Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 941
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(1): 105550, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072055

RESUMO

Methanogens are essential for the complete remineralization of organic matter in anoxic environments. Most cultured methanogens are hydrogenotrophic, using H2 as an electron donor to reduce CO2 to CH4, but in the absence of H2 many can also use formate. Formate dehydrogenase (Fdh) is essential for formate oxidation, where it transfers electrons for the reduction of coenzyme F420 or to a flavin-based electron bifurcating reaction catalyzed by heterodisulfide reductase (Hdr), the terminal reaction of methanogenesis. Furthermore, methanogens that use formate encode at least two isoforms of Fdh in their genomes, but how these different isoforms participate in methanogenesis is unknown. Using Methanococcus maripaludis, we undertook a biochemical characterization of both Fdh isoforms involved in methanogenesis. Both Fdh1 and Fdh2 interacted with Hdr to catalyze the flavin-based electron bifurcating reaction, and both reduced F420 at similar rates. F420 reduction preceded flavin-based electron bifurcation activity for both enzymes. In a Δfdh1 mutant background, a suppressor mutation was required for Fdh2 activity. Genome sequencing revealed that this mutation resulted in the loss of a specific molybdopterin transferase (moeA), allowing for Fdh2-dependent growth, and the metal content of the proteins suggested that isoforms are dependent on either molybdenum or tungsten for activity. These data suggest that both isoforms of Fdh are functionally redundant, but their activities in vivo may be limited by gene regulation or metal availability under different growth conditions. Together these results expand our understanding of formate oxidation and the role of Fdh in methanogenesis.


Assuntos
Formiato Desidrogenases , Mathanococcus , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Mathanococcus/genética , Mathanococcus/metabolismo , Flavinas/metabolismo , Formiatos/metabolismo , Isoformas de Proteínas/metabolismo
2.
J Am Chem Soc ; 146(28): 18817-18822, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38968608

RESUMO

NAD(H)-dependent enzymes play a crucial role in the biosynthesis of pharmaceuticals and fine chemicals, but the limited recyclability of the NAD(H) cofactor hinders its more general application. Here, we report the generation of mechano-responsive PEI-modified Cry3Aa protein crystals and their use for NADH recycling over multiple reaction cycles. For demonstration of its practical utility, a complementary Cry3Aa protein particle containing genetically encoded and co-immobilized formate dehydrogenase for NADH regeneration and leucine dehydrogenase for catalyzing the NADH-dependent l-tert-leucine (l-tert-Leu) biosynthesis has been produced. When combined with the PEI-modified Cry3Aa crystal, the resultant reaction system could be used for the efficient biosynthesis of l-tert-Leu for up to 21 days with a 10.5-fold improvement in the NADH turnover number.


Assuntos
Formiato Desidrogenases , NAD , NAD/metabolismo , NAD/química , Formiato Desidrogenases/metabolismo , Formiato Desidrogenases/química , Leucina Desidrogenase/metabolismo , Leucina Desidrogenase/química , Cristalização , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Modelos Moleculares
3.
Small ; 20(14): e2306117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37994262

RESUMO

The reduction of carbon dioxide to valuable chemicals through enzymatic processes is regarded as a promising approach for the reduction of carbon dioxide emissions. In this study, an in vitro multi-enzyme cascade pathway is constructed for the conversion of CO2 into dihydroxyacetone (DHA). This pathway, known as FFFP, comprises formate dehydrogenase (FDH), formaldehyde dehydrogenase (FaldDH), formolase (FLS), and phosphite dehydrogenase (PTDH), with PTDH serving as the critical catalyst for regenerating the coenzyme NADH. Subsequently, the immobilization of the FFFP pathway within the hydrogen-bonded organic framework (HOF-101) is accomplished in situ. A 1.8-fold increase in DHA yield is observed in FFFP@HOF-101 compared to the free FFFP pathway. This enhancement can be explained by the fact that within FFFP@HOF-101, enzymes are positioned sufficiently close to one another, leading to the elevation of the local concentration of intermediates and an improvement in mass transfer efficiency. Moreover, FFFP@HOF-101 displays a high degree of stability. In addition to the establishment of an effective DHA production method, innovative concepts for the tailored synthesis of fine compounds from CO2 through the utilization of various multi-enzyme cascade developments are generated by this work.


Assuntos
Dióxido de Carbono , Formiato Desidrogenases , Dióxido de Carbono/química , Formiato Desidrogenases/química , Formiato Desidrogenases/metabolismo , Catálise , Hidrogênio
4.
Chembiochem ; 25(15): e202400346, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38775416

RESUMO

Multi-enzyme cascade catalysis has become an important technique for chemical reactions used in manufacturing and scientific study. In this research, we designed a four-enzyme integrated catalyst and used it to catalyse the deracemization reaction of cyclic chiral amines, where monoamine oxidase (MAO) catalyses the enantioselective oxidation of 1-methyl-1,2,3,4-tetrahydroisoquinoline (MTQ), imine reductase (IRED) catalyses the stereo selective reduction of 1-methyl-3,4-dihydroisoquinoline (MDQ), formate dehydrogenase (FDH) is used for the cyclic regeneration of cofactors, and catalase (CAT) is used for decomposition of oxidative reactions. The four enzymes were immobilized via polydopamine (PDA)-encapsulated dendritic organosilica nanoparticles (DONs) as carriers, resulting in the amphiphilic core-shell catalysts. The hydrophilic PDA shell ensures the dispersion of the catalyst in water, and the hydrophobic DON core creates a microenvironment with the spatial confinement effect of the organic substrate and the preconcentration effect to enhance the stability of the enzymes and the catalytic efficiency. The core-shell structure improves the stability and reusability of the catalyst and rationally arranges the position of different enzymes according to the reaction sequence to improve the cascade catalytic performance and cofactor recovery efficiency.


Assuntos
Aminas , Monoaminoxidase , Polímeros , Aminas/química , Aminas/metabolismo , Monoaminoxidase/metabolismo , Monoaminoxidase/química , Polímeros/química , Polímeros/metabolismo , Formiato Desidrogenases/metabolismo , Formiato Desidrogenases/química , Catalase/química , Catalase/metabolismo , Indóis/química , Indóis/metabolismo , Estereoisomerismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Oxirredução , Nanopartículas/química , Biocatálise , Compostos de Organossilício/química , Oxirredutases/metabolismo , Oxirredutases/química , Catálise
5.
Appl Environ Microbiol ; 90(9): e0147224, 2024 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-39194220

RESUMO

Enzyme engineering is a powerful tool for improving or altering the properties of biocatalysts for industrial, research, and therapeutic applications. Fast and accurate screening of variant libraries is often the bottleneck of enzyme engineering and may be overcome by growth-based screening strategies with simple processes to enable high throughput. The currently available growth-based screening strategies have been widely employed for enzymes but not yet for catalytically potent and oxygen-sensitive metalloenzymes. Here, we present a screening system that couples the activity of an oxygen-sensitive formate dehydrogenase to the growth of Escherichia coli. This system relies on the complementation of the E. coli formate hydrogenlyase (FHL) complex by Mo-dependent formate dehydrogenase H (EcFDH-H). Using an EcFDH-H-deficient strain, we demonstrate that growth inhibition by acidic glucose fermentation products can be alleviated by FHL complementation. This allows the identification of catalytically active EcFDH-H variants at a readily measurable cell density readout, reduced handling efforts, and a low risk of oxygen contamination. Furthermore, a good correlation between cell density and formate oxidation activity was established using EcFDH-H variants with variable catalytic activities. As proof of concept, the growth assay was employed to screen a library of 1,032 EcFDH-H variants and reduced the library size to 96 clones. During the subsequent colorimetric screening of these clones, the variant A12G exhibiting an 82.4% enhanced formate oxidation rate was identified. Since many metal-dependent formate dehydrogenases and hydrogenases form functional complexes resembling E. coli FHL, the demonstrated growth-based screening strategy may be adapted to components of such electron-transferring complexes.IMPORTANCEOxygen-sensitive metalloenzymes are highly potent catalysts that allow the reduction of chemically inert substrates such as CO2 and N2 at ambient pressure and temperature and have, therefore, been considered for the sustainable production of biofuels and commodity chemicals such as ammonia, formic acid, and glycine. A proven method to optimize natural enzymes for such applications is enzyme engineering using high-throughput variant library screening. However, most screening methods are incompatible with the oxygen sensitivity of these metalloenzymes and thereby limit their relevance for the development of biosynthetic production processes. A microtiter plate-based assay was developed for the screening of metal-dependent formate dehydrogenase that links the activity of the tested enzyme variant to the growth of the anaerobically grown host cell. The presented work extends the application range of growth-based screening to metalloenzymes and is thereby expected to advance their adoption to biosynthesis applications.


Assuntos
Escherichia coli , Formiato Desidrogenases , Oxigênio , Formiato Desidrogenases/metabolismo , Formiato Desidrogenases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/enzimologia , Oxigênio/metabolismo , Engenharia de Proteínas , Formiatos/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Oxirredução , Hidrogenase , Complexos Multienzimáticos
6.
Langmuir ; 40(31): 16249-16257, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39066730

RESUMO

Nicotinamide adenine dinucleotide-dependent formate dehydrogenase from Candida boidinii was immobilized in a 1,2-dimyristoyl-sn-glycero-3-phosphocholine/cholesterol floating lipid bilayer on the gold surface as a biocatalyst for electrochemical CO2 reduction. We report that, in contrast to common belief, the enzyme can catalyze the electrochemical reduction of CO2 to formate without the cofactor protonated nicotinamide adenine dinucleotide. The electrochemical data indicate that the enzyme-catalyzed reduction of CO2 is diffusion-controlled and is a reversible reaction. The orientation and conformation of the enzyme were investigated by surface-enhanced infrared reflection absorption spectroscopy. The α-helix of the enzyme adopts an orientation nearly parallel to the surface, bringing its active center close to the gold surface. This orientation allows direct electron transfer between CO2 and the gold electrode. The results in this paper provide a new method for the development of enzymatic electrocatalysts for CO2 reduction.


Assuntos
Dióxido de Carbono , Enzimas Imobilizadas , Formiato Desidrogenases , Oxirredução , Formiato Desidrogenases/química , Formiato Desidrogenases/metabolismo , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Biocatálise , Candida/enzimologia , Técnicas Eletroquímicas , Eletrodos , Ouro/química , Catálise , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Saccharomycetales
7.
Chem Rev ; 122(14): 11900-11973, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35849738

RESUMO

Gases like H2, N2, CO2, and CO are increasingly recognized as critical feedstock in "green" energy conversion and as sources of nitrogen and carbon for the agricultural and chemical sectors. However, the industrial transformation of N2, CO2, and CO and the production of H2 require significant energy input, which renders processes like steam reforming and the Haber-Bosch reaction economically and environmentally unviable. Nature, on the other hand, performs similar tasks efficiently at ambient temperature and pressure, exploiting gas-processing metalloenzymes (GPMs) that bind low-valent metal cofactors based on iron, nickel, molybdenum, tungsten, and sulfur. Such systems are studied to understand the biocatalytic principles of gas conversion including N2 fixation by nitrogenase and H2 production by hydrogenase as well as CO2 and CO conversion by formate dehydrogenase, carbon monoxide dehydrogenase, and nitrogenase. In this review, we emphasize the importance of the cofactor/protein interface, discussing how second and outer coordination sphere effects determine, modulate, and optimize the catalytic activity of GPMs. These may comprise ionic interactions in the second coordination sphere that shape the electron density distribution across the cofactor, hydrogen bonding changes, and allosteric effects. In the outer coordination sphere, proton transfer and electron transfer are discussed, alongside the role of hydrophobic substrate channels and protein structural changes. Combining the information gained from structural biology, enzyme kinetics, and various spectroscopic techniques, we aim toward a comprehensive understanding of catalysis beyond the first coordination sphere.


Assuntos
Hidrogenase , Aldeído Oxirredutases , Dióxido de Carbono/química , Formiato Desidrogenases/metabolismo , Hidrogenase/química , Complexos Multienzimáticos , Nitrogenase/metabolismo , Oxirredução
8.
Appl Microbiol Biotechnol ; 108(1): 140, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231394

RESUMO

Enzymes have become important tools in many industries. However, the full exploitation of their potential is currently limited by a lack of efficient and cost-effective methods for enzyme purification from microbial production. One technology that could solve this problem is foam fractionation. In this study, we show that diverse natural foam-stabilizing proteins fused as F-Tags to ß-lactamase, penicillin G acylase, and formate dehydrogenase, respectively, are able to mediate foaming and recovery of the enzymes by foam fractionation. The catalytic activity of all three candidates is largely preserved. Under appropriate fractionation conditions, especially when a wash buffer is used, some F-Tags also allow nearly complete separation of the target enzyme from a contaminating protein. We found that a larger distance between the F-Tag and the target enzyme has a positive effect on the maintenance of catalytic activity. However, we did not identify any particular sequence motifs or physical parameters that influenced performance as an F-tag. The best results were obtained with a short helical F-Tag, which was originally intended to serve only as a linker sequence. The findings of the study suggest that the development of molecular tags that enable the establishment of surfactant-free foam fractionation for enzyme workup is a promising method. KEY POINTS: • Foam-stabilizing proteins mediate activity-preserving foam fractionation of enzymes • Performance as an F-Tag is not restricted to particular structural motifs • Separation from untagged protein benefits from low foam stability and foam washings.


Assuntos
Fracionamento Químico , Penicilina Amidase , Formiato Desidrogenases , Indústrias , Tensoativos
9.
Biochemistry ; 62(15): 2314-2324, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37463347

RESUMO

The pressure to optimize enzymatic rate accelerations has driven the evolution of the induced-fit mechanism for enzyme catalysts where the binding interactions of nonreacting phosphodianion or adenosyl substrate pieces drive enzyme conformational changes to form protein substrate cages that are activated for catalysis. We report the results of experiments to test the hypothesis that utilization of the binding energy of the adenosine 5'-diphosphate ribose (ADP-ribose) fragment of the NAD cofactor to drive a protein conformational change activates Candida boidinii formate dehydrogenase (CbFDH) for catalysis of hydride transfer from formate to NAD+. The ADP-ribose fragment provides a >14 kcal/mol stabilization of the transition state for CbFDH-catalyzed hydride transfer from formate to NAD+. This is larger than the ca. 6 kcal/mol stabilization of the ground-state Michaelis complex between CbFDH and NAD+ (KNAD = 0.032 mM). The ADP, AMP, and ribose 5'-phosphate fragments of NAD+ activate CbFDH for catalysis of hydride transfer from formate to nicotinamide riboside (NR). At a 1.0 M standard state, these activators stabilize the hydride transfer transition states by ≈5.5 (ADP), 5.5 (AMP), and 4.4 (ribose 5'-phosphate) kcal/mol. We propose that activation by these cofactor fragments is partly or entirely due to the ion-pair interaction between the guanidino side chain cation of R174 and the activator phosphate anion. This substitutes for the interaction between the α-adenosyl pyrophosphate anion of the whole NAD+ cofactor that holds CbFDH in the catalytically active closed conformation.


Assuntos
Formiato Desidrogenases , NAD , NAD/metabolismo , Formiato Desidrogenases/metabolismo , Ribose , Catálise , Ânions , Fosfatos , Cinética
10.
J Biol Chem ; 298(2): 101384, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34748728

RESUMO

The molybdenum/tungsten-bis-pyranopterin guanine dinucleotide family of formate dehydrogenases (FDHs) plays roles in several metabolic pathways ranging from carbon fixation to energy harvesting because of their reaction with a wide variety of redox partners. Indeed, this metabolic plasticity results from the diverse structures, cofactor content, and substrates used by partner subunits interacting with the catalytic hub. Here, we unveiled two noncanonical FDHs in Bacillus subtilis, which are organized into two-subunit complexes with unique features, ForCE1 and ForCE2. We show that the formate oxidoreductase catalytic subunit interacts with an unprecedented partner subunit, formate oxidoreductase essential subunit, and that its amino acid sequence within the active site deviates from the consensus residues typically associated with FDH activity, as a histidine residue is naturally substituted with a glutamine. The formate oxidoreductase essential subunit mediates the utilization of menaquinone as an electron acceptor as shown by the formate:menadione oxidoreductase activity of both enzymes, their copurification with menaquinone, and the distinctive detection of a protein-bound neutral menasemiquinone radical by multifrequency electron paramagnetic resonance (EPR) experiments on the purified enzymes. Moreover, EPR characterization of both FDHs reveals the presence of several [Fe-S] clusters with distinct relaxation properties and a weakly anisotropic Mo(V) EPR signature, consistent with the characteristic molybdenum/bis-pyranopterin guanine dinucleotide cofactor of this enzyme family. Altogether, this work enlarges our knowledge of the FDH family by identifying a noncanonical FDH, which differs in terms of architecture, amino acid conservation around the molybdenum cofactor, and reactivity.


Assuntos
Formiato Desidrogenases , Molibdênio , Vitamina K 2 , Espectroscopia de Ressonância de Spin Eletrônica , Formiato Desidrogenases/química , Formiato Desidrogenases/metabolismo , Formiatos/metabolismo , Guanina/metabolismo , Molibdênio/química , Vitamina K 2/química , Vitamina K 2/metabolismo
11.
J Am Chem Soc ; 145(47): 25850-25863, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37967365

RESUMO

The oxygen-tolerant and molybdenum-dependent formate dehydrogenase FdsDABG from Cupriavidus necator is capable of catalyzing both formate oxidation to CO2 and the reverse reaction (CO2 reduction to formate) at neutral pH, which are both reactions of great importance to energy production and carbon capture. FdsDABG is replete with redox cofactors comprising seven Fe/S clusters, flavin mononucleotide, and a molybdenum ion coordinated by two pyranopterin dithiolene ligands. The redox potentials of these centers are described herein and assigned to specific cofactors using combinations of potential-dependent continuous wave and pulse EPR spectroscopy and UV/visible spectroelectrochemistry on both the FdsDABG holoenzyme and the FdsBG subcomplex. These data represent the first redox characterization of a complex metal dependent formate dehydrogenase and provide an understanding of the highly efficient catalytic formate oxidation and CO2 reduction activity that are associated with the enzyme.


Assuntos
Cupriavidus necator , Molibdênio , Molibdênio/química , Formiato Desidrogenases/química , Cupriavidus necator/metabolismo , Dióxido de Carbono/química , Oxirredução , Formiatos
12.
Chembiochem ; 24(20): e202300390, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37455264

RESUMO

Nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH) constitute major hydrogen donors for oxidative/reductive bio-transformations. NAD(P)H regeneration systems coupled with formate dehydrogenases (FDHs) represent a dreamful method. However, most of the native FDHs are NAD+ -dependent and suffer from insufficient reactivity compared to other enzymatic tools, such as glucose dehydrogenase. An efficient and competitive NADP+ -utilizing FDH necessitates the availability and robustness of NADPH regeneration systems. Herein, we report the engineering of a new FDH from Candida dubliniensis (CdFDH), which showed no strict NAD+ preference by a structure-guided rational/semi-rational design. A combinatorial mutant CdFDH-M4 (D197Q/Y198R/Q199N/A372S/K371T/▵Q375/K167R/H16L/K159R) exhibited 75-fold intensification of catalytic efficiency (kcat /Km ). Moreover, CdFDH-M4 has been successfully employed in diverse asymmetric oxidative/reductive processes with cofactor total turnover numbers (TTNs) ranging from 135 to 986, making it potentially useful for NADPH-required biocatalytic transformations.


Assuntos
Formiato Desidrogenases , NAD , NADP/metabolismo , NAD/metabolismo , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Engenharia de Proteínas/métodos , Oxirredução
13.
Chembiochem ; 24(24): e202300587, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37783667

RESUMO

Most natural formate dehydrogenases (FDHs) exhibit NAD+ specificity, making it imperative to explore the engineering of FDH cofactor specificity for NADPH regeneration systems. The endogenous FDH of Komagataella phaffii (K. phaffii), termed KphFDH, is a typical NAD+ -specific FDH. However, investigations into engineering the cofactor specificity of KphFDH have yet to be conducted. To develop an NADP+ -specific variant of KphFDH, we selected D195, Y196, and Q197 as mutation sites and generated twenty site-directed variants. Through kinetic characterization, KphFDH/V19 (D195Q/Y196R/Q197H) was identified as the variant with the highest specificity towards NADP+ , with a ratio of catalytic efficiency (kcat /KM )NADP+ /(kcat /KM )NAD+ of 129.226. Studies of enzymatic properties revealed that the optimal temperature and pH for the reduction reaction of NADP+ catalyzed by KphFDH/V19 were 45 °C and 7.5, respectively. The molecular dynamics (MD) simulation was performed to elucidate the mechanism of high catalytic activity of KphFDH/V19 towards NADP+ . Finally, KphFDH/V19 was applied to an in vitro NADPH regeneration system with Meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum (StDAPDH/H227V). This study successfully created a KphFDH variant with high NADP+ specificity and demonstrated its practical applicability in an in vitro NADPH regeneration system.


Assuntos
NAD , Saccharomycetales , NADP/metabolismo , NAD/metabolismo , Formiato Desidrogenases/química , Saccharomycetales/metabolismo , Cinética
14.
Metab Eng ; 80: 1-11, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37673324

RESUMO

Shewanella oneidensis MR-1 (S. oneidensis MR-1) has been shown to benefit from microbial electrosynthesis (MES) due to its exceptional electron transfer efficiency. In this study, genes involved in both extracellular electron uptake (EEU) and intracellular CO2 conversion processes were examined and regulated to enhance MES performance. The key genes identified for MES in the EEU process were mtrB, mtrC, mtrD, mtrE, omcA and cctA. Overexpression of these genes resulted in 1.5-2.1 times higher formate productivity than that of the wild-type strains (0.63 mmol/(L·µg protein)), as 0.94-1.61 mmol/(L·µg protein). In the intracellular CO2 conversion process, overexpression of the nadE, nadD, nadR, nadV, pncC and petC genes increased formate productivity 1.3-fold-3.4-fold. Moreover, overexpression of the formate dehydrogenase genes fdhA1, fdhB1 and fdhX1 in modified strains led to a 2.3-fold-3.1-fold increase in formate productivity compared to wild-type strains. The co-overexpression of cctA, fdhA1 and nadV in the mutant strain resulted in 5.59 times (3.50 mmol/(L·µg protein)) higher formate productivity than that of the wild-type strains. These findings revealed that electrons of MES derived from the electrode were utilized in the energy module for synthesizing ATP and NADH, followed by the synthesis of formate in formate dehydrogenase by the combinatorial effects of ATP, NADH, electrons and CO2. The results provide new insights into the mechanism of MES in S. oneidensis MR-1 and pave the way for genetic improvements that could facilitate the further application of MES.


Assuntos
Proteínas de Bactérias , Shewanella , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Formiato Desidrogenases/metabolismo , NAD/metabolismo , Dióxido de Carbono/metabolismo , Shewanella/genética , Shewanella/metabolismo , Formiatos/metabolismo , Trifosfato de Adenosina/metabolismo
15.
Appl Environ Microbiol ; 89(12): e0147423, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-37966269

RESUMO

IMPORTANCE: The strategy using structural homology with the help of structure prediction by AlphaFold was very successful in finding potential targets for the frhAGB-encoded hydrogenase of Thermococcus onnurineus NA1. The finding that the hydrogenase can interact with FdhB to reduce the cofactor NAD(P)+ is significant in that the enzyme can function to supply reducing equivalents, just as F420-reducing hydrogenases in methanogens use coenzyme F420 as an electron carrier. Additionally, it was identified that T. onnurineus NA1 could produce formate from H2 and CO2 by the concerted action of frhAGB-encoded hydrogenase and formate dehydrogenase Fdh3.


Assuntos
Hidrogenase , Thermococcus , Thermococcus/genética , Hidrogenase/genética , Formiato Desidrogenases/genética , Dióxido de Carbono , NADP
16.
Chemistry ; 29(47): e202301113, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37294852

RESUMO

The enzymatic reduction of carbon dioxide presents limited applicability due to denaturation and the impossibility of biocatalyst recovery; disadvantages that can be minimized by its immobilization. Here, a recyclable bio-composed system was constructed by in-situ encapsulation under mild conditions using formate dehydrogenase in a ZIF-8 metalorganic framework (MOF) in the presence of magnetite. The partial dissolution of ZIF-8 in the enzyme's operation medium can be relatively inhibited if the concentration of magnetic support used exceeds 10 mg mL-1 . The bio-friendly environment for immobilization does not harm the integrity of the biocatalyst, and the production of formic acid is improved 3.4-fold compared to the free enzyme because the MOFs act as concentrators of the enzymatic cofactor. Furthermore, the bio-composed system retains 86 % of its activity after a long time of five cycles, thus indicating an excellent magnetic recovery and a good reusability.


Assuntos
Formiato Desidrogenases , Oxirredução , Dióxido de Carbono/química , Formiato Desidrogenases/química , Formiato Desidrogenases/metabolismo , Cápsulas
17.
Inorg Chem ; 62(16): 6332-6338, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37026841

RESUMO

Formate dehydrogenase (FDH) enzymes catalyze redox interconversion of CO2 and HCO2-, with a key mechanistic step being the transfer of H- from HCO2- to an oxidized active site featuring a [MVI≡S] group in a sulfur-rich environment (M = Mo or W). Here, we report reactivity studies with HCO2- and other reducing agents of a synthetic [WVI≡S] model complex ligated by dithiocarbamate (dtc) ligands. Reactions of [WVIS(dtc)3][BF4] (1) conducted in MeOH solvent generated [WVIS(S2)(dtc)2] (2) and [WVS(µ-S)(dtc)]2 (3) products by a solvolysis pathway that was accelerated by the presence of [Me4N][HCO2] but did not require it. Under MeOH-free conditions, the reaction of 1 with [Et4N][HCO2] produced some [WIV(µ-S)(µ-dtc)(dtc)]2 (4), but predominantly [WV(dtc)4]+ (5), along with stoichiometric CO2 detected by headspace gas chromatography (GC) analysis. Stronger hydride sources such as K-selectride generated the more reduced analogue, 4, exclusively. The reaction of 1 with the electron donor, CoCp2, also produced 4 and 5 in varying amounts depending on reaction conditions. These results indicate that formates and borohydrides act as electron donors rather than hydride donors toward 1, an outcome that diverges from the behavior of FDHs. The difference is ascribed to the more oxidizing potential of [WVI≡S] complex 1 when supported by monoanionic dtc ligands that allows electron transfer to outcompete hydride transfer, as compared to the more reduced [MVI≡S] active sites supported by dianionic pyranopterindithiolate ligands in FDHs.


Assuntos
Dióxido de Carbono , Formiato Desidrogenases , Domínio Catalítico , Formiato Desidrogenases/química , Oxirredução , Compostos de Tungstênio/química , Tiocarbamatos/química
18.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38003259

RESUMO

Formate dehydrogenases catalyze the reversible oxidation of formate to carbon dioxide. These enzymes play an important role in CO2 reduction and serve as nicotinamide cofactor recycling enzymes. More recently, the CO2-reducing activity of formate dehydrogenases, especially metal-containing formate dehydrogenases, has been further explored for efficient atmospheric CO2 capture. Here, we investigate the nicotinamide binding site of formate dehydrogenase from Rhodobacter capsulatus for its specificity toward NAD+ vs. NADP+ reduction. Starting from the NAD+-specific wild-type RcFDH, key residues were exchanged to enable NADP+ binding on the basis of the NAD+-bound cryo-EM structure (PDB-ID: 6TG9). It has been observed that the lysine at position 157 (Lys157) in the ß-subunit of the enzyme is essential for the binding of NAD+. RcFDH variants that had Glu259 exchanged for either a positively charged or uncharged amino acid had additional activity with NADP+. The FdsBL279R and FdsBK276A variants also showed activity with NADP+. Kinetic parameters for all the variants were determined and tested for activity in CO2 reduction. The variants were able to reduce CO2 using NADPH as an electron donor in a coupled assay with phosphite dehydrogenase (PTDH), which regenerates NADPH. This makes the enzyme suitable for applications where it can be coupled with other enzymes that use NADPH.


Assuntos
NAD , Rhodobacter capsulatus , NADP/metabolismo , NAD/metabolismo , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo , Dióxido de Carbono/metabolismo , Elétrons , Oxirredução , Oxidantes , Niacinamida , Cinética
19.
Molecules ; 28(4)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36838526

RESUMO

Mo/W-containing formate dehydrogenases (FDH) catalyzed the reversible oxidation of formate to carbon dioxide at their molybdenum or tungsten active sites. While in the reaction of formate oxidation, the product is CO2, which exits the active site via a hydrophobic channel; bicarbonate is formed as the first intermediate during the reaction at the active site. Other than what has been previously reported, bicarbonate is formed after an oxygen atom transfer reaction, transferring the oxygen from water to formate and a subsequent proton-coupled electron transfer or hydride transfer reaction involving the sulfido ligand as acceptor.


Assuntos
Bicarbonatos , Formiato Desidrogenases , Formiato Desidrogenases/metabolismo , Oxigênio , Oxirredução , Molibdênio/química , Formiatos , Dióxido de Carbono/química
20.
Molecules ; 28(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37513211

RESUMO

Mo/W-containing formate dehydrogenases (FDH) catalyzes the reversible oxidation of formate to carbon dioxide at their molybdenum or tungsten active sites. The metal-containing FDHs are members of the dimethylsulfoxide reductase family of mononuclear molybdenum cofactor (Moco)- or tungsten cofactor (Wco)-containing enzymes. In these enzymes, the active site in the oxidized state comprises a Mo or W atom present in the bis-Moco, which is coordinated by the two dithiolene groups from the two MGD moieties, a protein-derived SeCys or Cys, and a sixth ligand that is now accepted as being a sulfido group. SeCys-containing enzymes have a generally higher turnover number than Cys-containing enzymes. The analogous chemical properties of W and Mo, the similar active sites of W- and Mo-containing enzymes, and the fact that W can replace Mo in some enzymes have led to the conclusion that Mo- and W-containing FDHs have the same reaction mechanism. Details of the catalytic mechanism of metal-containing formate dehydrogenases are still not completely understood and have been discussed here.


Assuntos
Formiato Desidrogenases , Metaloproteínas , Formiato Desidrogenases/metabolismo , Oxirredução , Metaloproteínas/química , Molibdênio/química , Domínio Catalítico , Pteridinas/química , Coenzimas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA