Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
BMC Plant Biol ; 24(1): 577, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890560

RESUMO

BACKGROUND: Seed retention is the basic prerequisite for seed harvest. However, only little breeding progress has been achieved for this trait in the major forage grasses. The aim of this study was to evaluate the potential of plant genetic resources of the important fodder grasses Festuca pratensis Huds. and Lolium perenne L. as source for seed retention in the breeding process. Furthermore, the morphology of the abscission zone, where shattering occurs, was studied on the cell tissue level in different developmental stages of contrasting accessions. RESULTS: 150 and 286 accessions of Festuca pratensis and Lolium perenne were screened for seed retention, respectively. Contrasting accessions were selected to be tested in a second year. We found a great variation in seed retention in Festuca pratensis and Lolium perenne, ranging from 13 to 71% (average: 35%) and 12 to 94% (average: 49%), respectively, in the first year. Seed retention was generally lower in the second year. Cultivars were within the accessions with highest seed retention in Festuca pratensis, but had lower seed retention than ecotypes in Lolium perenne. Field-shattered seeds had a lower thousand grain weight than retained seeds. Cell layers of the abscission zone appeared already in early seed stages and were nested within each other in accessions with high seed retention, while there were two to three superimposed layers in accessions with low seed retention. CONCLUSIONS: Plant genetic resources of Lolium perenne might be a valuable source for breeding varieties with high seed retention. However, simultaneous selection for high seed weight is necessary for developing successful commercial cultivars.


Assuntos
Festuca , Lolium , Fenótipo , Sementes , Lolium/crescimento & desenvolvimento , Lolium/genética , Lolium/anatomia & histologia , Festuca/genética , Festuca/crescimento & desenvolvimento , Festuca/anatomia & histologia , Sementes/crescimento & desenvolvimento , Sementes/genética , Sementes/anatomia & histologia
2.
Int J Mol Sci ; 20(13)2019 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-31284596

RESUMO

Tall fescue (Festuca arundinacea), an accumulator that is able to accumulate and excrete cadmium (Cd), has attracted much attention for its possible use in phytoremediation of heavy metal contaminated soils. In the present study, the interaction between Cd and Zn, and their uptake, translocation and accumulation under external Cd and Zn treatment in tall fescue were investigated. The concentrations of K, Ca, Mg in xylem sap under Cd and Zn treatment were measured to determine the level of mineral nutrients and their relationship with Cd alleviation. The result showed that Cd and Zn antagonized each other in the roots, while Cd antagonized Zn and Zn synergized Cd in the shoots of tall fescue. Compared with Cd only treatment, the concentrations of Ca, Mg and K in xylem sap increased after the addition of Zn, and they increased the most in the guttation. This result indicated that the addition of Zn facilitates the level of mineral elements to alleviate Cd toxicity, which might be used to improve the phytoremediation efficiency of Cd contaminated soils by tall fescue.


Assuntos
Festuca/metabolismo , Minerais/metabolismo , Fenômenos Fisiológicos da Nutrição , Zinco/metabolismo , Transporte Biológico , Biomassa , Cádmio , Festuca/anatomia & histologia , Festuca/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Xilema/metabolismo
3.
BMC Plant Biol ; 15: 116, 2015 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-25957573

RESUMO

BACKGROUND: Heat stress is a critical threat to tall fescue in transitional and warm climate zones. Identification of association between molecular markers and heat tolerance-related functional traits would promote the efficient selection of heat tolerant tall fescue cultivars. Association analysis of heat tolerance-related traits was conducted in 100 diverse tall fescue accessions consisting of 93 natural genotypes originating from 33 countries and 7 turf-type commercial cultivars. RESULTS: The panel displayed significant genetic variations in growth rate (GR), turfgrass quality (TQ), survival rate (SR), chlorophyll content (CHL) and evapotranspiration rate (ET) in greenhouse and growth chamber trials. Two subpopulations were detected in the panel of accessions by 1010 SSR alleles with 90 SSR markers, but no obvious relative kinship was observed. 97 and 67 marker alleles associated with heat tolerance-related traits were identified in greenhouse trial and growth chamber trial (P < 0.01) using mix linear model, respectively. Due to different experimental conditions of the two trials, 2 SSR marker alleles associated with GR and ET were simultaneously identified at P < 0.01 level in two trials in response to heat stress. CONCLUSION: High-temperature induced great variations of functional traits in tall fescue accessions. And the identified marker alleles associated with functional traits could provide important information about heat tolerance genetic pathways, and be used for molecular assisted breeding to enhance tall fescue performance under heat stress.


Assuntos
Ecótipo , Festuca/anatomia & histologia , Festuca/genética , Estudos de Associação Genética , Resposta ao Choque Térmico/genética , Repetições de Microssatélites/genética , Característica Quantitativa Herdável , Alelos , Clorofila/metabolismo , Marcadores Genéticos , Modelos Genéticos , Transpiração Vegetal , Dinâmica Populacional
4.
Ann Bot ; 106(4): 637-45, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20682576

RESUMO

BACKGROUND AND AIMS: Functional traits are indicators of plant interactions with their environment and the resource-use strategies of species can be defined through some key functional traits. The importance of genetic variability and phenotypic plasticity in trait variations in response to a common environmental change was investigated in two subalpine species. METHODS: Two species with contrasted resource-use strategies, Dactylis glomerata and Festuca paniculata, were grown along a productivity gradient in a greenhouse experiment. Functional traits of different genotypes were measured to estimate the relative roles of phenotypic plasticity and genetic variability, and to compare their levels of phenotypic plasticity. KEY RESULTS: Trait variability in the field for the two species is more likely to be the result of phenotypic plasticity rather than of genetic differentiation between populations. The exploitative species D. glomerata expressed an overall higher level of phenotypic plasticity compared with the conservative species F. paniculata. In addition to different amplitudes of phenotypic plasticity, the two species differed in their pattern of response for three functional traits relevant to resource use (specific leaf area, leaf dry matter content and leaf nitrogen content). CONCLUSIONS: Functional trait variability was mainly the result of phenotypic plasticity, with the exploitative species showing greater variability. In addition to average trait values, two species with different resource-use strategies differed in their plastic responses to productivity.


Assuntos
Dactylis/genética , Festuca/genética , Análise de Variância , Dactylis/anatomia & histologia , Festuca/anatomia & histologia , Variação Genética/genética , Genótipo , Fenótipo
5.
Plant Sci ; 283: 211-223, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31128691

RESUMO

Drought resistance is a crucial attribute of plants and to properly decipher its mechanisms, a valuable plant model is required. Lolium multiflorum is a forage grass characterized by a low level of abiotic stress resistance, whereas Festuca arundinacea is recognized as a species with drought resistance, including both stress avoidance and tolerance strategies. These two species can be crossed with each other. Two closely related L. multiflorum/F. arundinacea introgression forms with distinct levels of field drought resistance were involved, thus enabling the dissection of this complex trait into its crucial components. The processes occurring in roots were shown to be the most significant for the expression of drought resistance. Thus, the analysis was focused on the root architecture and the accumulation of selected hormones, primary metabolites and glycerolipids in roots. The introgression form, with a higher resistance to field water deficit was characterized by a deeper soil penetration by its roots, and it had a higher accumulation level of primary metabolites, including well recognized osmoprotectants, such as proline, sucrose or maltose, and an increase in phosphatidylcholine to phosphatidylethanolamine ratio compared to the low resistant form. A comprehensive model of root performance under water deficit conditions is presented here for the first time for the grass species of the Lolium-Festuca complex.


Assuntos
Festuca/anatomia & histologia , Lolium/anatomia & histologia , Raízes de Plantas/anatomia & histologia , Desidratação , Festuca/crescimento & desenvolvimento , Festuca/metabolismo , Metabolismo dos Lipídeos , Lolium/crescimento & desenvolvimento , Lolium/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/anatomia & histologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Água/metabolismo
6.
PLoS One ; 12(9): e0185312, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28934356

RESUMO

A feature of cell wall arabinoxylan in grasses is the presence of ferulic acid which upon oxidative coupling by the action of peroxidases forms diferuloyl bridges between formerly separated arabinoxylans. Ferulate cross-linking is suspected of playing various roles in different plant processes. Here we investigate the role of cell wall feruloyaltion in two major processes, that of leaf growth and the turnover of cell wall arabinoxylans on leaf senescence in tall fescue using plants in which the level of cell wall ferulates has been reduced by targeted expression of the Aspergillus niger ferulic acid esterase A (FAEA) to the apoplast or Golgi. Analysis of FAE expressing plants showed that all the lines had shorter and narrower leaves compared to control, which may be a consequence of the overall growth rate being lower and occurring earlier in FAE expressing leaves than in controls. Furthermore, the final length of epidermal cells was shorter than controls, indicating that their expansion was curtailed earlier than in control leaves. This may be due to the observations that the deposition of both ether and ester linked monomeric hydroxycinnamic acids and ferulate dimerization stopped earlier in FAE expressing leaves but at a lower level than controls, and hydroxycinnamic acid deposition started to slow down when peroxidase levels increased. It would appear therefore that one of the possible mechanisms for controlling overall leaf morphology such as leaf length and width in grasses, where leaf morphology is highly variable between species, may be the timing of hydroxycinnamic acid deposition in the expanding cell walls as they emerge from cell division into the elongation zone, controlled partially by the onset of peroxidase activity in this region.


Assuntos
Aspergillus niger/enzimologia , Hidrolases de Éster Carboxílico/genética , Parede Celular/metabolismo , Ácidos Cumáricos/metabolismo , Festuca/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Xilanos/metabolismo , Aspergillus niger/genética , Festuca/anatomia & histologia , Festuca/citologia , Festuca/genética , Expressão Gênica , Peroxidase/metabolismo , Fenótipo , Plantas Geneticamente Modificadas
7.
Methods Mol Biol ; 344: 75-81, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17033053

RESUMO

Tall fescue (Festuca arundinacea Schreb.) is the predominant cool-season perennial grass in the United States. It is widely used for both forage and turf purposes. This chapter describes a protocol that allows for the generation of large number of transgenic tall fescue plants by Agrobacterium-mediated transformation. Embryogenic calli induced from caryopsis are used as explants for inoculation with A. tumefaciens. The Agrobacterium strain used is EHA105. Hygromycin phosphotransferase gene (hph) is used as the selectable marker and hygromycin is used as the selection agent. Calli resistant to hygromycin are obtained after 4-6 wk of selection. Soil-grown tall fescue plants can be regenerated 4-5 mo after Agrobacterium-mediated transformation.


Assuntos
Agrobacterium tumefaciens/genética , Festuca/genética , Transformação Genética , Agrobacterium tumefaciens/citologia , Técnicas de Cocultura , Meios de Cultura , Festuca/anatomia & histologia , Festuca/crescimento & desenvolvimento , Marcadores Genéticos , Plantas Geneticamente Modificadas/anatomia & histologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Solo , Esterilização , Técnicas de Cultura de Tecidos
8.
Mol Biotechnol ; 56(3): 248-57, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24078217

RESUMO

The aim of this study is to find Iranian tall fescue accessions that tolerate drought stress and investigation on phylogenetical, morphological, and physiological characterization of them. For this propose, inter-simple sequence repeats (ISSR) markers were used to examine the genetic variability of accessions from different provinces of Iran. Of 21 primers, 20 primers generated highly reproducible fragments. Using these primers, 390 discernible DNA fragments were produced with 367 (93.95 %) being polymorphic. The polymorphic information content (PIC) values ranged from 0.948 to 0.976, with a mean PIC value of 0.969. Probability identity (PI) and discriminating power (D = 1-PI) among the primers ranged from 0.001 to 0.004 and 0.998 to 0.995, respectively. A binary qualitative data matrix was constructed. Data analyses were performed using the NTSYS software and the similarity values were used to generate a dendrogram via UPGMA. To study the drought stress, plants were irrigated at 25 % FC condition for three times. Fresh leaves were collected to measure physiological characters including: superoxide dismutase, catalase, and peroxidase activities and proline and total chlorophyll content at two times, before and after stress application. Relative water content, fresh and dry weight ratio, survival percentage, and visual quality were evaluated after stress. Morphological and physiological characters were assessed in order to classify accessions as either tolerant or sensitive using Ward's method of Hierarchical cluster analysis in SPSS software. The results of present study demonstrated that the ISSR markers are useful for studying tall fescue genetic diversity. Convergence of morphological and physiological characterizations during drought stress and phylogenetic relationship results showed that accessions can be grouped into four clusters; drought-tolerant accessions that collected from west of Iran, drought-tolerant accessions collected from northwest of Iran, drought semi-tolerant accessions collected from center of Iran, and drought-sensitive accessions collected from north of Iran. Data presented could be used to classify the tall fescue accessions based on suitability of cultivation in the regions studied or the regions with the similar environmental condition.


Assuntos
DNA de Plantas/genética , Festuca/fisiologia , Genes de Plantas , Análise por Conglomerados , Secas , Evolução Molecular , Festuca/anatomia & histologia , Festuca/genética , Variação Genética , Repetições de Microssatélites , Filogenia , Folhas de Planta/genética , Software , Estresse Fisiológico
9.
Plant Sci ; 183: 183-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22195592

RESUMO

Since tall fescue (Festuca arundinacea Schreb.) is an anemophilous (wind-pollinated) grass species, male sterility is strongly desired for transgenic tall fescue to prevent pollen dispersal. To create male-sterile tall fescue, we applied Chimeric REpressor gene-Silencing Technology (CRES-T) based on rice APETALA3 (AP3) and AGAMOUS (AG) orthologues that specify the formation of stamens. We fused the coding regions of rice AP3 orthologue SUPERWOMAN1 (SPW1), and rice AG orthologues, Os12g0207000, Os01g0886200 and OsMADS58, respectively with the artificial sequence encoding the modified EAR-like motif repression domain (SRDX). We first introduced Os12g0207000SRDX, Os01g0886200SRDX and OsMADS58SRDX into rice for evaluation of their abilities to induce male sterility. The transgenic rice expressing OsMADS58SRDX had reiterated formation of lodicule-like organs instead of stamens and carpel, a typical phenotype of ag mutant. Thus, we found that OsMADS58SRDX was most suitable for our purpose. Next, we introduced SPW1SRDX and OsMADS58SRDX into tall fescue. Although the transgenic tall fescue did not have the stamen alterations seen in SPW1SRDX and OsMADS58SRDX rice, they either produced no pollen or produced immature pollen; thus, the anthers were not dehiscent and the plants were male-sterile. In addition to the male sterility, SPW1SRDX tall fescue showed a cleistogamous (closed) phenotype in which anthers were not observed outside the glumes, with thin, abnormally elongated lodicules. Some lines of OsMADS58SRDX tall fescue showed a cleistogamous phenotype in which the lodicules were homeotically transformed into lemma-like organs. In both cases, cleistogamous phenotype was associated with morphological changes to the lodicules. We also obtained a mild phenotype of OsMADS58SRDX tall fescue, which exhibited only the male sterility. In this study, we produced novel male-sterile phenotypes using chimeric repressors and thus suggest CRES-T as a tool for transgenic improvement of forage and turf grasses.


Assuntos
Festuca/genética , Proteínas de Domínio MADS/genética , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Repressoras/genética , Arabidopsis/genética , Southern Blotting , Festuca/anatomia & histologia , Festuca/fisiologia , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Engenharia Genética , Proteínas de Domínio MADS/metabolismo , Oryza/genética , Fenótipo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/anatomia & histologia , Plantas Geneticamente Modificadas/fisiologia , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA