Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 630(8016): 421-428, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811724

RESUMO

Farmed soils contribute substantially to global warming by emitting N2O (ref. 1), and mitigation has proved difficult2. Several microbial nitrogen transformations produce N2O, but the only biological sink for N2O is the enzyme NosZ, catalysing the reduction of N2O to N2 (ref. 3). Although strengthening the NosZ activity in soils would reduce N2O emissions, such bioengineering of the soil microbiota is considered challenging4,5. However, we have developed a technology to achieve this, using organic waste as a substrate and vector for N2O-respiring bacteria selected for their capacity to thrive in soil6-8. Here we have analysed the biokinetics of N2O reduction by our most promising N2O-respiring bacterium, Cloacibacterium sp. CB-01, its survival in soil and its effect on N2O emissions in field experiments. Fertilization with waste from biogas production, in which CB-01 had grown aerobically to about 6 × 109 cells per millilitre, reduced N2O emissions by 50-95%, depending on soil type. The strong and long-lasting effect of CB-01 is ascribed to its tenacity in soil, rather than its biokinetic parameters, which were inferior to those of other strains of N2O-respiring bacteria. Scaling our data up to the European level, we find that national anthropogenic N2O emissions could be reduced by 5-20%, and more if including other organic wastes. This opens an avenue for cost-effective reduction of N2O emissions for which other mitigation options are lacking at present.


Assuntos
Produção Agrícola , Fazendas , Aquecimento Global , Óxido Nitroso , Microbiologia do Solo , Solo , Proteínas de Bactérias/metabolismo , Biocombustíveis/provisão & distribuição , Flavobacteriaceae/citologia , Flavobacteriaceae/crescimento & desenvolvimento , Flavobacteriaceae/metabolismo , Aquecimento Global/prevenção & controle , Nitrogênio/metabolismo , Óxido Nitroso/metabolismo , Óxido Nitroso/análise , Solo/química , Produção Agrícola/métodos , Produção Agrícola/tendências , Europa (Continente)
2.
Appl Environ Microbiol ; 90(1): e0170423, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38169280

RESUMO

Catabolism of algal polysaccharides by marine bacteria is a significant process of marine carbon cycling. ß1,3/1,4-Mixed-linkage xylan (MLX) is a class of xylan in the ocean, widely present in the cell walls of red algae. However, the catabolic mechanism of MLX by marine bacteria remains elusive. Recently, we found that a marine Bacteroidetes strain, Polaribacter sp. Q13, is a specialist in degrading MLX, which secretes a novel MLX-specific xylanase. Here, the catabolic specialization of strain Q13 to MLX was studied by multiomics and biochemical analyses. Strain Q13 catabolizes MLX with a canonical starch utilization system (Sus), which is encoded by a single xylan utilization locus, XUL-Q13. In this system, the cell surface glycan-binding protein SGBP-B captures MLX specifically, contributing to the catabolic specificity. The xylanolytic enzyme system of strain Q13 is unique, and the enzymatic cascade dedicates the stepwise hydrolysis of the ß1,3- and ß1,4-linkages in MLX in the extracellular, periplasmic, and cytoplasmic spaces. Bioinformatics analysis and growth observation suggest that other marine Bacteroidetes strains harboring homologous MLX utilization loci also preferentially utilize MLX. These results reveal the catabolic specialization of MLX degradation by marine Bacteroidetes, leading to a better understanding of the degradation and recycling of MLX driven by marine bacteria.IMPORTANCERed algae contribute substantially to the primary production in marine ecosystems. The catabolism of red algal polysaccharides by marine bacteria is important for marine carbon cycling. Mixed-linkage ß1,3/1,4-xylan (MLX, distinct from hetero-ß1,4-xylans from terrestrial plants) is an abundant red algal polysaccharide, whose mechanism of catabolism by marine bacteria, however, remains largely unknown. This study reveals the catabolism of MLX by marine Bacteroidetes, promoting our understanding of the degradation and utilization of algal polysaccharides by marine bacteria. This study also sets a foundation for the biomass conversion of MLX.


Assuntos
Flavobacteriaceae , Rodófitas , Xilanos/metabolismo , Ecossistema , Flavobacteriaceae/metabolismo , Polissacarídeos/metabolismo , Bacteroidetes/metabolismo , Plantas/metabolismo , Rodófitas/metabolismo , Carbono/metabolismo
3.
Appl Environ Microbiol ; 90(2): e0202523, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38259074

RESUMO

Marine bacteria play important roles in the degradation and cycling of algal polysaccharides. However, the dynamics of epiphytic bacterial communities and their roles in algal polysaccharide degradation during kelp decay are still unclear. Here, we performed metagenomic analyses to investigate the identities and predicted metabolic abilities of epiphytic bacterial communities during the early and late decay stages of the kelp Saccharina japonica. During kelp decay, the dominant epiphytic bacterial communities shifted from Gammaproteobacteria to Verrucomicrobia and Bacteroidetes. In the early decay stage of S. japonica, epiphytic bacteria primarily targeted kelp-derived labile alginate for degradation, among which the gammaproteobacterial Vibrionaceae (particularly Vibrio) and Psychromonadaceae (particularly Psychromonas), abundant in alginate lyases belonging to the polysaccharide lyase (PL) families PL6, PL7, and PL17, were key alginate degraders. More complex fucoidan was preferred to be degraded in the late decay stage of S. japonica by epiphytic bacteria, predominantly from Verrucomicrobia (particularly Lentimonas), Pirellulaceae of Planctomycetes (particularly Rhodopirellula), Pontiellaceae of Kiritimatiellota, and Flavobacteriaceae of Bacteroidetes, which depended on using glycoside hydrolases (GHs) from the GH29, GH95, and GH141 families and sulfatases from the S1_15, S1_16, S1_17, and S1_25 families to depolymerize fucoidan. The pathways for algal polysaccharide degradation in dominant epiphytic bacterial groups were reconstructed based on analyses of metagenome-assembled genomes. This study sheds light on the roles of different epiphytic bacteria in the degradation of brown algal polysaccharides.IMPORTANCEKelps are important primary producers in coastal marine ecosystems. Polysaccharides, as major components of brown algal biomass, constitute a large fraction of organic carbon in the ocean. However, knowledge of the identities and pathways of epiphytic bacteria involved in the degradation process of brown algal polysaccharides during kelp decay is still elusive. Here, based on metagenomic analyses, the succession of epiphytic bacterial communities and their metabolic potential were investigated during the early and late decay stages of Saccharina japonica. Our study revealed a transition in algal polysaccharide-degrading bacteria during kelp decay, shifting from alginate-degrading Gammaproteobacteria to fucoidan-degrading Verrucomicrobia, Planctomycetes, Kiritimatiellota, and Bacteroidetes. A model for the dynamic degradation of algal cell wall polysaccharides, a complex organic carbon, by epiphytic microbiota during kelp decay was proposed. This study deepens our understanding of the role of epiphytic bacteria in marine algal carbon cycling as well as pathogen control in algal culture.


Assuntos
Algas Comestíveis , Flavobacteriaceae , Kelp , Laminaria , Microbiota , Phaeophyceae , Humanos , Metagenoma , Kelp/metabolismo , Polissacarídeos/metabolismo , Alginatos/metabolismo , Flavobacteriaceae/genética , Flavobacteriaceae/metabolismo , Carbono/metabolismo
4.
Mar Drugs ; 22(5)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38786594

RESUMO

Marine macroalgae are increasingly recognized for their significant biological and economic potential. The key to unlocking this potential lies in the efficient degradation of all carbohydrates from the macroalgae biomass. However, a variety of polysaccharides (alginate, cellulose, fucoidan, and laminarin), are difficult to degrade simultaneously in a short time. In this study, the brown alga Saccharina japonica was found to be rapidly and thoroughly degraded by the marine bacterium Agarivorans albus B2Z047. This strain harbors a broad spectrum of carbohydrate-active enzymes capable of degrading various polysaccharides, making it uniquely equipped to efficiently break down both fresh and dried kelp, achieving a hydrolysis rate of up to 52%. A transcriptomic analysis elucidated the presence of pivotal enzyme genes implicated in the degradation pathways of alginate, cellulose, fucoidan, and laminarin. This discovery highlights the bacterium's capability for the efficient and comprehensive conversion of kelp biomass, indicating its significant potential in biotechnological applications for macroalgae resource utilization.


Assuntos
Phaeophyceae , Polissacarídeos , Alga Marinha , Alga Marinha/metabolismo , Phaeophyceae/metabolismo , Polissacarídeos/metabolismo , Hidrólise , Biomassa , Glucanos/metabolismo , Flavobacteriaceae/metabolismo , Kelp/metabolismo
5.
J Sci Food Agric ; 104(1): 134-140, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37540808

RESUMO

BACKGROUND: Alginate lyases are important tools for alginate biodegradation and oligosaccharide production, which have great potential in food and biofuel fields. The alginate polysaccharide utilization loci (PUL) typically encode a series of alginate lyases with a synergistic action pattern. Exploring valuable alginate lyases and revealing the synergistic effect of enzymes in the PUL is of great significance. RESULTS: An alginate PUL was discovered from the marine bacterium Wenyingzhuangia fucanilytica CZ1127T , and a repertoire of alginate lyases within it was cloned, expressed and characterized. The four alginate lyases in PUL demonstrated similar optimal reaction conditions: maximum enzyme activity at 35-50 °C and pH 8.0-9.0. The results of action pattern indicated that they were two PL7 endolytic bifunctional enzymes (Aly7A and Aly7B), a PL6 exolytic bifunctional enzyme (Aly6A) and a PL17 exolytic M-specific enzyme (Aly17A). Ultra-performance liquid chromatography-mass spectrometry was employed to reveal the synergistic effect of the four enzymes. The end products of Aly7A were further degraded by Aly7B and eventually generated oligosaccharides, from disaccharide to heptasaccharide. The oligosaccharide products were completely degraded to monosaccharides by Aly6A, but it was unable to directly degrade alginate. Aly17A could also produce monosaccharides by cleaving the M-blocks of oligosaccharide products, as well as the M-blocks of polysaccharides. The combination of these enzymes resulted in the complete degradation of alginate to monosaccharides. CONCLUSION: A new alginate PUL was mined and four novel alginate lyases in the PUL were expressed and characterized. The four cooperative alginate lyases provide novel tools for alginate degradation and biological fermentation. © 2023 Society of Chemical Industry.


Assuntos
Alginatos , Flavobacteriaceae , Alginatos/metabolismo , Flavobacteriaceae/metabolismo , Monossacarídeos , Oligossacarídeos/metabolismo , Especificidade por Substrato , Concentração de Íons de Hidrogênio
6.
Biochemistry ; 62(12): 1849-1857, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37243673

RESUMO

Microbial rhodopsins are light-receptive proteins with various functions triggered by the photoisomerization of the retinal chromophore from the all-trans to 13-cis configuration. A retinal chromophore is covalently bound to a lysine residue in the middle of the seventh transmembrane helix via a protonated Schiff base. Bacteriorhodopsin (BR) variants lacking a covalent bond between the side chain of Lys-216 and the main chain formed purple pigments and exhibited a proton-pumping function. Therefore, the covalent bond linking the lysine residue and the protein backbone is not considered a prerequisite for microbial rhodopsin function. To further examine this hypothesis regarding the role of the covalent bond at the lysine side chain for rhodopsin functions, we investigated K255G and K255A variants of sodium-pumping rhodopsin, Krokinobacter rhodopsin 2 (KR2), with an alkylamine retinal Schiff base (prepared by mixing ethyl- or n-propylamine and retinal (EtSB or nPrSB)). The KR2 K255G variant incorporated nPrSB and EtSB as similarly to the BR variants, whereas the K255A variant did not incorporate these alkylamine Schiff bases. The absorption maximum of K255G + nPrSB was 524-516 nm, which was close to the 526 nm absorption maximum of the wild-type + all-trans retinal (ATR). However, the K255G + nPrSB did not exhibit any ion transport activity. Since the KR2 K255G variant easily released nPrSB during light illumination and did not form an O intermediate, we concluded that a covalent bond at Lys-255 is important for the stable binding of the retinal chromophore and formation of an O intermediate to achieve light-driven Na+ pump function in KR2.


Assuntos
Flavobacteriaceae , Rodopsina , Rodopsina/química , Bases de Schiff/química , Lisina/metabolismo , Flavobacteriaceae/metabolismo , Transporte de Íons , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/metabolismo , Sódio/metabolismo , Luz
7.
Chemistry ; 29(70): e202302543, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37833829

RESUMO

Microbial Na+ -pumping rhodopsin (NaR) is a promising optogenetic tool due to its unique ability to transport Na+ . Like most rhodopsin-based tools, NaR is limited to light-based control. In this study, our objective was to develop a novel mode of modulation for NaR beyond light control. By introducing a potential Cl- binding site near the putative Na+ release cavity, we engineered Nonlabens dokdonensis rhodopsin 2 (NdR2) to be modulated by Cl- , an essential chemical in organisms. The engineered NdR2 demonstrated an approximately two-fold increase in Na+ pump activity in the presence of 100 mM Cl- compared to Cl- -free solution. Increasing Cl- concentration decreased the lifetimes of the M and O intermediates accordingly. The analysis of competitive ion uptake suggested the bound Cl- may increase the Na+ affinity and selectivity. This chemical modulation allows for more diverse and precise control over cellular processes, advancing the development of next-generation optogenetic tools. Notably, our Cl- -modulated NdR2 establishes an innovative mechanism for linking Cl- to Na+ -related processes, with potential applications in optogenetic therapies for related diseases.


Assuntos
Flavobacteriaceae , Rodopsina , Rodopsina/química , Rodopsina/metabolismo , Luz , Flavobacteriaceae/química , Flavobacteriaceae/metabolismo , Transporte de Íons , Sódio/metabolismo
8.
J Biol Chem ; 296: 100459, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33639164

RESUMO

The light-driven rhodopsin KR2 transports Na+via the M- and O-states. However, the mechanisms by which the retinal regulates Na+ pumping is unknown, in part because KR2 adopts both pentamer and monomer forms in crystal structures and in part because these structures show differences in the protein conformation near the Schiff base, even when they are of the same intermediate state within the photocycle. A particular open question is the nature of the H-bond networks and protonation state in the active site, including Asp116. Here, we analyze the protonation state and the absorption wavelength for each crystal structure, using a quantum mechanical/molecular mechanical approach. In the pentamer ground state, the calculated absorption wavelength reproduces the experimentally measured absorption wavelength (530 nm). The analysis also shows that ionized Asp116 is stabilized by the H-bond donations of both Ser70 and a cluster of water molecules. The absorption wavelength of 400 nm in the M-state can be best reproduced when the two O atoms of Asp116 interact strongly with the Schiff base, as reported in one of the previous monomer ground state structures. The absorption wavelengths calculated for the two Na+-incorporated O-state structures are consistent with the measured absorption wavelength (∼600 nm), which suggests that two conformations represent the O-state. These results may provide a key to designing enhanced tools in optogenetics.


Assuntos
Proteínas de Bactérias/química , Flavobacteriaceae/química , Luz , Rodopsina/química , ATPase Trocadora de Sódio-Potássio/química , Sódio/química , Proteínas de Bactérias/metabolismo , Flavobacteriaceae/metabolismo , Domínios Proteicos , Rodopsina/metabolismo , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
9.
Biochemistry (Mosc) ; 87(7): 617-627, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36154882

RESUMO

Cellulophaga lytica is a Gram-negative aerobic bacterium in the genome of which there are many genes encoding polysaccharide degrading enzymes. One of the enzymes named ClGP contains a glycoside hydrolase domain from the GH5 family and a polysaccharide lyase domain from the PL31 family. The enzyme also contains the TAT signaling peptide and the TIGR04183 domain that indicates extracellular nature of the enzyme. Phylogenetic analysis has shown that the enzymes most closely related to ClGP and containing all four domains (TAT, GH5, PL31, TIGR04183) are widespread among bacterial species belonging to the Flavobacteriaceae family. ClGP produced by the recombinant strain of E. coli was purified and characterized. ClGP exhibited activity of endoglucanase (EC 3.2.1.4) and catalyzed hydrolysis of ß-D-glucan, carboxymethyl cellulose sodium salt (CMC-Na), and amorphous cellulose, but failed to hydrolyze microcrystalline cellulose and xylan. Products of CMC hydrolysis were cellobiose and cellotriose, whereas ß-D-glucan was hydrolyzed to glucose, cellobiose, cellotetraose, and cellopentaose. ClGP was more active against the poly-ß-D-mannuronate blocks than against the poly-α-L-glucuronate blocks of alginic acid. This indicates that the enzyme is a polyM lyase (EC 4.2.2.3). ClGP was active against polyglucuronic acid, so it displayed a glucuronan lyase (EC 4.2.2.14) activity. The enzyme had a neutral pH-optimum, was stable in the pH range 6.0-8.0, and displayed moderate thermal stability. ClGP effectively saccharified two species of brown algae, Saccharina latissima and Laminaria digitata, that suggests its potential for use in the production of biofuel from macroalgae.


Assuntos
Celulase , Flavobacteriaceae , Ácido Algínico , Biocombustíveis , Carboximetilcelulose Sódica , Celobiose , Celulase/metabolismo , Celulose , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Flavobacteriaceae/metabolismo , Glucanos , Glucose , Glicosídeo Hidrolases/genética , Concentração de Íons de Hidrogênio , Enzimas Multifuncionais/genética , Peptídeos , Filogenia , Polissacarídeo-Liases/genética , Sódio , Especificidade por Substrato , Xilanos
10.
Nucleic Acids Res ; 48(14): 7786-7800, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32585009

RESUMO

Marine flavobacteria possess dedicated Polysaccharide Utilization Loci (PULs) enabling efficient degradation of a variety of algal polysaccharides. The expression of these PULs is tightly controlled by the presence of the substrate, yet details on the regulatory mechanisms are still lacking. The marine flavobacterium Zobellia galactanivorans DsijT digests many algal polysaccharides, including alginate from brown algae. Its complex Alginate Utilization System (AUS) comprises a PUL and several other loci. Here, we showed that the expression of the AUS is strongly and rapidly (<30 min) induced upon addition of alginate, leading to biphasic substrate utilization. Polymeric alginate is first degraded into smaller oligosaccharides that accumulate in the extracellular medium before being assimilated. We found that AusR, a GntR family protein encoded within the PUL, regulates alginate catabolism by repressing the transcription of most AUS genes. Based on our genetic, genomic, transcriptomic and biochemical results, we propose the first model of regulation for a PUL in marine bacteria. AusR binds to promoters of AUS genes via single, double or triple copies of operator. Upon addition of alginate, secreted enzymes expressed at a basal level catalyze the initial breakdown of the polymer. Metabolic intermediates produced during degradation act as effectors of AusR and inhibit the formation of AusR/DNA complexes, thus lifting transcriptional repression.


Assuntos
Alginatos/metabolismo , Proteínas de Bactérias/metabolismo , Flavobacteriaceae/genética , Regulação Bacteriana da Expressão Gênica , Proteínas Repressoras/metabolismo , Flavobacteriaceae/metabolismo , Regiões Promotoras Genéticas
11.
Molecules ; 27(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35684358

RESUMO

In this study, we aimed to isolate bacteria capable of degrading the polysaccharide ulvan from the green algae Ulva sp. (Chlorophyta, Ulvales, Ulvaceae) in marine environments. We isolated 13 ulvan-degrading bacteria and observed high diversity at the genus level. Further, the genera Paraglaciecola, Vibrio, Echinicola, and Algibacter, which can degrade ulvan, were successfully isolated for the first time from marine environments. Among the 13 isolates, only one isolate (Echinicola sp.) showed the ability not only to produce externally expressed ulvan lyase, but also to be periplasmic or on the cell surface. From the results of the full-genome analysis, lyase was presumed to be a member of the PL25 (BNR4) family of ulvan lyases, and the bacterium also contained the sequence for glycoside hydrolase (GH43, GH78 and GH88), which is characteristic of other ulvan-degrading bacteria. Notably, this bacterium has a unique ulvan lyase gene not previously reported.


Assuntos
Clorófitas , Flavobacteriaceae , Ulva , Clorófitas/metabolismo , Flavobacteriaceae/genética , Flavobacteriaceae/metabolismo , Polissacarídeos
12.
Arch Microbiol ; 203(5): 2551-2561, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33683396

RESUMO

Phosphate-solubilizing (PS) and phosphate-mineralizing (PM) bacteria are considered vital for augmenting the plant growth through phosphorus mobilization and plant growth-promoting attributes. In the present study, a rhizospheric bacterium was isolated from the virgin land of Punjab, India and identified as 'Myroides gitamensis' BSH-3 through 16S rRNA sequencing. 'M. gitamensis' showed potential halo zone on Pikovskaya agar. The novelty of the study lies in the fact that plant growth-promoting potential of 'M. gitamensis' has not been studied earlier. It was able to solubilize 17.53-106.66 µg/mL of tricalcium phosphate and demonstrated a promising potential of mineralizing sodium phytate corresponding to 44.6-94.70 µg/mL at 28 °C. Variable PS and PM activity was observed at temperature range of 15-42 °C with the maximum activity observed at 28 °C after 96 h of incubation. The nitrogen fixation ability, hydrogen sulfide production, cellulose hydrolysis test and chitin degradation was found to be negative. High indole acetic acid (42.82 µg/mL), gibberellic acid (72.93 µg/mL), ammonia (22.58 µg/mL) production, phytase activity (0.49 pi/mL/min) and comparable amount of siderophore (28.55%) and acid phosphate activity (0.606 µM p-nitrophenol/ml/min) was shown by 'M. gitamensis'. Inoculation of wheat with 'M. gitamensis' in pot experiment showed increased shoot and root length by 30.58% and 38.32%. Fresh weight and dry weight was increased by 45.74% and 67.81%, respectively, compared to uninoculated control. These results demonstrate that 'M. gitamensis' has promising PS, PM and plant growth-promoting attributes to be used as a bio-inoculant to enhance plant growth and soil fertility.


Assuntos
Flavobacteriaceae/metabolismo , Fosfatos/metabolismo , Microbiologia do Solo , Triticum/crescimento & desenvolvimento , Amônia/metabolismo , Fosfatos de Cálcio/metabolismo , Flavobacteriaceae/isolamento & purificação , Índia , Ácidos Indolacéticos/metabolismo , Fixação de Nitrogênio , Fósforo/metabolismo , Desenvolvimento Vegetal , Raízes de Plantas/crescimento & desenvolvimento , RNA Ribossômico 16S/genética
13.
Proc Natl Acad Sci U S A ; 115(26): E5970-E5979, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29891654

RESUMO

Diverse insects are associated with ancient bacterial symbionts, whose genomes have often suffered drastic reduction and degeneration. In extreme cases, such symbiont genomes seem almost unable to sustain the basic cellular functioning, which comprises an open question in the evolution of symbiosis. Here, we report an insect group wherein an ancient symbiont lineage suffering massive genome erosion has experienced recurrent extinction and replacement by host-associated pathogenic microbes. Cicadas are associated with the ancient bacterial co-obligate symbionts Sulcia and Hodgkinia, whose streamlined genomes are specialized for synthesizing essential amino acids, thereby enabling the host to live on plant sap. However, our inspection of 24 Japanese cicada species revealed that while all species possessed Sulcia, only nine species retained Hodgkinia, and their genomes exhibited substantial structural instability. The remaining 15 species lacked Hodgkinia and instead harbored yeast-like fungal symbionts. Detailed phylogenetic analyses uncovered repeated Hodgkinia-fungus and fungus-fungus replacements in cicadas. The fungal symbionts were phylogenetically intermingled with cicada-parasitizing Ophiocordyceps fungi, identifying entomopathogenic origins of the fungal symbionts. Most fungal symbionts of cicadas were uncultivable, but the fungal symbiont of Meimuna opalifera was cultivable, possibly because it is at an early stage of fungal symbiont replacement. Genome sequencing of the fungal symbiont revealed its metabolic versatility, presumably capable of synthesizing almost all amino acids, vitamins, and other metabolites, which is more than sufficient to compensate for the Hodgkinia loss. These findings highlight a straightforward ecological and evolutionary connection between parasitism and symbiosis, which may provide an evolutionary trajectory to renovate deteriorated ancient symbiosis via pathogen domestication.


Assuntos
Alphaproteobacteria/metabolismo , Ascomicetos/metabolismo , Evolução Biológica , Flavobacteriaceae/metabolismo , Hemípteros/microbiologia , Simbiose , Alphaproteobacteria/citologia , Animais , Ascomicetos/citologia , Flavobacteriaceae/citologia
14.
Molecules ; 26(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34500726

RESUMO

The Lacinutrix genus was discovered in 2005 and includes 12 Gram-negative bacterial species. To the best of our knowledge, the secondary metabolite production potential of this genus has not been explored before, and examination of Lacinutrix species may reveal novel chemistry. As part of a screening project of Arctic marine bacteria, the Lacinutrix sp. strain M09B143 was cultivated, extracted, fractionated and tested for antibacterial and cytotoxic activities. One fraction had antibacterial activity and was subjected to mass spectrometry analysis, which revealed two compounds with elemental composition that did not match any known compounds in databases. This resulted in the identification and isolation of two novel isobranched lyso-ornithine lipids, whose structures were elucidated by mass spectrometry and NMR spectroscopy. Lyso-ornithine lipids consist of a 3-hydroxy fatty acid linked to the alpha amino group of an ornithine amino acid through an amide bond. The fatty acid chains were determined to be iso-C15:0 (1) and iso-C16:0 (2). Compound 1 was active against the Gram-positive S. agalactiae, while 2 showed cytotoxic activity against A2058 human melanoma cells.


Assuntos
Flavobacteriaceae/metabolismo , Lipídeos/química , Ornitina/química , Regiões Árticas , Espectroscopia de Ressonância Magnética
15.
Biochemistry ; 59(4): 520-529, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31887021

RESUMO

Krokinobacter rhodopsin 2 (KR2) serves as a light-driven sodium ion pump in the presence of sodium ion and works as a proton pump in the presence of larger monovalent cations such as potassium ion, rubidium ion, and cesium ion. Recent crystallographic studies revealed that KR2 forms a pentamer and possesses an ion binding site at the subunit interface. It is assumed that sodium ion bound at this binding site is not transported but contributes to the thermal stability. Because KR2 can convert its function in response to coexisting cation species, this ion binding site is likely to be involved in ion transport selectively. However, how sodium ion binding affects the structure of the retinal chromophore, which plays a crucial role in ion transport, remains poorly understood. Here, we observed the structure of the retinal chromophore under a wide range of cation concentrations using visible absorption and resonance Raman spectroscopy. We discovered that the hydrogen bond formed between the Schiff base of the retinal chromophore and its counterion, Asp116, is weakened upon binding of sodium ion. This allosteric communication between the Schiff base and the ion binding site at the subunit interface likely increases the apparent efficiency of sodium ion transport. In addition, this study demonstrates the significance of sodium ion binding: even though sodium ion is not transported, binding regulates the structure around the Schiff base and stabilizes the oligomeric structure.


Assuntos
Bombas de Próton/química , Rodopsina/química , Rodopsina/metabolismo , Sítios de Ligação , Flavobacteriaceae/enzimologia , Flavobacteriaceae/metabolismo , Ligação de Hidrogênio , Transporte de Íons/fisiologia , Íons/metabolismo , Potássio/metabolismo , Bombas de Próton/metabolismo , Retina/metabolismo , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
16.
Biochem Biophys Res Commun ; 525(3): 755-758, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32145916

RESUMO

We purified and characterized a prokaryotic argonaute (pAgo) (KjMP) and its associated protein (KjAA) from a bacterium Kordia jejudonensis. The two proteins present as a complex were revealed by the copurification of KjAA with His-tagged KjMP by Ni-NTA affinity column. The KjAA/KjMP complex was a heterodimer evaluated from the molecular weight estimated using size exclusion chromatography. The pAgo complex presented a guide-dependent target DNA cleavage. RNA was the preferred guide; however, DNA also functioned, albeit weakly. Additionally, 5'-phosphorylate or non-phosphorylated guide was equally effective. The purified complex exhibited nonspecific nuclease activity on dsDNA and ssDNA. This is the first study to report that short pAgo and its associated protein form a complex, which has a nucleic acid-guided target recognition and cleavage.


Assuntos
Proteínas Argonautas/metabolismo , Endonucleases/metabolismo , Flavobacteriaceae/metabolismo , Ácidos Nucleicos/metabolismo , Multimerização Proteica , Proteínas Argonautas/genética , Proteínas Argonautas/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/metabolismo
17.
Chembiochem ; 21(9): 1279-1284, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-31845464

RESUMO

Anopheles mosquito microbiomes are intriguing ecological niches. Within the gut, microbes adapt to oxidative stress due to heme and iron after blood meals. Although metagenomic sequencing has illuminated spatial and temporal fluxes of microbiome populations, limited data exist on microbial growth dynamics. Here, we analyze growth interactions between a dominant microbiome species, Elizabethkingia anophelis, and other Anopheles-associated bacteria. We find E. anophelis inhibits a Pseudomonas sp. via an antimicrobial-independent mechanism and observe biliverdins, heme degradation products, upregulated in cocultures. Purification and characterization of E. anophelis HemS demonstrates heme degradation, and we observe hemS expression is upregulated when cocultured with Pseudomonas sp. This study reveals a competitive microbial interaction between mosquito-associated bacteria and characterizes the stimulation of heme degradation in E. anophelis when grown with Pseudomonas sp.


Assuntos
Anopheles/microbiologia , Proteínas de Bactérias/metabolismo , Flavobacteriaceae/metabolismo , Heme/metabolismo , Microbiota , Virulência , Animais , Técnicas de Cocultura , Flavobacteriaceae/crescimento & desenvolvimento , Genoma Bacteriano , Filogenia , Análise de Sequência de DNA
18.
Appl Microbiol Biotechnol ; 104(11): 4863-4875, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32285173

RESUMO

Although microbial exopolysaccharides (EPSs) are applied in different fields, no EPS has been used to protect human skin cells against UV-induced oxidative stress. The EPS produced by the Arctic bacterium Polaribacter sp. SM1127 has high moisture-retention ability and antioxidant activity, suggesting its good industrial potentials. In this study, we improved the EPS production of SM1127 and evaluated its protective effect on human dermal fibroblasts (HDFs) against UV-induced oxidative stress. With glucose as carbon source, the EPS yield was increased from 2.11 to 6.12 g/L by optimizing the fermentation conditions using response surface methodology. To lower the fermentation cost and decrease corrosive speed in stainless steel tanks, whole sugar, whose price is only 8% of that of glucose, was used to replace glucose and NaCl concentration was reduced to 4 g/L in the medium. With the optimized conditions, fed-batch fermentation in a 5-L bioreactor was conducted, and the EPS production reached 19.25 g/L, which represents the highest one reported for a polar microorganism. Moreover, SM1127 EPS could maintain the cell viability and integrity of HDFs under UV-B radiation, probably via decreasing intracellular reactive oxygen species level and increasing intracellular glutathione content and superoxide dismutase activity. Therefore, SM1127 EPS has significant protective effect on HDFs against UV-induced oxidative stress, suggesting its potential to be used in preventing photoaging and photocarcinogenesis. Altogether, this study lays a good foundation for the industrialization of SM1127 EPS, which has promising potential to be used in cosmetics and medical fields.


Assuntos
Antioxidantes/farmacologia , Fibroblastos/efeitos dos fármacos , Estresse Oxidativo , Polissacarídeos Bacterianos/farmacologia , Pele/citologia , Raios Ultravioleta , Regiões Árticas , Reatores Biológicos , Fermentação , Fibroblastos/efeitos da radiação , Flavobacteriaceae/metabolismo , Humanos , Microbiologia Industrial , Polissacarídeos Bacterianos/biossíntese
19.
J Chem Phys ; 153(4): 045101, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32752712

RESUMO

We investigate the role of excitonic coupling between retinal chromophores of Krokinobacter eikastus rhodopsin 2 (KR2) in the circular dichroism (CD) spectrum using an exciton model combined with the transition density fragment interaction (TDFI) method. Although the multimer formation of retinal protein commonly induces biphasic negative and positive CD bands, the KR2 pentamer shows only a single positive CD band. The TDFI calculation reveals the dominant contribution of the Coulomb interaction and negligible contributions of exchange and charge-transfer interactions to the excitonic coupling energy. The exciton model with TDFI successfully reproduces the main features of the experimental absorption and CD spectra of KR2, which allow us to investigate the mechanism of the CD spectral shape observed in the KR2 pentamer. The results clearly show that the red shift of the CD band is attributed to the excitonic coupling between retinal chromophores. Further analysis reveals that the weak excitonic coupling plays a crucial role in the shape of the CD spectrum. The present approach provides a basis for understanding the origin of the KR2 CD spectrum and is useful for analyzing the mechanism of chromophore-chromophore interactions in biological systems.


Assuntos
Dicroísmo Circular/métodos , Rodopsina/metabolismo , Sódio/metabolismo , Flavobacteriaceae/metabolismo , Modelos Teóricos
20.
Mar Drugs ; 18(2)2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32102373

RESUMO

A bifunctional alginate lyase (ALFA3) and mannuronate-specific alginate lyase (ALFA4) genes were found in the genome of polysaccharide-degrading marine bacterium Formosa algae KMM 3553T. They were classified to PL7 and PL6 polysaccharide lyases families and expressed in E. coli. The recombinant ALFA3 appeared to be active both on mannuronate- and guluronate-enriched alginates, as well as pure sodium mannuronate. For all substrates, optimum conditions were pH 6.0 and 35 °C; Km was 0.12 ± 0.01 mg/ml, and half-inactivation time was 30 min at 42 °C. Recombinant ALFA4 was active predominately on pure sodium mannuronate, with optimum pH 8.0 and temperature 30 °C, Km was 3.01 ± 0.05 mg/ml. It was stable up to 30 °C; half-inactivation time was 1h 40 min at 37 °C. 1H NMR analysis showed that ALFA3 degraded mannuronate and mannuronate-guluronate blocks, while ALFA4 degraded only mannuronate blocks, producing mainly disaccharides. Products of digestion of pure sodium mannuronate by ALFA3 at 200 µg/ml inhibited anchorage-independent colony formation of human melanoma cells SK-MEL-5, SK-MEL-28, and RPMI-7951 up to 17% stronger compared to native polymannuronate. This fact supports previous data and suggests that mannuronate oligosaccharides may be useful for synergic tumor therapy.


Assuntos
Flavobacteriaceae/enzimologia , Polissacarídeo-Liases/metabolismo , Clonagem Molecular , Flavobacteriaceae/genética , Flavobacteriaceae/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Polissacarídeo-Liases/química , Polissacarídeo-Liases/genética , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA