Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(28): 18817-18822, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38968608

RESUMO

NAD(H)-dependent enzymes play a crucial role in the biosynthesis of pharmaceuticals and fine chemicals, but the limited recyclability of the NAD(H) cofactor hinders its more general application. Here, we report the generation of mechano-responsive PEI-modified Cry3Aa protein crystals and their use for NADH recycling over multiple reaction cycles. For demonstration of its practical utility, a complementary Cry3Aa protein particle containing genetically encoded and co-immobilized formate dehydrogenase for NADH regeneration and leucine dehydrogenase for catalyzing the NADH-dependent l-tert-leucine (l-tert-Leu) biosynthesis has been produced. When combined with the PEI-modified Cry3Aa crystal, the resultant reaction system could be used for the efficient biosynthesis of l-tert-Leu for up to 21 days with a 10.5-fold improvement in the NADH turnover number.


Assuntos
Formiato Desidrogenases , NAD , NAD/metabolismo , NAD/química , Formiato Desidrogenases/metabolismo , Formiato Desidrogenases/química , Leucina Desidrogenase/metabolismo , Leucina Desidrogenase/química , Cristalização , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Modelos Moleculares
2.
Small ; 20(14): e2306117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37994262

RESUMO

The reduction of carbon dioxide to valuable chemicals through enzymatic processes is regarded as a promising approach for the reduction of carbon dioxide emissions. In this study, an in vitro multi-enzyme cascade pathway is constructed for the conversion of CO2 into dihydroxyacetone (DHA). This pathway, known as FFFP, comprises formate dehydrogenase (FDH), formaldehyde dehydrogenase (FaldDH), formolase (FLS), and phosphite dehydrogenase (PTDH), with PTDH serving as the critical catalyst for regenerating the coenzyme NADH. Subsequently, the immobilization of the FFFP pathway within the hydrogen-bonded organic framework (HOF-101) is accomplished in situ. A 1.8-fold increase in DHA yield is observed in FFFP@HOF-101 compared to the free FFFP pathway. This enhancement can be explained by the fact that within FFFP@HOF-101, enzymes are positioned sufficiently close to one another, leading to the elevation of the local concentration of intermediates and an improvement in mass transfer efficiency. Moreover, FFFP@HOF-101 displays a high degree of stability. In addition to the establishment of an effective DHA production method, innovative concepts for the tailored synthesis of fine compounds from CO2 through the utilization of various multi-enzyme cascade developments are generated by this work.


Assuntos
Dióxido de Carbono , Formiato Desidrogenases , Dióxido de Carbono/química , Formiato Desidrogenases/química , Formiato Desidrogenases/metabolismo , Catálise , Hidrogênio
3.
Chembiochem ; 25(15): e202400346, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38775416

RESUMO

Multi-enzyme cascade catalysis has become an important technique for chemical reactions used in manufacturing and scientific study. In this research, we designed a four-enzyme integrated catalyst and used it to catalyse the deracemization reaction of cyclic chiral amines, where monoamine oxidase (MAO) catalyses the enantioselective oxidation of 1-methyl-1,2,3,4-tetrahydroisoquinoline (MTQ), imine reductase (IRED) catalyses the stereo selective reduction of 1-methyl-3,4-dihydroisoquinoline (MDQ), formate dehydrogenase (FDH) is used for the cyclic regeneration of cofactors, and catalase (CAT) is used for decomposition of oxidative reactions. The four enzymes were immobilized via polydopamine (PDA)-encapsulated dendritic organosilica nanoparticles (DONs) as carriers, resulting in the amphiphilic core-shell catalysts. The hydrophilic PDA shell ensures the dispersion of the catalyst in water, and the hydrophobic DON core creates a microenvironment with the spatial confinement effect of the organic substrate and the preconcentration effect to enhance the stability of the enzymes and the catalytic efficiency. The core-shell structure improves the stability and reusability of the catalyst and rationally arranges the position of different enzymes according to the reaction sequence to improve the cascade catalytic performance and cofactor recovery efficiency.


Assuntos
Aminas , Monoaminoxidase , Polímeros , Aminas/química , Aminas/metabolismo , Monoaminoxidase/metabolismo , Monoaminoxidase/química , Polímeros/química , Polímeros/metabolismo , Formiato Desidrogenases/metabolismo , Formiato Desidrogenases/química , Catalase/química , Catalase/metabolismo , Indóis/química , Indóis/metabolismo , Estereoisomerismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Oxirredução , Nanopartículas/química , Biocatálise , Compostos de Organossilício/química , Oxirredutases/metabolismo , Oxirredutases/química , Catálise
4.
Langmuir ; 40(31): 16249-16257, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39066730

RESUMO

Nicotinamide adenine dinucleotide-dependent formate dehydrogenase from Candida boidinii was immobilized in a 1,2-dimyristoyl-sn-glycero-3-phosphocholine/cholesterol floating lipid bilayer on the gold surface as a biocatalyst for electrochemical CO2 reduction. We report that, in contrast to common belief, the enzyme can catalyze the electrochemical reduction of CO2 to formate without the cofactor protonated nicotinamide adenine dinucleotide. The electrochemical data indicate that the enzyme-catalyzed reduction of CO2 is diffusion-controlled and is a reversible reaction. The orientation and conformation of the enzyme were investigated by surface-enhanced infrared reflection absorption spectroscopy. The α-helix of the enzyme adopts an orientation nearly parallel to the surface, bringing its active center close to the gold surface. This orientation allows direct electron transfer between CO2 and the gold electrode. The results in this paper provide a new method for the development of enzymatic electrocatalysts for CO2 reduction.


Assuntos
Dióxido de Carbono , Enzimas Imobilizadas , Formiato Desidrogenases , Oxirredução , Formiato Desidrogenases/química , Formiato Desidrogenases/metabolismo , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Biocatálise , Candida/enzimologia , Técnicas Eletroquímicas , Eletrodos , Ouro/química , Catálise , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Saccharomycetales
5.
J Biol Chem ; 298(2): 101384, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34748728

RESUMO

The molybdenum/tungsten-bis-pyranopterin guanine dinucleotide family of formate dehydrogenases (FDHs) plays roles in several metabolic pathways ranging from carbon fixation to energy harvesting because of their reaction with a wide variety of redox partners. Indeed, this metabolic plasticity results from the diverse structures, cofactor content, and substrates used by partner subunits interacting with the catalytic hub. Here, we unveiled two noncanonical FDHs in Bacillus subtilis, which are organized into two-subunit complexes with unique features, ForCE1 and ForCE2. We show that the formate oxidoreductase catalytic subunit interacts with an unprecedented partner subunit, formate oxidoreductase essential subunit, and that its amino acid sequence within the active site deviates from the consensus residues typically associated with FDH activity, as a histidine residue is naturally substituted with a glutamine. The formate oxidoreductase essential subunit mediates the utilization of menaquinone as an electron acceptor as shown by the formate:menadione oxidoreductase activity of both enzymes, their copurification with menaquinone, and the distinctive detection of a protein-bound neutral menasemiquinone radical by multifrequency electron paramagnetic resonance (EPR) experiments on the purified enzymes. Moreover, EPR characterization of both FDHs reveals the presence of several [Fe-S] clusters with distinct relaxation properties and a weakly anisotropic Mo(V) EPR signature, consistent with the characteristic molybdenum/bis-pyranopterin guanine dinucleotide cofactor of this enzyme family. Altogether, this work enlarges our knowledge of the FDH family by identifying a noncanonical FDH, which differs in terms of architecture, amino acid conservation around the molybdenum cofactor, and reactivity.


Assuntos
Formiato Desidrogenases , Molibdênio , Vitamina K 2 , Espectroscopia de Ressonância de Spin Eletrônica , Formiato Desidrogenases/química , Formiato Desidrogenases/metabolismo , Formiatos/metabolismo , Guanina/metabolismo , Molibdênio/química , Vitamina K 2/química , Vitamina K 2/metabolismo
6.
J Am Chem Soc ; 145(47): 25850-25863, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37967365

RESUMO

The oxygen-tolerant and molybdenum-dependent formate dehydrogenase FdsDABG from Cupriavidus necator is capable of catalyzing both formate oxidation to CO2 and the reverse reaction (CO2 reduction to formate) at neutral pH, which are both reactions of great importance to energy production and carbon capture. FdsDABG is replete with redox cofactors comprising seven Fe/S clusters, flavin mononucleotide, and a molybdenum ion coordinated by two pyranopterin dithiolene ligands. The redox potentials of these centers are described herein and assigned to specific cofactors using combinations of potential-dependent continuous wave and pulse EPR spectroscopy and UV/visible spectroelectrochemistry on both the FdsDABG holoenzyme and the FdsBG subcomplex. These data represent the first redox characterization of a complex metal dependent formate dehydrogenase and provide an understanding of the highly efficient catalytic formate oxidation and CO2 reduction activity that are associated with the enzyme.


Assuntos
Cupriavidus necator , Molibdênio , Molibdênio/química , Formiato Desidrogenases/química , Cupriavidus necator/metabolismo , Dióxido de Carbono/química , Oxirredução , Formiatos
7.
Chembiochem ; 24(24): e202300587, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37783667

RESUMO

Most natural formate dehydrogenases (FDHs) exhibit NAD+ specificity, making it imperative to explore the engineering of FDH cofactor specificity for NADPH regeneration systems. The endogenous FDH of Komagataella phaffii (K. phaffii), termed KphFDH, is a typical NAD+ -specific FDH. However, investigations into engineering the cofactor specificity of KphFDH have yet to be conducted. To develop an NADP+ -specific variant of KphFDH, we selected D195, Y196, and Q197 as mutation sites and generated twenty site-directed variants. Through kinetic characterization, KphFDH/V19 (D195Q/Y196R/Q197H) was identified as the variant with the highest specificity towards NADP+ , with a ratio of catalytic efficiency (kcat /KM )NADP+ /(kcat /KM )NAD+ of 129.226. Studies of enzymatic properties revealed that the optimal temperature and pH for the reduction reaction of NADP+ catalyzed by KphFDH/V19 were 45 °C and 7.5, respectively. The molecular dynamics (MD) simulation was performed to elucidate the mechanism of high catalytic activity of KphFDH/V19 towards NADP+ . Finally, KphFDH/V19 was applied to an in vitro NADPH regeneration system with Meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum (StDAPDH/H227V). This study successfully created a KphFDH variant with high NADP+ specificity and demonstrated its practical applicability in an in vitro NADPH regeneration system.


Assuntos
NAD , Saccharomycetales , NADP/metabolismo , NAD/metabolismo , Formiato Desidrogenases/química , Saccharomycetales/metabolismo , Cinética
8.
Chemistry ; 29(47): e202301113, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37294852

RESUMO

The enzymatic reduction of carbon dioxide presents limited applicability due to denaturation and the impossibility of biocatalyst recovery; disadvantages that can be minimized by its immobilization. Here, a recyclable bio-composed system was constructed by in-situ encapsulation under mild conditions using formate dehydrogenase in a ZIF-8 metalorganic framework (MOF) in the presence of magnetite. The partial dissolution of ZIF-8 in the enzyme's operation medium can be relatively inhibited if the concentration of magnetic support used exceeds 10 mg mL-1 . The bio-friendly environment for immobilization does not harm the integrity of the biocatalyst, and the production of formic acid is improved 3.4-fold compared to the free enzyme because the MOFs act as concentrators of the enzymatic cofactor. Furthermore, the bio-composed system retains 86 % of its activity after a long time of five cycles, thus indicating an excellent magnetic recovery and a good reusability.


Assuntos
Formiato Desidrogenases , Oxirredução , Dióxido de Carbono/química , Formiato Desidrogenases/química , Formiato Desidrogenases/metabolismo , Cápsulas
9.
Inorg Chem ; 62(16): 6332-6338, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37026841

RESUMO

Formate dehydrogenase (FDH) enzymes catalyze redox interconversion of CO2 and HCO2-, with a key mechanistic step being the transfer of H- from HCO2- to an oxidized active site featuring a [MVI≡S] group in a sulfur-rich environment (M = Mo or W). Here, we report reactivity studies with HCO2- and other reducing agents of a synthetic [WVI≡S] model complex ligated by dithiocarbamate (dtc) ligands. Reactions of [WVIS(dtc)3][BF4] (1) conducted in MeOH solvent generated [WVIS(S2)(dtc)2] (2) and [WVS(µ-S)(dtc)]2 (3) products by a solvolysis pathway that was accelerated by the presence of [Me4N][HCO2] but did not require it. Under MeOH-free conditions, the reaction of 1 with [Et4N][HCO2] produced some [WIV(µ-S)(µ-dtc)(dtc)]2 (4), but predominantly [WV(dtc)4]+ (5), along with stoichiometric CO2 detected by headspace gas chromatography (GC) analysis. Stronger hydride sources such as K-selectride generated the more reduced analogue, 4, exclusively. The reaction of 1 with the electron donor, CoCp2, also produced 4 and 5 in varying amounts depending on reaction conditions. These results indicate that formates and borohydrides act as electron donors rather than hydride donors toward 1, an outcome that diverges from the behavior of FDHs. The difference is ascribed to the more oxidizing potential of [WVI≡S] complex 1 when supported by monoanionic dtc ligands that allows electron transfer to outcompete hydride transfer, as compared to the more reduced [MVI≡S] active sites supported by dianionic pyranopterindithiolate ligands in FDHs.


Assuntos
Dióxido de Carbono , Formiato Desidrogenases , Domínio Catalítico , Formiato Desidrogenases/química , Oxirredução , Compostos de Tungstênio/química , Tiocarbamatos/química
10.
World J Microbiol Biotechnol ; 39(12): 352, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37864750

RESUMO

Formate dehydrogenase (FDH) is a D-2-hydroxy acid dehydrogenase, which can reversibly reduce CO2 to formate and thus act as non-photosynthetic CO2 reductase. In order to increase catalytic efficiency of formate dehydrogenase for CO2 reduction, two mutants V328I/F285W and V354G/F285W were obtained of which reduction activity was about two times more than the parent CbFDHM2, and the formate production from CO2 catalyzed by mutants were 2.9 and 2.7-fold higher than that of the parent CbFDHM2. The mutants had greater potential in CO2 reduction. The optimal temperature for V328I/F285W and V354G/F285W was 55 °C, and they showed increasement of relative activity under 45 °C to 55 °C compared with parent. The optimal pH for the mutants was 9.0, and they showed excellent stability in pH 4.0-11.5. The kcat/Km values of mutants were 1.75 times higher than that of the parent. Then the molecular basis for its improvement of biochemical characteristics were preliminarily elucidated by computer-aided methods. All of these results further established a solid foundation for molecular modification of formate dehydrogenase and CO2 reduction.


Assuntos
Dióxido de Carbono , Formiato Desidrogenases , Dióxido de Carbono/metabolismo , Formiato Desidrogenases/genética , Formiato Desidrogenases/química , Formiato Desidrogenases/metabolismo , Catálise , Formiatos/metabolismo
11.
J Am Chem Soc ; 144(31): 14207-14216, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35900819

RESUMO

Semiartificial approaches to renewable fuel synthesis exploit the integration of enzymes with synthetic materials for kinetically efficient fuel production. Here, a CO2 reductase, formate dehydrogenase (FDH) from Desulfovibrio vulgaris Hildenborough, is interfaced with carbon nanotubes (CNTs) and amorphous carbon dots (a-CDs). Each carbon substrate, tailored for electro- and photocatalysis, is functionalized with positive (-NHMe2+) and negative (-COO-) chemical surface groups to understand and optimize the electrostatic effect of protein association and orientation on CO2 reduction. Immobilization of FDH on positively charged CNT electrodes results in efficient and reversible electrochemical CO2 reduction via direct electron transfer with >90% Faradaic efficiency and -250 µA cm-2 at -0.6 V vs SHE (pH 6.7 and 25 °C) for formate production. In contrast, negatively charged CNTs only result in marginal currents with immobilized FDH. Quartz crystal microbalance analysis and attenuated total reflection infrared spectroscopy confirm the high binding affinity of active FDH to CNTs. FDH has subsequently been coupled to a-CDs, where the benefits of the positive charge (-NHMe2+-terminated a-CDs) were translated to a functional CD-FDH hybrid photocatalyst. High rates of photocatalytic CO2 reduction (turnover frequency: 3.5 × 103 h-1; AM 1.5G) with dl-dithiothreitol as the sacrificial electron donor were obtained after 6 h, providing benchmark rates for homogeneous photocatalytic CO2 reduction with metal-free light absorbers. This work provides a rational basis to understand interfacial surface/enzyme interactions at electrodes and photosensitizers to guide improvements with catalytic biohybrid materials.


Assuntos
Formiato Desidrogenases , Nanotubos de Carbono , Dióxido de Carbono/química , Catálise , Eletrodos , Formiato Desidrogenases/química
12.
Biochem Biophys Res Commun ; 616: 134-139, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35667288

RESUMO

Once you have missed the first button …, you'll never manage to button up Johann Wolfgang von Goethe Formate oxidation is a final step of methanol oxidation in methylotrophic prokaryotes and is important for detoxification of formate in other organisms. The structural mechanism of the formate dehydrogenase (FDH) of Pseudomonas sp. 101 has been studied for about 30 years. In the active center of FDH, the oxidation of formic acid into carbon dioxide in a NAD+-dependent way takes place. Residues that form the active center of that enzyme, as well as those that form the so-called substrate channel, are engaged in the catalytic cycle. Our study allowed to characterize a new residue, Tyr102, involved in the work of the enzyme. This residue is located in the outer neck of the substrate channel (at the beginning of the path of the substrate to the active center) and acts as a "button" which connects two enzyme domains into an active, "buttoned up" conformation. Our study of the kinetic parameters of mutant enzymes has shown that Tyr102Phe substitution leads to an approximately 80-fold increase of the Michaelis constant relative to the native enzyme, unlike Phe311Trp and Phe311Tyr substitution of neighboring residue Phe311. Our analysis of the Tyr102Phe mutant in the open conformation by X-ray crystallography has shown that its overall fold remains almost the same as that of the native enzyme. Molecular dynamics simulations of the ternary complexes of the native FDH enzyme and its Tyr102Phe mutant showed that Tyr102Phe substitution results in the loss of an interdomain hydrogen bond between the Tyr102 and Gln313 residues, which, in turn, destabilizes the closed conformation and affects the isolation of the FDH active site from water molecules. Our structural investigations have shown that Tyr102Phe replacement also leads to the destruction of interdomain contacts of Phe102 with Phe311, Pro312 residues, and decreases the stability of the Leu103-Val127 beta bridge. Phylogenetic analysis also confirmed the importance of the Tyr102 residue for enzymes from the FDH family, in which it is absolutely conserved.


Assuntos
Formiato Desidrogenases , NAD , Sequência de Aminoácidos , Formiato Desidrogenases/química , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Formiatos , NAD/metabolismo , Filogenia , Pseudomonas
13.
Chembiochem ; 23(21): e202200428, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36066500

RESUMO

Fusion enzymes are attractive tools for facilitating the assembly of biocatalytic cascades for chemical synthesis. This approach can offer great advantages for cooperative redox cascades that need the constant supply of a donor molecule. In this work, we have developed a self-sufficient bifunctional enzyme that can be coupled to transaminase-catalyzed reactions for the efficient recycling of the amino donor (L-alanine). By genetic fusion of an alanine dehydrogenase (AlaDH) and a formate dehydrogenase (FDH), a redox-complementary system was applied to recycle the amino donor and the cofactor (NADH), respectively. AlaDH and FDH were assembled in both combinations (FDH-AlaDH and AlaDH-FDH), with a 2.5-fold higher enzymatic activity of the latter system. Then, AlaDH-FDH was coupled to two different S-selective transaminases for the synthesis of vanillyl amine (10 mM) reaching up to 99 % conversion in 24 h in both cases. Finally, the multienzyme system was reused for at least 3 consecutive cycles when implemented in dialysis-assisted biotransformations.


Assuntos
Alanina Desidrogenase , Formiato Desidrogenases , Formiato Desidrogenases/química , Alanina Desidrogenase/metabolismo , Transaminases/genética , Transaminases/metabolismo , Biocatálise , Oxirredução
14.
Chembiochem ; 23(6): e202100643, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35080802

RESUMO

Azoreductases require NAD(P)H to reduce azo dyes but the high cost of NAD(P)H limits its application. Formate dehydrogenase (FDH) allows NAD(P)+ recycling and therefore, the fusion of these two biocatalysts seems promising. This study investigated the changes to the fusion protein involving azoreductase (AzoRo) of Rhodococcus opacus 1CP and FDH (FDHC23S and FDHC23SD195QY196H ) of Candida boidinii in different positions with His-tag as the linker. The position affected enzyme activities as AzoRo activity decreased by 20-fold when it is in the N-terminus of the fusion protein. FDHC23S +AzoRo was the most active construct and was further characterized. Enzymatic activities of FDHC23S +AzoRo decreased compared to parental enzymes but showed improved substrate scope - accepting bulkier dyes. Moreover, pH has an influence on the stability and activity of the fusion protein because at pH 6 (pH that is suboptimal for FDH), the dye reduction decreased to more than 50 % and this could be attributed to the impaired NADH supply for the AzoRo part.


Assuntos
Formiato Desidrogenases , NAD , Biocatálise , Corantes , Formiato Desidrogenases/química , NAD/metabolismo , Nitrorredutases/metabolismo
15.
Crit Rev Biotechnol ; 42(6): 953-972, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34632901

RESUMO

In recent years, CO2 reduction and utilization have been proposed as an innovative solution for global warming and the ever-growing energy and raw material demands. In contrast to various classical methods, including chemical, electrochemical, and photochemical methods, enzymatic methods offer a green and sustainable option for CO2 conversion. In addition, enzymatic hydrogenation of CO2 into platform chemicals could be used to produce economically useful hydrogen storage materials, making it a win-win strategy. The thermodynamic and kinetic stability of the CO2 molecule makes its utilization a challenging task. However, Nicotine adenine dinucleotide (NAD+)-dependent formate dehydrogenases (FDHs), which have high selectivity and specificity, are attractive catalysts to overcome this issue and convert CO2 into fuels and renewable chemicals. It is necessary to improve the stability, cofactor necessity, and CO2 conversion efficiency of these enzymes, such as by combining them with appropriate hybrid systems. However, metal-independent, NAD+-dependent FDHs, and their CO2 reduction activity have received limited attention to date. This review outlines the CO2 reduction ability of these enzymes as well as their properties, reaction mechanisms, immobilization strategies, and integration with electrochemical and photochemical systems for the production of formic acid or formate. The biotechnological applications of FDH, future perspectives, barriers to CO2 reduction with FDH, and aspects that must be further developed are briefly summarized. We propose that constructing hybrid systems that include NAD+-dependent FDHs is a promising approach to convert CO2 and strengthen the sustainable carbon bio-economy.


Assuntos
Formiato Desidrogenases , NAD , Dióxido de Carbono , Catálise , Formiato Desidrogenases/química , Formiato Desidrogenases/metabolismo , Cinética , NAD/metabolismo
16.
Chemistry ; 28(55): e202201430, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35758216

RESUMO

Natural photosynthesis is a highly unified biocatalytic system, which coupled cofactor (NAD(P)H) regeneration and enzymatic CO2 reduction efficiently for solar energy conversion. Mimicking nature, a novel system with Rh complex covalently grafted onto NH2 -functionalized polymeric carbon nitride (NH2 -PCN) was constructed. The integrated connection of the light-harvesting and electron mediation modules as Rhm3 -N-PCN could promote the efficient NAD+ reduction to NADH. As a result, the integrated system exhibited a conversion of ∼66 % within 20 minutes. By further coupling in situ generated NADH with formate dehydrogenase (FDH), a photoenzymatic production of formic acid (HCOOH) from CO2 was accomplished. Moreover, by immobilizing FDH onto a hydrophobic membrane, an enhanced HCOOH production of ∼5.0 mM can be obtained due to the concentrated CO2 on the gas-liquid-solid three-phase interface. Our work herein provides an integrated strategy for coupling the anchored electron mediator with immobilized enzyme for enhanced artificial photosynthesis.


Assuntos
Formiato Desidrogenases , NAD , Dióxido de Carbono/química , Enzimas Imobilizadas , Formiato Desidrogenases/química , Nitrilas , Regeneração
17.
Chemistry ; 28(54): e202201091, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-35662280

RESUMO

Biological carbon dioxide (CO2 ) reduction is an important step by which organisms form valuable energy-richer molecules required for further metabolic processes. The Mo-dependent formate dehydrogenase (FDH) from Rhodobacter capsulatus catalyzes reversible formate oxidation to CO2 at a bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor. To elucidate potential substrate binding sites relevant for the mechanism, we studied herein the interaction with the inhibitory molecules azide and cyanate, which are isoelectronic to CO2 and charged as formate. We employed infrared (IR) spectroscopy in combination with density functional theory (DFT) and inhibition kinetics. One distinct inhibitory molecule was found to bind to either a non-competitive or a competitive binding site in the secondary coordination sphere of the active site. Site-directed mutagenesis of key amino acid residues in the vicinity of the bis-MGD cofactor revealed changes in both non-competitive and competitive binding, whereby the inhibitor is in case of the latter interaction presumably bound between the cofactor and the adjacent Arg587.


Assuntos
Dióxido de Carbono , Formiato Desidrogenases , Aminoácidos/metabolismo , Azidas , Sítios de Ligação , Dióxido de Carbono/química , Cianatos , Formiato Desidrogenases/química , Formiatos/química , Oxirredução
18.
Phys Chem Chem Phys ; 24(45): 27930-27939, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36373217

RESUMO

Osmolytes are well-known biocatalyst stabilisers as they promote the folded state of proteins, and a stabilised biocatalyst might also improve reaction kinetics. In this work, the influence of four osmolytes (betaine, glycerol, trehalose, and trimethylamine N-oxide) on the activity and stability of Candida bondinii formate dehydrogenase cbFDH was studied experimentally and theoretically. Scanning differential fluorimetric studies were performed to assess the thermal stability of cbFDH, while UV detection was used to reveal changes in cbFDH activity and reaction equilibrium at osmolyte concentrations between 0.25 and 1 mol kg-1. The thermodynamic model ePC-SAFT advanced allowed predicting the effects of osmolyte on the reaction equilibrium by accounting for interactions involving osmolyte, products, substrates, and water. The results show that osmolytes at low concentrations were beneficial for both, thermal stability and cbFDH activity, while keeping the equilibrium yield at high level. Molecular dynamics simulations were used to describe the solvation around the cbFDH surface and the volume exclusion effect, proofing the beneficial effect of the osmolytes on cbFDH activity, especially at low concentrations of trimethylamine N-oxide and betaine. Different mechanisms of stabilisation (dependent on the osmolyte) show the importance of studying solvent-protein dynamics towards the design of optimised biocatalytic processes.


Assuntos
Betaína , Formiato Desidrogenases , Formiato Desidrogenases/química , Betaína/química , Metilaminas/química , Termodinâmica
19.
Angew Chem Int Ed Engl ; 61(12): e202200261, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35041240

RESUMO

It is of profound significance concerning the global energy and environmental crisis to develop new techniques that can reduce and convert CO2 . To address this challenge, we built a new type of artificial photoenzymatic system for CO2 reduction, using a rationally designed mesoporous olefin-linked covalent organic framework (COF) as the porous solid carrier for co-immobilizing formate dehydrogenase (FDH) and Rh-based electron mediator. By adjusting the incorporating content of the Rh electronic mediator, which facilitates the regeneration of nicotinamide cofactor (NADH) from NAD+ , the apparent quantum yield can reach as high as 9.17±0.44 %, surpassing all reported NADH-regenerated photocatalysts constructed by crystalline framework materials. Finally, the assembled photocatalyst-enzyme coupled system can selectively convert CO2 to formic acid with high efficiency and good reusability. This work demonstrates the first example using COFs to immobilize enzymes for artificial photosynthesis systems that utilize solar energy to produce value-added chemicals.


Assuntos
Estruturas Metalorgânicas , Alcenos , Dióxido de Carbono/química , Formiato Desidrogenases/química , Estruturas Metalorgânicas/química , NAD
20.
J Biol Chem ; 295(19): 6570-6585, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32249211

RESUMO

Formate oxidation to carbon dioxide is a key reaction in one-carbon compound metabolism, and its reverse reaction represents the first step in carbon assimilation in the acetogenic and methanogenic branches of many anaerobic organisms. The molybdenum-containing dehydrogenase FdsABG is a soluble NAD+-dependent formate dehydrogenase and a member of the NADH dehydrogenase superfamily. Here, we present the first structure of the FdsBG subcomplex of the cytosolic FdsABG formate dehydrogenase from the hydrogen-oxidizing bacterium Cupriavidus necator H16 both with and without bound NADH. The structures revealed that the two iron-sulfur clusters, Fe4S4 in FdsB and Fe2S2 in FdsG, are closer to the FMN than they are in other NADH dehydrogenases. Rapid kinetic studies and EPR measurements of rapid freeze-quenched samples of the NADH reduction of FdsBG identified a neutral flavin semiquinone, FMNH•, not previously observed to participate in NADH-mediated reduction of the FdsABG holoenzyme. We found that this semiquinone forms through the transfer of one electron from the fully reduced FMNH-, initially formed via NADH-mediated reduction, to the Fe2S2 cluster. This Fe2S2 cluster is not part of the on-path chain of iron-sulfur clusters connecting the FMN of FdsB with the active-site molybdenum center of FdsA. According to the NADH-bound structure, the nicotinamide ring stacks onto the re-face of the FMN. However, NADH binding significantly reduced the electron density for the isoalloxazine ring of FMN and induced a conformational change in residues of the FMN-binding pocket that display peptide-bond flipping upon NAD+ binding in proper NADH dehydrogenases.


Assuntos
Proteínas de Bactérias/química , Cupriavidus necator/enzimologia , Formiato Desidrogenases/química , Proteínas Ferro-Enxofre/química , Complexos Multienzimáticos/química , Domínio Catalítico , Cristalografia por Raios X , Mononucleotídeo de Flavina/química , Cinética , NAD/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA