the Type I-F Vibrio cholerae CAST system (VchCAST). On the donor DNA, large transposon end libraries revealed binding site nucleotide preferences for the TnsB transposase, as well as an additional conserved region that encoded a consensus binding site for integration host factor (IHF). Remarkably, we found that VchCAST requires IHF for efficient transposition, thus revealing a novel cellular factor involved in CRISPR-associated transpososome assembly. On the target DNA, we uncovered preferred sequence motifs at the integration site that explained previously observed heterogeneity with single-base pair resolution. Finally, we exploited our library data to design modified transposon variants that enable in-frame protein tagging. Collectively, our results provide new clues about the assembly and architecture of the paired-end complex formed between TnsB and the transposon DNA, and inform the design of custom payload sequences for genome engineering applications with CAST systems.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Elementos de DNA Transponíveis , RNA , Sítios de Ligação/genética , Elementos de DNA Transponíveis/genética , Fatores Hospedeiros de Integração/genética , Transposases/genética , Transposases/metabolismo
3.
Methods ; 219: 68-72, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37769928

RESUMO

The transcription, replication, packaging, and repair of genetic information ubiquitously involves DNA:protein interactions and other biological processes that require local mechanical distortions of DNA. The energetics of such DNA-deforming processes are thus dependent on the local mechanical properties of DNA such as bendability or torsional rigidity. Such properties, in turn, depend on sequence, making it possible for sequence to regulate diverse biological processes by controlling the local mechanical properties of DNA. A deeper understanding of how such a "mechanical code" can encode broad regulatory information has historically been hampered by the absence of technology to measure in high throughput how local DNA mechanics varies with sequence along large regions of the genome. This was overcome in a recently developed technique called loop-seq. Here we describe a variant of the loop-seq protocol, that permits making rapid flexibility measurements in low-throughput, without the need for next-generation sequencing. We use our method to validate a previous prediction about how the binding site for the bacterial transcription factor Integration Host Factor (IHF) might serve as a rigid roadblock, preventing efficient enhancer-promoter contacts in IHF site containing promoters in E. coli, which can be relieved by IHF binding.


Assuntos
Proteínas de Bactérias , Escherichia coli , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Sequência de Bases , Fatores Hospedeiros de Integração/genética , Fatores Hospedeiros de Integração/metabolismo , Regiões Promotoras Genéticas , DNA/genética , DNA/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Sítios de Ligação
4.
Mol Cell ; 62(6): 824-833, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27211867

RESUMO

Bacteria and archaea employ adaptive immunity against foreign genetic elements using CRISPR-Cas systems. To generate immunological memory, the Cas1-Cas2 protein complex captures 30-40 base pair segments of foreign DNA and catalyzes their integration into the host genome as unique spacer sequences. Although spacers are inserted strictly at the A-T-rich leader end of CRISPR loci in vivo, the molecular mechanism of leader-specific spacer integration remains poorly understood. Here we show that the E. coli integration host factor (IHF) protein is required for spacer acquisition in vivo and for integration into linear DNA in vitro. IHF binds to the leader sequence and induces a sharp DNA bend, allowing the Cas1-Cas2 integrase to catalyze the first integration reaction at the leader-repeat border. Together, these results reveal that Cas1-Cas2-mediated spacer integration requires IHF-induced target DNA bending and explain the elusive role of CRISPR leader sequences during spacer acquisition.


Assuntos
Imunidade Adaptativa , Proteínas Associadas a CRISPR/imunologia , Sistemas CRISPR-Cas/imunologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/imunologia , DNA Bacteriano/imunologia , Endodesoxirribonucleases/imunologia , Endonucleases/imunologia , Proteínas de Escherichia coli/imunologia , Escherichia coli/imunologia , Memória Imunológica , Fatores Hospedeiros de Integração/imunologia , Sítios de Ligação , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fatores Hospedeiros de Integração/genética , Fatores Hospedeiros de Integração/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Relação Estrutura-Atividade , Fatores de Tempo
5.
PLoS Pathog ; 17(1): e1009209, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33465146

RESUMO

Salmonella Typhi is the primary causative agent of typhoid fever; an acute systemic infection that leads to chronic carriage in 3-5% of individuals. Chronic carriers are asymptomatic, difficult to treat and serve as reservoirs for typhoid outbreaks. Understanding the factors that contribute to chronic carriage is key to development of novel therapies to effectively resolve typhoid fever. Herein, although we observed no distinct clustering of chronic carriage isolates via phylogenetic analysis, we demonstrated that chronic isolates were phenotypically distinct from acute infection isolates. Chronic carriage isolates formed significantly thicker biofilms with greater biomass that correlated with significantly higher relative levels of extracellular DNA (eDNA) and DNABII proteins than biofilms formed by acute infection isolates. Importantly, extracellular DNABII proteins include integration host factor (IHF) and histone-like protein (HU) that are critical to the structural integrity of bacterial biofilms. In this study, we demonstrated that the biofilm formed by a chronic carriage isolate in vitro, was susceptible to disruption by a specific antibody against DNABII proteins, a successful first step in the development of a therapeutic to resolve chronic carriage.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , DnaB Helicases/metabolismo , Matriz Extracelular/metabolismo , Fatores Hospedeiros de Integração/metabolismo , Salmonella typhi/patogenicidade , Febre Tifoide/microbiologia , Anticorpos Monoclonais/farmacologia , Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , DnaB Helicases/antagonistas & inibidores , DnaB Helicases/genética , Humanos , Fatores Hospedeiros de Integração/genética , Salmonella typhi/classificação , Salmonella typhi/genética , Febre Tifoide/tratamento farmacológico , Febre Tifoide/imunologia
6.
Phys Rev Lett ; 130(5): 058203, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36800460

RESUMO

In spite of the nanoscale and single-molecule insights into nucleoid associated proteins (NAPs), their role in modulating the mesoscale viscoelasticity of entangled DNA has been overlooked so far. By combining microrheology and molecular dynamics simulation, we find that the abundant NAP "integration host factor" (IHF) lowers the viscosity of entangled λDNA 20-fold at physiological concentrations and stoichiometries. Our results suggest that IHF may play a previously unappreciated role in resolving DNA entanglements and in turn may be acting as a "genomic fluidizer" for bacterial genomes.


Assuntos
DNA , Genoma Bacteriano , Fatores Hospedeiros de Integração/genética , Fatores Hospedeiros de Integração/metabolismo , Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo
7.
Nucleic Acids Res ; 49(15): 8684-8698, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34352078

RESUMO

Nucleoid-associated proteins (NAPs) are crucial in organizing prokaryotic DNA and regulating genes. Vital to these activities are complex nucleoprotein structures, however, how these form remains unclear. Integration host factor (IHF) is an Escherichia coli NAP that creates very sharp bends in DNA at sequences relevant to several functions including transcription and recombination, and is also responsible for general DNA compaction when bound non-specifically. We show that IHF-DNA structural multimodality is more elaborate than previously thought, and provide insights into how this drives mechanical switching towards strongly bent DNA. Using single-molecule atomic force microscopy and atomic molecular dynamics simulations we find three binding modes in roughly equal proportions: 'associated' (73° of DNA bend), 'half-wrapped' (107°) and 'fully-wrapped' (147°), only the latter occurring with sequence specificity. We show IHF bridges two DNA double helices through non-specific recognition that gives IHF a stoichiometry greater than one and enables DNA mesh assembly. We observe that IHF-DNA structural multiplicity is driven through non-specific electrostatic interactions that we anticipate to be a general NAP feature for physical organization of chromosomes.


Assuntos
DNA Bacteriano/genética , Fatores Hospedeiros de Integração/genética , Conformação de Ácido Nucleico , Nucleoproteínas/genética , Empacotamento do DNA/genética , DNA Bacteriano/ultraestrutura , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , Escherichia coli/genética , Fatores Hospedeiros de Integração/ultraestrutura , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Nucleoproteínas/ultraestrutura , Imagem Individual de Molécula
8.
Nucleic Acids Res ; 49(2): 776-790, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33337488

RESUMO

Bacterial pathogenic growth requires a swift coordination of pathogenicity function with various kinds of environmental stress encountered in the course of host infection. Among the factors critical for bacterial adaptation are changes of DNA topology and binding effects of nucleoid-associated proteins transducing the environmental signals to the chromosome and coordinating the global transcriptional response to stress. In this study, we use the model phytopathogen Dickeya dadantii to analyse the organisation of transcription by the nucleoid-associated heterodimeric protein IHF. We inactivated the IHFα subunit of IHF thus precluding the IHFαß heterodimer formation and determined both phenotypic effects of ihfA mutation on D. dadantii virulence and the transcriptional response under various conditions of growth. We show that ihfA mutation reorganises the genomic expression by modulating the distribution of chromosomal DNA supercoils at different length scales, thus affecting many virulence genes involved in both symptomatic and asymptomatic phases of infection, including those required for pectin catabolism. Altogether, we propose that IHF heterodimer is a 'transcriptional domainin' protein, the lack of which impairs the spatiotemporal organisation of transcriptional stress-response domains harbouring various virulence traits, thus abrogating the pathogenicity of D. dadantii.


Assuntos
Proteínas de Bactérias/fisiologia , Dickeya/patogenicidade , Regulação Bacteriana da Expressão Gênica , Fatores Hospedeiros de Integração/fisiologia , Proteínas de Bactérias/genética , Sítios de Ligação , Celulase/biossíntese , Celulase/genética , Cichorium intybus/microbiologia , DNA Bacteriano/metabolismo , DNA Super-Helicoidal/metabolismo , Dickeya/genética , Dickeya/fisiologia , Dimerização , Estudos de Associação Genética , Fatores Hospedeiros de Integração/química , Fatores Hospedeiros de Integração/genética , Movimento (Física) , Peptídeo Hidrolases/biossíntese , Peptídeo Hidrolases/genética , Plasmídeos , Poligalacturonase/biossíntese , Poligalacturonase/genética , Regiões Promotoras Genéticas , Proteínas Recombinantes/metabolismo , Sideróforos/biossíntese , Sideróforos/genética , Transcrição Gênica/genética , Transcriptoma , Virulência/genética
9.
Nucleic Acids Res ; 49(22): 12820-12835, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34871419

RESUMO

In Escherichia coli, the replication initiator DnaA oscillates between an ATP- and an ADP-bound state in a cell cycle-dependent manner, supporting regulation for chromosome replication. ATP-DnaA cooperatively assembles on the replication origin using clusters of low-affinity DnaA-binding sites. After initiation, DnaA-bound ATP is hydrolyzed, producing initiation-inactive ADP-DnaA. For the next round of initiation, ADP-DnaA binds to the chromosomal locus DARS2, which promotes the release of ADP, yielding the apo-DnaA to regain the initiation activity through ATP binding. This DnaA reactivation by DARS2 depends on site-specific binding of IHF (integration host factor) and Fis proteins and IHF binding to DARS2 occurs specifically during pre-initiation. Here, we reveal that Fis binds to an essential region in DARS2 specifically during pre-initiation. Further analyses demonstrate that ATP-DnaA, but not ADP-DnaA, oligomerizes on a cluster of low-affinity DnaA-binding sites overlapping the Fis-binding region, which competitively inhibits Fis binding and hence the DARS2 activity. DiaA (DnaA initiator-associating protein) stimulating ATP-DnaA assembly enhances the dissociation of Fis. These observations lead to a negative feedback model where the activity of DARS2 is repressed around the time of initiation by the elevated ATP-DnaA level and is stimulated following initiation when the ATP-DnaA level is reduced.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fator Proteico para Inversão de Estimulação/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação/genética , Ciclo Celular/genética , Cromossomos Bacterianos/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Fator Proteico para Inversão de Estimulação/genética , Retroalimentação Fisiológica , Fatores Hospedeiros de Integração/genética , Fatores Hospedeiros de Integração/metabolismo , Modelos Genéticos , Ligação Proteica , Origem de Replicação/genética , Homologia de Sequência do Ácido Nucleico
10.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37511331

RESUMO

This review summarizes current knowledge about the mechanisms of timely binding and dissociation of two nucleoid proteins, IHF and Fis, which play fundamental roles in the initiation of chromosomal DNA replication in Escherichia coli. Replication is initiated from a unique replication origin called oriC and is tightly regulated so that it occurs only once per cell cycle. The timing of replication initiation at oriC is rigidly controlled by the timely binding of the initiator protein DnaA and IHF to oriC. The first part of this review presents up-to-date knowledge about the timely stabilization of oriC-IHF binding at oriC during replication initiation. Recent advances in our understanding of the genome-wide profile of cell cycle-coordinated IHF binding have revealed the oriC-specific stabilization of IHF binding by ATP-DnaA oligomers at oriC and by an initiation-specific IHF binding consensus sequence at oriC. The second part of this review summarizes the mechanism of the timely regulation of DnaA activity via the chromosomal loci DARS2 (DnaA-reactivating sequence 2) and datA. The timing of replication initiation at oriC is controlled predominantly by the phosphorylated form of the adenosine nucleotide bound to DnaA, i.e., ATP-DnaA, but not ADP-ADP, is competent for initiation. Before initiation, DARS2 increases the level of ATP-DnaA by stimulating the exchange of ADP for ATP on DnaA. This DARS2 function is activated by the site-specific and timely binding of both IHF and Fis within DARS2. After initiation, another chromosomal locus, datA, which inactivates ATP-DnaA by stimulating ATP hydrolysis, is activated by the timely binding of IHF. A recent study has shown that ATP-DnaA oligomers formed at DARS2-Fis binding sites competitively dissociate Fis via negative feedback, whereas IHF regulation at DARS2 and datA still remains to be investigated. This review summarizes the current knowledge about the specific role of IHF and Fis in the regulation of replication initiation and proposes a mechanism for the regulation of timely IHF binding and dissociation at DARS2 and datA.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fatores Hospedeiros de Integração/genética , Fatores Hospedeiros de Integração/metabolismo , Origem de Replicação , Replicação do DNA , Ciclo Celular , Trifosfato de Adenosina/metabolismo , DNA Bacteriano/genética , Fator Proteico para Inversão de Estimulação/genética , Fator Proteico para Inversão de Estimulação/metabolismo
11.
Nucleic Acids Res ; 48(9): 5006-5015, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32255177

RESUMO

The assembly of double-stranded DNA viruses, from phages to herpesviruses, is strongly conserved. Terminase enzymes processively excise and package monomeric genomes from a concatemeric DNA substrate. The enzymes cycle between a stable maturation complex that introduces site-specific nicks into the duplex and a dynamic motor complex that rapidly translocates DNA into a procapsid shell, fueled by ATP hydrolysis. These tightly coupled reactions are catalyzed by terminase assembled into two functionally distinct nucleoprotein complexes; the maturation complex and the packaging motor complex, respectively. We describe the effects of nucleotides on the assembly of a catalytically competent maturation complex on viral DNA, their effect on maturation complex stability and their requirement for the transition to active packaging motor complex. ATP plays a major role in regulating all of these activities and may serve as a 'nucleotide switch' that mediates transitions between the two complexes during processive genome packaging. These biological processes are recapitulated in all of the dsDNA viruses that package monomeric genomes from concatemeric DNA substrates and the nucleotide switch mechanism may have broad biological implications with respect to virus assembly mechanisms.


Assuntos
Trifosfato de Adenosina/metabolismo , Genoma Viral , Montagem de Vírus , Nucleotídeos de Adenina/metabolismo , Bacteriófago lambda/enzimologia , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Capsídeo/metabolismo , DNA Viral/metabolismo , Endodesoxirribonucleases/metabolismo , Proteínas de Escherichia coli/fisiologia , Fatores Hospedeiros de Integração/fisiologia
12.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36614023

RESUMO

Integration host factor (IHF) is a nucleoid-associated protein involved in DNA packaging, integration of viral DNA and recombination. IHF binds with nanomolar affinity to duplex DNA containing a 13 bp consensus sequence, inducing a bend of ~160° upon binding. We determined that IHF binds to DNA Four-way or Holliday junctions (HJ) with high affinity regardless of the presence of the consensus sequence, signifying a structure-based mechanism of recognition. Junctions, important intermediates in DNA repair and homologous recombination, are dynamic and can adopt either an open or stacked conformation, where the open conformation facilitates branch migration and strand exchange. Using ensemble and single molecule Förster resonance energy transfer (FRET) methods, we investigated IHF-induced changes in the population distribution of junction conformations and determined that IHF binding shifts the population to the open conformation. Further analysis of smFRET dynamics revealed that even in the presence of protein, the junctions remain dynamic as fast transitions are observed for the protein-bound open state. Protein binding alters junction conformational dynamics, as cross correlation analyses reveal the protein slows the transition rate at 1 mM Mg2+ but accelerates the transition rate at 10 mM Mg2+. Stopped flow kinetic experiments provide evidence for two binding steps, a rapid, initial binding step followed by a slower step potentially associated with a conformational change. These measurements also confirm that the protein remains bound to the junction during the conformer transitions and further suggest that the protein forms a partially dissociated state that allows junction arms to be dynamic. These findings, which demonstrate that IHF binds HJs with high affinity and stabilizes junctions in the open conformation, suggest that IHF may play multiple roles in the processes of integration and recombination in addition to stabilizing bacterial biofilms.


Assuntos
DNA Cruciforme , Transferência Ressonante de Energia de Fluorescência , DNA Cruciforme/genética , Fatores Hospedeiros de Integração/genética , Fatores Hospedeiros de Integração/química , Fatores Hospedeiros de Integração/metabolismo , Conformação de Ácido Nucleico , DNA Viral
13.
J Struct Biol ; 209(3): 107434, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31846718

RESUMO

In bacteria, nucleoid associated proteins (NAPs) take part in active chromosome organization by supercoil management, three-dimensional DNA looping and direct transcriptional control. Mycobacterial integration host factor (mIHF, rv1388) is a NAP restricted to Actinobacteria and essential for survival of the human pathogen Mycobacterium tuberculosis. We show in vitro that DNA binding by mIHF strongly stabilizes the protein and increases its melting temperature. The structure obtained by Nuclear Magnetic Resonance (NMR) spectroscopy characterizes mIHF as a globular protein with a protruding alpha helix and a disordered N-terminus, similar to Streptomyces coelicolor IHF (sIHF). NMR revealed no residues of high flexibility, suggesting that mIHF is a rigid protein overall that does not undergo structural rearrangements. We show that mIHF only binds to double stranded DNA in solution, through two DNA binding sites (DBSs) similar to those identified in the X-ray structure of sIHF. According to Atomic Force Microscopy, mIHF is able to introduce left-handed loops of ca. 100 nm size (~300 bp) in supercoiled cosmids, thereby unwinding and relaxing the DNA.


Assuntos
Proteínas de Ligação a DNA/ultraestrutura , Fatores Hospedeiros de Integração/ultraestrutura , Mycobacterium tuberculosis/genética , Tuberculose/microbiologia , Sítios de Ligação/genética , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Fatores Hospedeiros de Integração/genética , Espectroscopia de Ressonância Magnética , Microscopia de Força Atômica , Mycobacterium tuberculosis/patogenicidade , Conformação Proteica em alfa-Hélice/genética , Streptomyces coelicolor/genética , Tuberculose/genética
14.
J Biol Chem ; 294(29): 11311-11322, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31171718

RESUMO

Site-selective CRISPR array expansion at the origin of bacterial adaptive immunity relies on recognition of sequence-dependent DNA structures by the conserved Cas1-Cas2 integrase. Off-target integration of a new spacer sequence outside canonical CRISPR arrays has been described in vitro However, this nonspecific integration activity is rare in vivo Here, we designed gel assays to monitor fluorescently labeled protospacer insertion in a supercoiled 3-kb plasmid harboring a minimal CRISPR locus derived from the Escherichia coli type I-E system. This assay enabled us to distinguish and quantify target and off-target insertion events catalyzed by E. coli Cas1-Cas2 integrase. We show that addition of the ubiquitous polyamine spermidine or of another polyamine, spermine, significantly alters the ratio between target and off-target insertions. Notably, addition of 2 mm spermidine quenched the off-target spacer insertion rate by a factor of 20-fold, and, in the presence of integration host factor, spermidine also increased insertion at the CRISPR locus 1.5-fold. The observation made in our in vitro system that spermidine strongly decreases nonspecific activity of Cas1-Cas2 integrase outside the leader-proximal region of a CRISPR array suggests that this polyamine plays a potential role in the fidelity of the spacer integration also in vivo.


Assuntos
Sistemas CRISPR-Cas , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Integrases/metabolismo , Espermidina/farmacologia , Sítios de Ligação , DNA Bacteriano/metabolismo , DNA Super-Helicoidal/metabolismo , Escherichia coli/enzimologia , Fatores Hospedeiros de Integração/metabolismo
15.
Mol Microbiol ; 112(4): 1066-1082, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31361051

RESUMO

Integrative and conjugative elements (ICEs) are mobile genetic elements that transfer from cell to cell by conjugation (like plasmids) and integrate into the chromosomes of bacterial hosts (like lysogenic phages or transposons). ICEs are prevalent in bacterial chromosomes and play a major role in bacterial evolution by promoting horizontal gene transfer. Exclusion prevents the redundant transfer of conjugative elements into host cells that already contain a copy of the element. Exclusion has been characterized mostly for conjugative elements of Gram-negative bacteria. Here, we report the identification and characterization of an exclusion mechanism in ICEBs1 from the Gram-positive bacterium Bacillus subtilis. We found that cells containing ICEBs1 inhibit the activity of the ICEBs1-encoded conjugation machinery in other cells. This inhibition (exclusion) was specific to the cognate conjugation machinery and the ICEBs1 gene yddJ was both necessary and sufficient to mediate exclusion by recipient cells. Through a mutagenesis and enrichment screen, we identified exclusion-resistant mutations in the ICEBs1 gene conG. Using genes from a heterologous but related ICE, we found that the exclusion specificity was determined by ConG and YddJ. Finally, we found that under conditions that support conjugation, exclusion provides a selective advantage to the element and its host cells.


Assuntos
Bacillus subtilis/genética , Conjugação Genética/genética , Transferência Genética Horizontal/genética , Proteínas de Bactérias/genética , Cromossomos Bacterianos/genética , Replicação do DNA/genética , DNA Bacteriano/genética , Fatores Hospedeiros de Integração/genética , Plasmídeos/genética
16.
Nucleic Acids Res ; 46(4): 1741-1755, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29267885

RESUMO

The dynamics and mechanism of how site-specific DNA-bending proteins initially interrogate potential binding sites prior to recognition have remained elusive for most systems. Here we present these dynamics for Integration Host factor (IHF), a nucleoid-associated architectural protein, using a µs-resolved T-jump approach. Our studies show two distinct DNA-bending steps during site recognition by IHF. While the faster (∼100 µs) step is unaffected by changes in DNA or protein sequence that alter affinity by >100-fold, the slower (1-10 ms) step is accelerated ∼5-fold when mismatches are introduced at DNA sites that are sharply kinked in the specific complex. The amplitudes of the fast phase increase when the specific complex is destabilized and decrease with increasing [salt], which increases specificity. Taken together, these results indicate that the fast phase is non-specific DNA bending while the slow phase, which responds only to changes in DNA flexibility at the kink sites, is specific DNA kinking during site recognition. Notably, the timescales for the fast phase overlap with one-dimensional diffusion times measured for several proteins on DNA, suggesting that these dynamics reflect partial DNA bending during interrogation of potential binding sites by IHF as it scans DNA.


Assuntos
DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Fatores Hospedeiros de Integração/metabolismo , Pareamento Incorreto de Bases , Pareamento de Bases , Sítios de Ligação , DNA/química , Proteínas de Escherichia coli/química , Transferência Ressonante de Energia de Fluorescência , Fatores Hospedeiros de Integração/química , Cinética , Mutação , Ligação Proteica
17.
Nucleic Acids Res ; 46(3): 1007-1020, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29228332

RESUMO

The CRISPR-Cas system for prokaryotic adaptive immunity provides RNA-mediated protection from viruses and mobile genetic elements. Adaptation is dependent on the Cas1 and Cas2 proteins along with varying accessory proteins. Here we analyse the process in Sulfolobus solfataricus, showing that while Cas1 and Cas2 catalyze spacer integration in vitro, host factors are required for specificity. Specific integration also requires at least 400 bp of the leader sequence, and is dependent on the presence of hydrolysable ATP, suggestive of an active process that may involve DNA remodelling. Specific spacer integration is associated with processing of prespacer 3' ends in a PAM-dependent manner. This is reflected in PAM-dependent processing of prespacer 3' ends in vitro in the presence of cell lysate or the Cas4 nuclease, in a reaction consistent with PAM-directed binding and protection of prespacer DNA. These results highlight the diverse interplay between CRISPR-Cas elements and host proteins across CRISPR types.


Assuntos
Proteínas Arqueais/genética , Sistemas CRISPR-Cas , DNA Intergênico/genética , Fatores Hospedeiros de Integração/genética , RNA Guia de Cinetoplastídeos/genética , Sulfolobus solfataricus/genética , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/metabolismo , Sequência de Bases , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Cromatina/química , Cromatina/metabolismo , Clonagem Molecular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA Arqueal , DNA Intergênico/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Fatores Hospedeiros de Integração/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sulfolobus solfataricus/metabolismo
18.
PLoS Genet ; 13(12): e1006775, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29232693

RESUMO

Retroviruses and Long Terminal Repeat (LTR)-retrotransposons have distinct patterns of integration sites. The oncogenic potential of retrovirus-based vectors used in gene therapy is dependent on the selection of integration sites associated with promoters. The LTR-retrotransposon Tf1 of Schizosaccharomyces pombe is studied as a model for oncogenic retroviruses because it integrates into the promoters of stress response genes. Although integrases (INs) encoded by retroviruses and LTR-retrotransposons are responsible for catalyzing the insertion of cDNA into the host genome, it is thought that distinct host factors are required for the efficiency and specificity of integration. We tested this hypothesis with a genome-wide screen of host factors that promote Tf1 integration. By combining an assay for transposition with a genetic assay that measures cDNA recombination we could identify factors that contribute differentially to integration. We utilized this assay to test a collection of 3,004 S. pombe strains with single gene deletions. Using these screens and immunoblot measures of Tf1 proteins, we identified a total of 61 genes that promote integration. The candidate integration factors participate in a range of processes including nuclear transport, transcription, mRNA processing, vesicle transport, chromatin structure and DNA repair. Two candidates, Rhp18 and the NineTeen complex were tested in two-hybrid assays and were found to interact with Tf1 IN. Surprisingly, a number of pathways we identified were found previously to promote integration of the LTR-retrotransposons Ty1 and Ty3 in Saccharomyces cerevisiae, indicating the contribution of host factors to integration are common in distantly related organisms. The DNA repair factors are of particular interest because they may identify the pathways that repair the single stranded gaps flanking the sites of strand transfer following integration of LTR retroelements.


Assuntos
Fatores Hospedeiros de Integração/genética , Recombinação Genética , Retroelementos/genética , Sequências Repetidas Terminais/genética , Ubiquitina-Proteína Ligases/genética , Reparo do DNA/genética , Eucariotos/genética , Regulação Fúngica da Expressão Gênica , Integrases/genética , Regiões Promotoras Genéticas , DNA Polimerase Dirigida por RNA/genética , Retroviridae/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética
19.
J Basic Microbiol ; 60(2): 136-148, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32011760

RESUMO

Histone-like nucleoid-structuring protein (H-NS) and integration host factor (IHF) are major nucleoid-associated proteins, and DnaA, a replication initiator, may also be related with nucleoid compaction. It has been shown that protein-dependent DNA compaction is related with many aspects of bacterial physiology, including transcription, DNA replication, and site-specific recombination. However, the mechanism of bacterial physiology resulting from nucleoid compaction remains unknown. Here, we show that H-NS is important for correct nucleoid compaction in a medium-independent manner. H-NS-mediated nucleoid compaction is not required for correct cell division, but the latter is dependent on H-NS in rich medium. Further, it is found that the IHFα-mediated nucleoid compaction is needed for correct cell division, and the effect is dependent on medium. Also, we show that the effects of H-NS and IHF on nucleoid compaction are cumulative. Interestingly, DnaA also plays an important role in nucleoid compaction, and the effect of DnaA on nucleoid compaction appears to be related to cell division in a medium-dependent manner. The results presented here suggest that scrambled initiation of replication, improper cell division, and slow growth is likely associated with disturbances in nucleoid organization directly or indirectly.


Assuntos
Proteínas de Bactérias/genética , Divisão Celular , Replicação do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Escherichia coli/genética , Escherichia coli/citologia , Proteínas de Fímbrias/genética , Fatores Hospedeiros de Integração/genética , Cromossomos Bacterianos/genética , Meios de Cultura , DNA Bacteriano/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica
20.
Mol Plant Microbe Interact ; 32(3): 325-335, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30226395

RESUMO

Dickeya zeae is a globally important pathogenic bacterium that infects many crops, including rice, maize, potato, and banana. Bacterial foot rot of rice caused by D. zeae is one of the most important bacterial diseases of rice in China and some Southeast Asian countries. To investigate the functions of integration host factor (IHF) in D. zeae, we generated knockout mutants of ihfA and ihfB. Phenotypic assays showed that both the ΔihfA and ΔihfB strains had greatly reduced mobility, biofilm formation, extracellular protease, and pectinase activities, and toxin production compared with the wild-type strain. In addition, the mutants did not inhibit the germination of rice seeds, failed to cause soft rot in potatoes and a hypersensitive response in tobacco, and were avirulent in rice. Quantitative reverse-transcription polymerase chain reaction analysis demonstrated that IHF positively regulates the expression of zmsA, hrpN/Y, pelA/B/C, pehX, celZ, prtG, fliC, and DGC (diguanylate cyclase). Electrophoretic mobility shift assays further confirmed that IhfA binds to the promoter region of the DGC gene and may alter the levels of a second bacterial messenger, c-di-GMP, to regulate the pathogenicity or other physiological functions of D. zeae. In summary, IHF is an important integrated regulator of pathogenicity in D. zeae.


Assuntos
Proteínas de Bactérias , Biofilmes , Gammaproteobacteria , Fatores Hospedeiros de Integração , Macrolídeos , Poliaminas , Virulência , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , China , Gammaproteobacteria/enzimologia , Gammaproteobacteria/patogenicidade , Gammaproteobacteria/fisiologia , Técnicas de Inativação de Genes , Fatores Hospedeiros de Integração/genética , Fatores Hospedeiros de Integração/metabolismo , Macrolídeos/metabolismo , Mutação , Poliaminas/metabolismo , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA