Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Mol Cell Biol ; 14(7): 405-15, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23778968

RESUMO

Recently, a consensus has emerged that cofilin severing activity can generate free actin filament ends that are accessible for F-actin polymerization and depolymerization without changing the rate of G-actin association and dissociation at either filament end. The structural basis of actin filament severing by cofilin is now better understood. These results have been integrated with recently discovered mechanisms for cofilin activation in migrating cells, which led to new models for cofilin function that provide insights into how cofilin regulation determines the temporal and spatial control of cell behaviour.


Assuntos
Fatores de Despolimerização de Actina/fisiologia , Movimento Celular , Fatores de Despolimerização de Actina/química , Actinas/metabolismo , Animais , Extensões da Superfície Celular/metabolismo , Humanos , Modelos Moleculares , Fosforilação , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Transporte Proteico
2.
J Cell Sci ; 133(8)2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32152181

RESUMO

The mechanisms that control intrinsic axon growth potential, and thus axon regeneration following injury, are not well understood. Developmental axon regrowth of Drosophila mushroom body γ-neurons during neuronal remodeling offers a unique opportunity to study the molecular mechanisms controlling intrinsic growth potential. Motivated by the recently uncovered developmental expression atlas of γ-neurons, we here focus on the role of the actin-severing protein cofilin during axon regrowth. We show that Twinstar (Tsr), the fly cofilin, is a crucial regulator of both axon growth and branching during developmental remodeling of γ-neurons. tsr mutant axons demonstrate growth defects both in vivo and in vitro, and also exhibit actin-rich filopodial-like structures at failed branch points in vivo Our data is inconsistent with Tsr being important for increasing G-actin availability. Furthermore, analysis of microtubule localization suggests that Tsr is required for microtubule infiltration into the axon tips and branch points. Taken together, we show that Tsr promotes axon growth and branching, likely by clearing F-actin to facilitate protrusion of microtubules.


Assuntos
Fatores de Despolimerização de Actina , Proteínas de Drosophila/fisiologia , Drosophila , Proteínas dos Microfilamentos/fisiologia , Neurônios/fisiologia , Fatores de Despolimerização de Actina/fisiologia , Actinas/genética , Animais , Axônios , Microtúbulos , Regeneração Nervosa
3.
Plant Cell ; 29(2): 395-408, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28123105

RESUMO

Functional divergence in paralogs is an important genetic source of evolutionary innovation. Actin-depolymerizing factors (ADFs) are among the most important actin binding proteins and are involved in generating and remodeling actin cytoskeletal architecture via their conserved F-actin severing or depolymerizing activity. In plants, ADFs coevolved with actin, but their biochemical properties are diverse. Unfortunately, the biochemical function of most plant ADFs and the potential mechanisms of their functional divergence remain unclear. Here, in vitro biochemical analyses demonstrated that all 11 ADF genes in Arabidopsis thaliana exhibit opposing biochemical properties. Subclass III ADFs evolved F-actin bundling (B-type) function from conserved F-actin depolymerizing (D-type) function, and subclass I ADFs have enhanced D-type function. By tracking historical mutation sites on ancestral proteins, several fundamental amino acid residues affecting the biochemical functions of these proteins were identified in Arabidopsis and various plants, suggesting that the biochemical divergence of ADFs has been conserved during the evolution of angiosperm plants. Importantly, N-terminal extensions on subclass III ADFs that arose from intron-sliding events are indispensable for the alteration of D-type to B-type function. We conclude that the evolution of these N-terminal extensions and several conserved mutations produced the diverse biochemical functions of plant ADFs from a putative ancestor.


Assuntos
Fatores de Despolimerização de Actina/fisiologia , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Evolução Biológica , Fatores de Despolimerização de Actina/genética , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Modelos Moleculares , Filogenia
4.
Curr Genet ; 64(3): 619-634, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29170805

RESUMO

Aspergillus fumigatus is a major fungal pathogen that is responsible for approximately 90% of human aspergillosis. Cofilin is an actin depolymerizing factor that plays crucial roles in multiple cellular functions in many organisms. However, the functions of cofilin in A. fumigatus are still unknown. In this study, we constructed an A. fumigatus strain overexpressing cofilin (cofilin OE). The cofilin OE strain displayed a slightly different growth phenotype, significantly increased resistance against H2O2 and diamide, and increased activation of the high osmolarity glycerol pathway compared to the wild-type strain (WT). The cofilin OE strain internalized more efficiently into lung epithelial A549 cells, and induced increased transcription of inflammatory factors (MCP-1, TNF-α and IL-8) compared to WT. Cofilin overexpression also resulted in increased polysaccharides including ß-1, 3-glucan and chitin, and increased transcription of genes related to oxidative stress responses and polysaccharide synthesis in A. fumigatus. However, the cofilin OE strain exhibited similar virulence to the wild-type strain in murine and Galleria mellonella infection models. These results demonstrated for the first time that cofilin, a regulator of actin cytoskeleton dynamics, might play a critical role in the regulation of oxidative stress responses and cell wall polysaccharide synthesis in A. fumigatus.


Assuntos
Fatores de Despolimerização de Actina/fisiologia , Actinas/metabolismo , Aspergillus fumigatus/metabolismo , Estresse Oxidativo , Células A549 , Fatores de Despolimerização de Actina/genética , Fatores de Despolimerização de Actina/metabolismo , Aspergillus fumigatus/crescimento & desenvolvimento , Aspergillus fumigatus/patogenicidade , Western Blotting , Parede Celular/metabolismo , Endocitose , Humanos , Peróxido de Hidrogênio/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-8/genética , Proteínas Quimioatraentes de Monócitos/genética , Polimerização , Polissacarídeos/biossíntese , Polissacarídeos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transcrição Gênica , Fator de Necrose Tumoral alfa/genética , Virulência
5.
Plant Cell ; 26(1): 340-52, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24464292

RESUMO

Conserved microbe-associated molecular patterns (MAMPs) are sensed by pattern recognition receptors (PRRs) on cells of plants and animals. MAMP perception typically triggers rearrangements to actin cytoskeletal arrays during innate immune signaling. However, the signaling cascades linking PRR activation by MAMPs to cytoskeleton remodeling are not well characterized. Here, we developed a system to dissect, at high spatial and temporal resolution, the regulation of actin dynamics during innate immune signaling in plant cells. Within minutes of MAMP perception, we detected changes to single actin filament turnover in epidermal cells treated with bacterial and fungal MAMPs. These MAMP-induced alterations phenocopied an ACTIN DEPOLYMERIZING FACTOR4 (ADF4) knockout mutant. Moreover, actin arrays in the adf4 mutant were unresponsive to a bacterial MAMP, elf26, but responded normally to the fungal MAMP, chitin. Together, our data provide strong genetic and cytological evidence for the inhibition of ADF activity regulating actin remodeling during innate immune signaling. This work is the first to directly link an ADF/cofilin to the cytoskeletal rearrangements elicited directly after pathogen perception in plant or mammalian cells.


Assuntos
Fatores de Despolimerização de Actina/fisiologia , Actinas/metabolismo , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Transdução de Sinais/imunologia , Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina/genética , Fatores de Despolimerização de Actina/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quitina/imunologia , Técnicas de Inativação de Genes , Imunidade Inata/genética , Fenótipo , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo , Receptores de Reconhecimento de Padrão/fisiologia
6.
Nat Rev Cancer ; 7(6): 429-40, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17522712

RESUMO

Recent evidence indicates that metastatic capacity is an inherent feature of breast tumours and not a rare, late acquired event. This has led to new models of metastasis. The interpretation of expression-profiling data in the context of these new models has identified the cofilin pathway as a major determinant of metastasis. Recent studies indicate that the overall activity of the cofilin pathway, and not that of any single gene within the pathway, determines the invasive and metastatic phenotype of tumour cells. These results predict that inhibitors directed at the output of the cofilin pathway will have therapeutic benefit in combating metastasis.


Assuntos
Fatores de Despolimerização de Actina/fisiologia , Neoplasias da Mama/patologia , Invasividade Neoplásica , Animais , Linhagem Celular Tumoral , Drosophila melanogaster/embriologia , Fator de Crescimento Epidérmico/metabolismo , Feminino , Humanos , Modelos Biológicos , Modelos Moleculares , Morfogênese , Metástase Neoplásica , Transdução de Sinais
7.
Dev Growth Differ ; 57(4): 275-90, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25864508

RESUMO

Reorganization of the actin cytoskeleton is essential for cellular processes during animal development. Cofilin and actin depolymerizing factor (ADF) are potent actin-binding proteins that sever and depolymerize actin filaments, acting to generate the dynamics of the actin cytoskeleton. The activity of cofilin is spatially and temporally regulated by a variety of intracellular molecular mechanisms. Cofilin is regulated by cofilin binding molecules, is phosphorylated at Ser-3 (inactivation) by LIM-kinases (LIMKs) and testicular protein kinases (TESKs), and is dephosphorylated (reactivation) by slingshot protein phosphatases (SSHs). Although studies of the molecular mechanisms of cofilin-induced reorganization of the actin cytoskeleton have been ongoing for decades, the multicellular functions of cofilin and its regulation in development are just becoming apparent. This review describes the molecular mechanisms of generating actin dynamics by cofilin and the intracellular signaling pathways for regulating cofilin activity. Furthermore, recent findings of the roles of cofilin in the development of several tissues and organs, especially neural tissues and cells, in model animals are described. Recent developmental studies have indicated that cofilin and its regulatory mechanisms are involved in cellular proliferation and migration, the establishment of cellular polarity, and the dynamic regulation of organ morphology.


Assuntos
Fatores de Despolimerização de Actina/fisiologia , Fatores de Despolimerização de Actina/química , Fatores de Despolimerização de Actina/genética , Animais , Expressão Gênica , Humanos , Conformação Proteica , Transdução de Sinais
8.
Proc Natl Acad Sci U S A ; 109(7): E442-51, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22308427

RESUMO

Dendritic spines are dynamic, actin-rich structures that form the postsynaptic sites of most excitatory synapses in the brain. The F-actin severing protein cofilin has been implicated in the remodeling of dendritic spines and synapses under normal and pathological conditions, by yet unknown mechanisms. Here we report that ß-arrestin-2 plays an important role in NMDA-induced remodeling of dendritic spines and synapses via translocation of active cofilin to dendritic spines. NMDAR activation triggers cofilin activation through calcineurin and phosphatidylinositol 3-kinase (PI3K)-mediated dephosphorylation and promotes cofilin translocation to dendritic spines that is mediated by ß-arrestin-2. Hippocampal neurons lacking ß-arrestin-2 develop mature spines that fail to remodel in response to NMDA. ß-Arrestin-2-deficient mice exhibit normal hippocampal long-term potentiation, but significantly impaired NMDA-dependent long-term depression and spatial learning deficits. Moreover, ß-arrestin-2-deficient hippocampal neurons are resistant to Aß-induced dendritic spine loss. Our studies demonstrate unique functions of ß-arrestin-2 in NMDAR-mediated dendritic spine and synapse plasticity through spatial control over cofilin activation.


Assuntos
Fatores de Despolimerização de Actina/fisiologia , Arrestinas/fisiologia , Espinhas Dendríticas/fisiologia , Aprendizagem , Depressão Sináptica de Longo Prazo , N-Metilaspartato/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Calcineurina/metabolismo , Camundongos , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Receptores de N-Metil-D-Aspartato/metabolismo , beta-Arrestina 2 , beta-Arrestinas
9.
Proc Natl Acad Sci U S A ; 109(9): E544-52, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22323606

RESUMO

Besides its essential and well established role as a component of the cytoskeleton, actin is also present in the cell nucleus, where it has been linked to many processes that control gene expression. For example, nuclear actin regulates the activity of specific transcription factors, associates with all three RNA polymerases, and is a component of many chromatin remodelling complexes. Despite the fact that two export receptors, Crm1 and exportin 6, have been linked to nuclear export of actin, the mechanism by which actin enters the nucleus to elicit these essential functions has not been determined. It is also unclear whether actin is actively exchanged between the nucleus and the cytoplasm, and whether this connection has any functional significance for the cell. By applying a variety of live-cell imaging techniques we revealed that actin constantly shuttles in and out of the nucleus. The fast transport rates, which depend on the availability of actin monomers, suggest an active transport mechanism in both directions. Importantly, we identified importin 9 as the nuclear import factor for actin. Furthermore, our RNAi experiments showed that the active maintenance of nuclear actin levels by importin 9 is required for maximal transcriptional activity. Measurements of nuclear export rates and depletion studies also clarified that nuclear export of actin is mediated by exportin 6, and not by Crm1. These results demonstrate that cytoplasmic and nuclear actin pools are dynamically connected and identify the nuclear import and export mechanisms of actin.


Assuntos
Actinas/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Carioferinas/fisiologia , Transcrição Gênica/fisiologia , beta Carioferinas/fisiologia , Fatores de Despolimerização de Actina/fisiologia , Actinas/genética , Animais , Linhagem Celular , Citoplasma/metabolismo , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/citologia , Genes Reporter , Teste de Complementação Genética , Proteínas de Fluorescência Verde/análise , Humanos , Carioferinas/antagonistas & inibidores , Camundongos , Microscopia Confocal , Células NIH 3T3 , Fotodegradação , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Proteínas Recombinantes de Fusão/metabolismo , Proteína ran de Ligação ao GTP/fisiologia , Proteína Exportina 1
10.
J Neurosci ; 33(15): 6423-33, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23575840

RESUMO

Actin dynamics provide an important mechanism for the modification of synaptic plasticity, which is regulated by the actin depolymerizing factor (ADF)/cofilin. However, the role of cofilin regulated actin dynamics in memory extinction process is still unclear. Here, we observed that extinction of conditioned taste aversive (CTA) memory led to temporally enhanced ADF/cofilin activity in the infralimbic cortex (IrL) of the rats. Moreover, temporally elevating ADF/cofilin activity in the IrL could accelerate CTA memory extinction by facilitating AMPAR synaptic surface recruitment, whereas inhibition of ADF/cofilin activity abolished AMPAR synaptic surface trafficking and impaired memory extinction. Finally, we observed that ADF/cofilin-regulated synaptic plasticity was not directly coupled to morphological changes of postsynaptic spines. These findings may help us understand the role of ADF/cofilin-regulated actin dynamics in memory extinction and suggest that appropriate manipulating ADF/cofilin activity might be a suitable way for therapeutic treatment of memory disorders.


Assuntos
Fatores de Despolimerização de Actina/fisiologia , Extinção Psicológica/fisiologia , Quinases Lim/fisiologia , Proteínas dos Microfilamentos/fisiologia , Monoéster Fosfórico Hidrolases/fisiologia , Transporte Proteico/fisiologia , Receptores de AMPA/fisiologia , Fatores de Despolimerização de Actina/metabolismo , Animais , Condicionamento Psicológico/fisiologia , Espinhas Dendríticas/ultraestrutura , Quinases Lim/metabolismo , Sistema Límbico/metabolismo , Sistema Límbico/fisiologia , Masculino , Proteínas dos Microfilamentos/metabolismo , Plasticidade Neuronal/fisiologia , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Ratos , Ratos Wistar , Receptores de AMPA/metabolismo
11.
J Neurosci ; 33(48): 18836-48, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24285890

RESUMO

Axonal injury generates growth inert retraction bulbs with dynamic cytoskeletal properties that are severely compromised. Conversion of "frozen" retraction bulbs into actively progressing growth cones is a major aim in axon regeneration. Here we report that murine serum response factor (SRF), a gene regulator linked to the actin cytoskeleton, modulates growth cone actin dynamics during axon regeneration. In regeneration-competent facial motoneurons, Srf deletion inhibited axonal regeneration. In wild-type mice after nerve injury, SRF translocated from the nucleus to the cytoplasm, suggesting a cytoplasmic SRF function in axonal regeneration. Indeed, adenoviral overexpression of cytoplasmic SRF (SRF-ΔNLS-GFP) stimulated axonal sprouting and facial nerve regeneration in vivo. In primary central and peripheral neurons, SRF-ΔNLS-GFP stimulated neurite outgrowth, branch formation, and growth cone morphology. Furthermore, we uncovered a link between SRF and the actin-severing factor cofilin during axonal regeneration in vivo. Facial nerve axotomy increased the total cofilin abundance and also nuclear localization of phosphorylated cofilin in a subpopulation of lesioned motoneurons. This cytoplasmic-to-nucleus translocation of P-cofilin upon axotomy was reduced in motoneurons expressing SRF-ΔNLS-GFP. Finally, we demonstrate that cytoplasmic SRF and cofilin formed a reciprocal regulatory unit. Overexpression of cytoplasmic SRF reduced cofilin phosphorylation and vice versa: overexpression of cofilin inhibited SRF phosphorylation. Therefore, a regulatory loop consisting of SRF and cofilin might take part in reactivating actin dynamics in growth-inert retraction bulbs and facilitating axon regeneration.


Assuntos
Fatores de Despolimerização de Actina/fisiologia , Axônios/efeitos dos fármacos , Citoplasma/metabolismo , Regeneração Nervosa/efeitos dos fármacos , Fator de Resposta Sérica/farmacologia , Actinas/metabolismo , Animais , Axotomia , Citoplasma/efeitos dos fármacos , Nervo Facial/fisiologia , Feminino , Proteínas de Fluorescência Verde , Masculino , Camundongos , Nervos Periféricos/citologia , Nervos Periféricos/efeitos dos fármacos , Fosforilação , Reação em Cadeia da Polimerase , Frações Subcelulares/metabolismo
12.
FASEB J ; 27(2): 546-56, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23085994

RESUMO

During wound repair, epidermal cells at the edge of an injury establish front-rear polarity through orchestrated changes in their cytoskeleton and adhesion structures. The polarity and directed migration of such cells is determined by the assembly, extension, and stabilization of a lamellipodium. Actinin-4 associates with lamellipodia and has been implicated in regulating lamellipodial structure, function and assembly. To study the functions of actinin-4 in human keratinocytes, we used shRNA to generate knockdown cells and compared their motility behavior and matrix adhesion assembly to scrambled shRNA treated control keratinocytes. Actinin-4 knockdown keratinocytes lack polarity, assemble multiple lamellipodia with a 2× increased area over controls, display reduced activity of the actin remodeling protein cofilin, and fail to migrate in a directional manner. This motility defect is rescued by plating knockdown cells on preformed laminin-332 matrix. In actinin-4-knockdown keratinocytes, focal contact area is increased by 25%, and hemidesmosome proteins are mislocalized. Specifically, α6ß4 integrin localizes to large lamellipodial extensions, displays reduced dynamics, and fails to recruit its bullous pemphigoid antigen binding partners. Together, our data indicate a role for actinin-4 in regulating the steering mechanism of keratinocytes via profound effects on their matrix adhesion sites.


Assuntos
Actinina/fisiologia , Queratinócitos/fisiologia , Pseudópodes/fisiologia , Fatores de Despolimerização de Actina/fisiologia , Actinina/antagonistas & inibidores , Actinina/genética , Movimento Celular/fisiologia , Células Cultivadas , Adesões Focais/fisiologia , Técnicas de Silenciamento de Genes , Hemidesmossomos/fisiologia , Humanos , Integrina alfa6beta4/genética , Integrina alfa6beta4/fisiologia , RNA Interferente Pequeno/genética
13.
J Immunol ; 188(7): 3237-46, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22387556

RESUMO

B cells encounter both soluble Ag (sAg) and membrane-associated Ag (mAg) in the secondary lymphoid tissue, yet how the physical form of Ag modulates B cell activation remains unclear. This study compares actin reorganization and its role in BCR signalosome formation in mAg- and sAg-stimulated B cells. Both mAg and sAg induce F-actin accumulation and actin polymerization at BCR microclusters and at the outer rim of BCR central clusters, but the kinetics and magnitude of F-actin accumulation in mAg-stimulated B cells are greater than those in sAg-stimulated B cells. Accordingly, the actin regulatory factors, cofilin and gelsolin, are recruited to BCR clusters in both mAg- and sAg-stimulated B cells but with different kinetics and patterns of cellular redistribution. Inhibition of actin reorganization by stabilizing F-actin inhibits BCR clustering and tyrosine phosphorylation induced by both forms of Ag. Depolymerization of F-actin leads to unpolarized microclustering of BCRs and tyrosine phosphorylation in BCR microclusters without mAg and sAg, but with much slower kinetics than those induced by Ag. Therefore, actin reorganization, mediated via both polymerization and depolymerization, is required for the formation of BCR signalosomes in response to both mAg and sAg.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Actinas/química , Antígenos/imunologia , Citoesqueleto/ultraestrutura , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Fatores de Despolimerização de Actina/fisiologia , Animais , Biopolímeros , Membrana Celular/imunologia , Polaridade Celular , Gelsolina/fisiologia , Camundongos , Camundongos Endogâmicos CBA , Fosforilação , Processamento de Proteína Pós-Traducional , Estrutura Quaternária de Proteína , Solubilidade
14.
Dev Biol ; 366(2): 232-43, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22537493

RESUMO

We previously provided evidence that cadherin-6B induces de-epithelialization of the neural crest prior to delamination and is required for the overall epithelial mesenchymal transition (EMT). Furthermore, de-epithelialization induced by cadherin-6B was found to be mediated by BMP receptor signaling independent of BMP. We now find that de-epithelialization is mediated by non-canonical BMP signaling through the BMP type II receptor (BMPRII) and not by canonical Smad dependent signaling through BMP Type I receptor. The LIM kinase/cofilin pathway mediates non-canonical BMPRII induced de-epithelialization, in response to either cadherin-6B or BMP. LIMK1 induces de-epithelialization in the neural tube and dominant negative LIMK1 decreases de-epithelialization induced by either cadherin-6B or BMP. Cofilin is the major known LIMK1 target and a S3A phosphorylation deficient mutated cofilin inhibits de-epithelialization induced by cadherin-6B as well as LIMK1. Importantly, LIMK1 as well as cadherin-6B can trigger ectopic delamination when co-expressed with the competence factor SOX9, showing that this cadherin-6B stimulated signaling pathway can mediate the full EMT in the appropriate context. These findings suggest that the de-epithelialization step of the neural crest EMT by cadherin-6B/BMPRII involves regulation of actin dynamics via LIMK/cofilin.


Assuntos
Proteínas Aviárias/fisiologia , Caderinas/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Crista Neural/fisiologia , Fatores de Despolimerização de Actina/fisiologia , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/fisiologia , Embrião de Galinha , Ectoderma/citologia , Ectoderma/fisiologia , Quinases Lim/fisiologia , Crista Neural/citologia , Transdução de Sinais
15.
BMC Dev Biol ; 13: 6, 2013 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-23394545

RESUMO

BACKGROUND: Thyroid hormones regulate growth and development. However, the molecular mechanisms by which thyroid hormone regulates cell structural development are not fully understood. The mammalian cochlea is an intriguing system to examine these mechanisms, as cellular structure plays a key role in tissue development, and thyroid hormone is required for the maturation of the cochlea in the first postnatal week. RESULTS: In hypothyroid conditions, we found disruptions in sensory outer hair cell morphology and fewer microtubules in non-sensory supporting pillar cells. To test the functional consequences of these cytoskeletal defects on cell mechanics, we combined atomic force microscopy with live cell imaging. Hypothyroidism stiffened outer hair cells and supporting pillar cells, but pillar cells ultimately showed reduced cell stiffness, in part from a lack of microtubules. Analyses of changes in transcription and protein phosphorylation suggest that hypothyroidism prolonged expression of fibroblast growth factor receptors, and decreased phosphorylated Cofilin. CONCLUSIONS: These findings demonstrate that thyroid hormones may be involved in coordinating the processes that regulate cytoskeletal dynamics and suggest that manipulating thyroid hormone sensitivity might provide insight into the relationship between cytoskeletal formation and developing cell mechanical properties.


Assuntos
Órgão Espiral/embriologia , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Hormônios Tireóideos/fisiologia , Fatores de Despolimerização de Actina/fisiologia , Actinas/fisiologia , Animais , Imunofluorescência , Hipotireoidismo/fisiopatologia , Camundongos , Microscopia de Força Atômica , Microtúbulos , Órgão Espiral/citologia , Órgão Espiral/metabolismo , Fosforilação , Transdução de Sinais
16.
J Neurochem ; 127(2): 199-208, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23895321

RESUMO

We and others have previously shown that the neuropeptide galanin modulates neurite outgrowth from adult sensory neurons via activation of the second galanin receptor; however, the intracellular signalling pathways that mediate this neuritogenic effect have yet to be elucidated. Here, we demonstrate that galanin decreases the activation state in adult sensory neurons and PC12 cells of Rho and Cdc42 GTPases, both known regulators of filopodial and growth cone motility. Consistent with this, activated levels of Rho and Cdc42 levels are increased in the dorsal root ganglion of adult galanin knockout animals compared with wildtype controls. Furthermore, galanin markedly increases the activation state of cofilin, a downstream effector of many of the small GTPases, in the cell bodies and growth cones of sensory neurons and in PC12 cells. We also demonstrate a reduction in the activation of cofilin, and alteration in growth cone motility, in cultured galanin knockout neurons compared with wildtype controls. These data provide the first evidence that galanin regulates the Rho family of GTPases and cofilin to stimulate growth cone dynamics and neurite outgrowth in sensory neurons. These findings have important therapeutic implications for the treatment of peripheral sensory neuropathies.


Assuntos
Fatores de Despolimerização de Actina/fisiologia , Galanina/farmacologia , Neuritos/efeitos dos fármacos , Células Receptoras Sensoriais/efeitos dos fármacos , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Animais , Western Blotting , Ativação Enzimática/efeitos dos fármacos , Feminino , Gânglios Espinais/citologia , Cones de Crescimento/efeitos dos fármacos , Camundongos , Camundongos Knockout , Microscopia de Vídeo , Células PC12 , Pseudópodes/efeitos dos fármacos , Ratos , Estimulação Química , Proteínas rac de Ligação ao GTP/metabolismo
17.
Curr Opin Cell Biol ; 18(1): 26-31, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16337782

RESUMO

Cofilin is a ubiquitous actin-binding factor required for the reorganization of actin filaments in eukaryotes. The dephosphorylation of cofilin enables its actin severing and depolymerizing activity and drives directional cell motility, thus providing a simple phosphoregulatory mechanism for actin reorganization. To date, two cofilin-specific phosphatases have been identified: Slingshot and Chronophin. These cofilin phosphatases are unrelated in sequence and regulatory properties, each potentially providing a unique mechanism for cofilin activation under varying biological circumstances.


Assuntos
Fatores de Despolimerização de Actina/fisiologia , Actinas/metabolismo , Fosfoproteínas Fosfatases/fisiologia , Animais , Humanos , Hidrolases/metabolismo , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/genética , Fosforilação , Distribuição Tecidual
18.
Dev Cell ; 13(5): 646-662, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17981134

RESUMO

Protrusion of the leading edge of migrating epithelial cells requires precise regulation of two actin filament (F-actin) networks, the lamellipodium and the lamella. Cofilin is a downstream target of Rho GTPase signaling that promotes F-actin cycling through its F-actin-nucleating, -severing, and -depolymerizing activity. However, its function in modulating lamellipodium and lamella dynamics, and the implications of these dynamics for protrusion efficiency, has been unclear. Using quantitative fluorescent speckle microscopy, immunofluorescence, and electron microscopy, we establish that the Rac1/Pak1/LIMK1 signaling pathway controls cofilin activity within the lamellipodium. Enhancement of cofilin activity accelerates F-actin turnover and retrograde flow, resulting in widening of the lamellipodium. This is accompanied by increased spatial overlap of the lamellipodium and lamella networks and reduced cell-edge protrusion efficiency. We propose that cofilin functions as a regulator of cell protrusion by modulating the spatial interaction of the lamellipodium and lamella in response to upstream signals.


Assuntos
Fatores de Despolimerização de Actina/fisiologia , Actinas/fisiologia , Células Epiteliais/fisiologia , Proteínas dos Microfilamentos/fisiologia , Pseudópodes/fisiologia , Quinases Ativadas por p21/fisiologia , Linhagem Celular , Movimento Celular , Imunofluorescência , Humanos , Quinases Lim/metabolismo , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/metabolismo
20.
Arterioscler Thromb Vasc Biol ; 31(11): 2424-31, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21868701

RESUMO

OBJECTIVE: We hypothesized that cofilin activation by members of the slingshot (SSH) phosphatase family is a key mechanism regulating vascular smooth muscle cell (VSMC) migration and neoinitima formation following vascular injury. METHODS AND RESULTS: Scratch wound and modified Boyden chamber assays were used to assess VSMC migration following downregulation of the expression of cofilin and each SSH phosphatase isoform (SSH1, SSH2, and SSH3) by small interfering RNA (siRNA), respectively. Cofilin siRNA greatly attenuated the ability of VSMC migration into the "wound," and platelet-derived growth factor (PDGF)-induced migration was virtually eliminated versus a 3.5-fold increase in nontreated VSMCs, establishing a critical role for cofilin in VSMC migration. Cofilin activation (dephosphorylation) was increased in PDGF-stimulated VSMCs. Thus, we assessed the role of the SSH family of phosphatases on cofilin activation and VSMC migration. Treatment with either SSH1 or SSH2 siRNA attenuated cofilin activation, whereas SSH3 siRNA had no effect. Only SSH1 siRNA significantly reduced wound healing and PDGF-induced VSMC migration. Both SSH1 expression (4.7-fold) and cofilin expression (3.9-fold) were increased in balloon injured versus noninjured carotid arteries, and expression was prevalent in the neointima. CONCLUSION: These studies demonstrate that the regulation of VSMC migration by cofilin is SSH1 dependent and that this mechanism potentially contributes to neointima formation following vascular injury in vivo.


Assuntos
Fatores de Despolimerização de Actina/fisiologia , Movimento Celular/fisiologia , Proteínas dos Microfilamentos/fisiologia , Músculo Liso Vascular/fisiologia , Neointima/fisiopatologia , Animais , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Masculino , Proteínas dos Microfilamentos/efeitos dos fármacos , Modelos Animais , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Monoéster Fosfórico Hidrolases/fisiologia , Fator de Crescimento Derivado de Plaquetas/farmacologia , Isoformas de Proteínas , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA