Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34969839

RESUMO

When nuclear membranes are stretched, the peripheral membrane enzyme cytosolic phospholipase A2 (cPLA2) binds via its calcium-dependent C2 domain (cPLA2-C2) and initiates bioactive lipid signaling and tissue inflammation. More than 150 C2-like domains are encoded in vertebrate genomes. How many of them are mechanosensors and quantitative relationships between tension and membrane recruitment remain unexplored, leaving a knowledge gap in the mechanotransduction field. In this study, we imaged the mechanosensitive adsorption of cPLA2 and its C2 domain to nuclear membranes and artificial lipid bilayers, comparing it to related C2-like motifs. Stretch increased the Ca2+ sensitivity of all tested domains, promoting half-maximal binding of cPLA2 at cytoplasmic resting-Ca2+ concentrations. cPLA2-C2 bound up to 50 times tighter to stretched than to unstretched membranes. Our data suggest that a synergy of mechanosensitive Ca2+ interactions and deep, hydrophobic membrane insertion enables cPLA2-C2 to detect stretched membranes with antibody-like affinity, providing a quantitative basis for understanding mechanotransduction by C2-like domains.


Assuntos
Fosfolipases A2 do Grupo IV/química , Bicamadas Lipídicas/química , Membrana Nuclear/química , Humanos , Mecanotransdução Celular , Domínios Proteicos , Tensão Superficial
2.
J Cell Sci ; 127(Pt 5): 977-93, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24413173

RESUMO

Previous studies have demonstrated that membrane tubule-mediated transport events in biosynthetic and endocytic routes require phospholipase A2 (PLA2) activity. Here, we show that cytosolic phospholipase A2ε (cPLA2ε, also known as PLA2G4E) is targeted to the membrane compartments of the clathrin-independent endocytic route through a C-terminal stretch of positively charged amino acids, which allows the enzyme to interact with phosphoinositide lipids [especially PI(4,5)P2] that are enriched in clathrin-independent endosomes. Ablation of cPLA2ε suppressed the formation of tubular elements that carry internalized clathrin-independent cargoes, such as MHC-I, CD147 and CD55, back to the cell surface and, therefore, caused their intracellular retention. The ability of cPLA2ε to support recycling through tubule formation relies on the catalytic activity of the enzyme, because the inactive cPLA2ε(S420A) mutant was not able to recover either tubule growth or transport from clathrin-independent endosomes. Taken together, our findings indicate that cPLA2ε is a new important regulator of trafficking processes within the clathrin-independent endocytic and recycling route. The affinity of cPLA2ε for this pathway supports a new hypothesis that different PLA2 enzymes use selective targeting mechanisms to regulate tubule formation locally during specific trafficking steps in the secretory and/or endocytic systems.


Assuntos
Clatrina/metabolismo , Endocitose , Fosfolipases A2 do Grupo IV/fisiologia , Sequência de Aminoácidos , Sinalização do Cálcio , Endossomos/metabolismo , Fosfolipases A2 do Grupo IV/química , Células HeLa , Humanos , Hidrólise , Dados de Sequência Molecular , Fosfatidilinositóis/metabolismo , Sinais Direcionadores de Proteínas , Transporte Proteico
3.
J Mol Recognit ; 28(7): 447-57, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25703463

RESUMO

Cytosolic phospholipase A2 (cPLA2 ) is an interesting protein involved in inflammatory processes and various diseases. Its catalytic mechanism as well as its substrate specificity for arachidonyl phospholipids is not typical for other phospolipases. Furthermore, a lid structure, which ensures a hydrophilic surface of the protein without any substrate bound and the movement of this flexible loop to make the hydrophobic active site accessible, is of high interest. Therefore, the focus of this work was to determine the binding mode of cPLA2 with various substrates, such as arachidonic acid, a synthetic inhibitor, a saturated phospholipid, and most importantly an arachidonyl phospholipid. To understand the selectivity of the protein toward the arachidonyl phospholipid and the interaction in a protein-ligand complex, molecular dynamics simulations were performed using the GROMOS suite of simulation programs. The simulations provide insight into the protein and showed that selective binding of arachidonyl phospholipids is because of the shape of the sn-2 tail. The amino acids Asn555 and Ala578 are involved in the strongest interactions observed in the protein-ligand complexes.


Assuntos
Fosfolipases A2 do Grupo IV/química , Fosfolipídeos/química , Alanina/química , Ácido Araquidônico/química , Asparagina/química , Sítios de Ligação , Citoplasma/metabolismo , Simulação de Dinâmica Molecular , Especificidade por Substrato
4.
Bioorg Med Chem ; 23(10): 2579-92, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25862211

RESUMO

Cytosolic phospholipase A2α (cPLA2α) and fatty acid amide hydrolase (FAAH) are enzymes, which have emerged as attractive targets for the development of analgesic and anti-inflammatory drugs. We recently reported that certain 3-phenoxy-substituted 1-heteroarylpropan-2-ones are inhibitors of cPLA2α and/or FAAH. Starting from 1-[2-oxo-3-(4-phenoxyphenoxy)propyl]indole-5-carboxylic acid (3) and 1-(1H-benzotriazol-1-yl)-3-(4-phenoxyphenoxy)propan-2-one (4), the effect of the replacement of the oxygen in position 3 of the propan-2-one scaffold by sulfur and nitrogen containing moieties on inhibition of cPLA2α and fatty acid amide hydrolase as well as on metabolic stability in rat liver S9 fractions was investigated. As a result of these structure-activity relationship studies it was found that the ether oxygen is of great importance for enzyme inhibitory potency. Replacement by sulfur led to an about 100-fold decrease of enzyme inhibition, nitrogen and substituted nitrogen atoms at this position even resulted in inactivity of the compounds. The effect of the structural variations performed on metabolic stability of the important ketone pharmacophore was partly different in the two series of compounds. While introduction of SO and SO2 significantly increased stability of the ketone against reduction in case of the indole-5-carboxylic acid 3, it had no effect in case of the benzotriazole 4. Further analysis of the metabolism of 3 and 4 in rat liver S9 fractions revealed that the major metabolite of 3 was the alcohol 53 formed by reduction of the keto group. In contrast, in case of 4 beside keto reduction an excessive hydroxylation of the terminal phenoxy group occurred leading to the dihydroxy compound 50. Experiments with enzyme inhibitors showed that the phenylhydroxylation of 4 was catalyzed by tranylcypromine sensitive cytochrome P450 isoforms, while the reduction of the ketone function of 3 and 4 was mainly caused by cytosolic short chain dehydrogenases/reductases (cSDR).


Assuntos
Amidoidrolases/antagonistas & inibidores , Analgésicos/síntese química , Anti-Inflamatórios não Esteroides/síntese química , Ácidos Carboxílicos/síntese química , Inibidores Enzimáticos/síntese química , Fosfolipases A2 do Grupo IV/antagonistas & inibidores , Indóis/síntese química , Cetonas/síntese química , Amidoidrolases/química , Analgésicos/química , Animais , Anti-Inflamatórios não Esteroides/química , Biotransformação , Química Encefálica , Ácidos Carboxílicos/química , Estabilidade de Medicamentos , Inibidores Enzimáticos/química , Fosfolipases A2 do Grupo IV/química , Indóis/química , Cetonas/química , Microssomos Hepáticos/química , Nitrogênio/química , Oxigênio/química , Ratos , Relação Estrutura-Atividade , Enxofre/química , Suínos
5.
J Lipid Res ; 54(3): 636-648, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23277511

RESUMO

Group IVA cytosolic phospholipase A2 (cPLA2α), which harbors an N-terminal lipid binding C2 domain and a C-terminal lipase domain, produces arachidonic acid from the sn-2 position of zwitterionic lipids such as phosphatidylcholine. The C2 domain has been shown to bind zwitterionic lipids, but more recently, the anionic phosphomonoester sphingolipid metabolite ceramide-1-phosphate (C1P) has emerged as a potent bioactive lipid with high affinity for a cationic patch in the C2 domain ß-groove. To systematically analyze the role that C1P plays in promoting the binding of cPLA2α-C2 to biological membranes, we employed biophysical measurements and cellular translocation studies along with mutagenesis. Biophysical and cellular translocation studies demonstrate that C1P specificity is mediated by Arg59, Arg6¹, and His6² (an RxRH sequence) in the C2 domain. Computational studies using molecular dynamics simulations confirm the origin of C1P specificity, which results in a spatial shift of the C2 domain upon membrane docking to coordinate the small C1P headgroup. Additionally, the hydroxyl group on the sphingosine backbone plays an important role in the interaction with the C2 domain, further demonstrating the selectivity of the C2 domain for C1P over phosphatidic acid. Taken together, this is the first study demonstrating the molecular origin of C1P recognition.


Assuntos
Ceramidas/metabolismo , Fosfolipases A2 do Grupo IV/química , Fosfolipases A2 do Grupo IV/metabolismo , Cálcio/metabolismo , Eicosanoides/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica
6.
J Lipid Res ; 53(12): 2656-66, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22991194

RESUMO

Group IVA cytosolic phospholipase A(2) (cPLA(2)α) is an 85 kDa enzyme that regulates the release of arachidonic acid (AA) from the sn-2 position of membrane phospholipids. It is well established that cPLA(2)α binds zwitterionic lipids such as phosphatidylcholine in a Ca(2+)-dependent manner through its N-terminal C2 domain, which regulates its translocation to cellular membranes. In addition to its role in AA synthesis, it has been shown that cPLA(2)α promotes tubulation and vesiculation of the Golgi and regulates trafficking of endosomes. Additionally, the isolated C2 domain of cPLA(2)α is able to reconstitute Fc receptor-mediated phagocytosis, suggesting that C2 domain membrane binding is sufficient for phagosome formation. These reported activities of cPLA(2)α and its C2 domain require changes in membrane structure, but the ability of the C2 domain to promote changes in membrane shape has not been reported. Here we demonstrate that the C2 domain of cPLA(2)α is able to induce membrane curvature changes to lipid vesicles, giant unilamellar vesicles, and membrane sheets. Biophysical assays combined with mutagenesis of C2 domain residues involved in membrane penetration demonstrate that membrane insertion by the C2 domain is required for membrane deformation, suggesting that C2 domain-induced membrane structural changes may be an important step in signaling pathways mediated by cPLA(2)α.


Assuntos
Membrana Celular/química , Membrana Celular/metabolismo , Fosfolipases A2 do Grupo IV/química , Fosfolipases A2 do Grupo IV/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Cálcio/metabolismo , Clonagem Molecular , Fosfolipases A2 do Grupo IV/genética , Modelos Moleculares , Estrutura Terciária de Proteína
7.
J Chem Inf Model ; 52(1): 243-54, 2012 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-22196172

RESUMO

The group IVA cytosolic phospholipase A(2) (GIVA cPLA(2)) plays a central role in inflammation. Long chain 2-oxoamides constitute a class of potent GIVA cPLA(2) inhibitors that exhibit potent in vivo anti-inflammatory and analgesic activity. We have now gained insight into the binding of 2-oxoamide inhibitors in the GIVA cPLA(2) active site through a combination of molecular docking calculations and molecular dynamics simulations. Recently, the location of the 2-oxoamide inhibitor AX007 within the active site of the GIVA cPLA(2) was determined using a combination of deuterium exchange mass spectrometry followed by molecular dynamics simulations. After the optimization of the AX007-GIVA cPLA(2) complex using the docking algorithm Surflex-Dock, a series of additional 2-oxoamide inhibitors have been docked in the enzyme active site. The calculated binding affinity presents a good statistical correlation with the experimental inhibitory activity (r(2) = 0.76, N = 11). A molecular dynamics simulation of the docking complex of the most active compound has revealed persistent interactions of the inhibitor with the enzyme active site and proves the stability of the docking complex and the validity of the binding suggested by the docking calculations. The combination of molecular docking calculations and molecular dynamics simulations is useful in defining the binding of small-molecule inhibitors and provides a valuable tool for the design of new compounds with improved inhibitory activity against GIVA cPLA(2).


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/química , Fosfolipases A2 do Grupo IV/química , Piridinas/química , Algoritmos , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Domínio Catalítico , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Fosfolipases A2 do Grupo IV/antagonistas & inibidores , Humanos , Interações Hidrofóbicas e Hidrofílicas , Conformação Molecular , Simulação de Dinâmica Molecular , Piridinas/farmacologia , Relação Estrutura-Atividade , Especificidade por Substrato
8.
J Biol Chem ; 285(46): 36100-11, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-20705608

RESUMO

The cytosolic (group IV) phospholipase A(2) (cPLA(2)s) family contains six members. We have prepared recombinant proteins for human α, mouse ß, human γ, human δ, human ε, and mouse ζ cPLA(2)s and have studied their interfacial kinetic and binding properties in vitro. Mouse cPLA(2)ß action on phosphatidylcholine vesicles is activated by anionic phosphoinositides and cardiolipin but displays a requirement for Ca(2+) only in the presence of cardiolipin. This activation pattern is explained by the effects of anionic phospholipids and Ca(2+) on the interfacial binding of mouse cPLA(2)ß and its C2 domain to vesicles. Ca(2+)-dependent binding of mouse cPLA(2)ß to cardiolipin-containing vesicles requires a patch of basic residues near the Ca(2+)-binding surface loops of the C2 domain, but binding to phosphoinositide-containing vesicles does not depend on any specific cluster of basic residues. Human cPLA(2)δ also displays Ca(2+)- and cardiolipin-enhanced interfacial binding and activity. The lysophospholipase, phospholipase A(1), and phospholipase A(2) activities of the full set of mammalian cPLA(2)s were quantified. The relative level of these activities is very different among the isoforms, and human cPLA(2)δ stands out as having relatively high phospholipase A(1) activity. We also tested the susceptibility of all cPLA(2) family members to a panel of previously reported inhibitors of human cPLA(2)α and analogs of these compounds. This led to the discovery of a potent and selective inhibitor of mouse cPLA(2)ß. These in vitro studies help determine the regulation and function of the cPLA(2) family members.


Assuntos
Fosfolipases A2 do Grupo IV/metabolismo , Fosfolipases A2 Citosólicas/metabolismo , Fosfolipídeos/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação/genética , Biocatálise/efeitos dos fármacos , Cálcio/metabolismo , Cálcio/farmacologia , Linhagem Celular , Eletroforese em Gel de Poliacrilamida , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Fosfolipases A2 do Grupo IV/química , Fosfolipases A2 do Grupo IV/genética , Humanos , Hidrólise/efeitos dos fármacos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Mutação , Fosfolipases A2 Citosólicas/química , Fosfolipases A2 Citosólicas/genética , Fosfolipídeos/química , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Spodoptera
9.
Biochim Biophys Acta ; 1804(11): 2121-7, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20709193

RESUMO

α-type phospholipase A2 inhibitory protein (PLIα) isolated from the serum of the venomous snake Glyoidius brevicaudus, GbPLIα, is a homotrimer of subunits having a C-type lectin-like domain. The serum protein from nonvenomous snake Elaphe quadrivirgata, EqPLIα-LP, is homologous to GbPLIα, but it does not show any inhibitory activity against PLA2s. When a mixture of denaturant-treated monomeric forms of GbPLIα and EqPLIα-LP was used to reconstitute their trimers, no significant amounts of heterotrimers composed of GbPLIα and EqPLIα-LP subunits could be formed. On the other hand, when a mixture of denaturant-treated monomeric forms of GbPLIα and the recombinant chimeric EqPLIα-LP, Eq13Gb37Eq, in which the residues 13-36 were replaced by those of GbPLIα, was used to reconstitute their trimers, significant amounts of their heterotrimers were observed. Furthermore, when a mixture of denaturant-treated monomeric forms of EqPLIα-LP and the recombinant chimeric GbPLIα, Gb13Eq37Gb, in which the residues 13-36 were replaced by those of EqPLIα-LP, was used, significant amounts of their heterotrimers were observed. By comparison of the respective inhibitory activities of the heterotrimeric subspecies, it was suggested that the inhibitory activity of the trimer was governed by one subunit with the highest activity, and not affected by the number of these subunits. The intermolecular electrostatic interactions between Glu23 and Lys28 of GbPLIα were also suggested to be important in stabilizing the trimeric structure. The importance of the electrostatic interaction was supported by the less stability of the homotrimeric structure of a mutant GbPLIα with a single amino acid substitution, GbPLIα(K28E).


Assuntos
Fosfolipases A2 do Grupo IV/química , Animais , Dimerização , Escherichia coli/enzimologia , Guanidina/química , Fosfolipases A2/química , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Serpentes , Eletricidade Estática , Ressonância de Plasmônio de Superfície
10.
Am J Physiol Cell Physiol ; 298(2): C251-62, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19940072

RESUMO

Altering the splice variant composition of large-conductance Ca(2+)-activated potassium (BK) channels can alter their activity and apparent sensitivity to Ca(2+) and other regulators of activity. We hypothesized that differences in the responsiveness to arachidonic acid of GH3 and GH4 cells was due to a difference in two splice variants, one present in GH3 cells and the other in GH4 cells. The sequences of the two splice variants differ from one another in several ways, but the largest difference is the presence or absence of 27 amino acids in the COOH terminus of the BK alpha-subunit. Open probability of the variant containing the 27 amino acids is significantly increased by arachidonic acid, while the variant lacking the 27 amino acids is insensitive to arachidonic acid. In addition, sensitivity of BK channels to arachidonic acid depends on cytosolic phospholipase A(2) (cPLA(2)). Here we used the Mammalian Matchmaker two-hybrid assay and two BK alpha-subunit constructs with [rSlo(27)] and without [rSlo(0)] the 27-amino acid motif to determine whether cPLA(2) associates with one construct [rSlo(27)] and not the other. We hypothesized that differential association of cPLA(2) might explain the differing responsiveness of the two constructs and GH3 and GH4 cells to arachidonic acid. We found that cPLA(2) is strongly associated with the COOH terminus of rSlo(27) and only very weakly associated with rSlo(0). We also found that arachidonic acid has a lower affinity for rSlo(0) than for rSlo(27). We conclude that the lack of response of BK channels in GH4 cells to arachidonic acid can be explained, in part, by the poor binding of cPLA(2) to the COOH terminus of the rSlo(0) alpha-subunit, which is very similar to the splice variant found in the arachidonic acid-insensitive GH4 cells.


Assuntos
Fosfolipases A2 do Grupo IV/metabolismo , Ativação do Canal Iônico , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Sequência de Aminoácidos , Animais , Ácido Araquidônico/metabolismo , Células CHO , Cricetinae , Cricetulus , Fosfolipases A2 do Grupo IV/química , Humanos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/química , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Potenciais da Membrana , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Isoformas de Proteínas , Estrutura Terciária de Proteína , Ratos , Transfecção , Técnicas do Sistema de Duplo-Híbrido
11.
J Lipid Res ; 51(2): 388-99, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19717620

RESUMO

Group IVA cytosolic phospholipase A(2)alpha (cPLA(2)alpha) plays a role in the microbicidal machinery of immune cells by translocating to phagosomes to initiate the production of antimicrobial eicosanoids. In this work, we have studied the involvement of the cationic cluster of cPLA(2)alpha (Lys(488)/Lys(541)/Lys(543)/Lys(544)) in the translocation of the enzyme to the phagosomal cup in human macrophages responding to opsonized zymosan. Phagocytosis was accompanied by an increased mobilization of free arachidonic acid, which was strongly inhibited by pyrrophenone. In transfected cells, a catalytically active enhanced green fluorescent protein-cPLA(2)alpha translocated to the phagocytic cup, which was corroborated by frustrated phagocytosis experiments using immunoglobulin G-coated plates. However, a cPLA(2)alpha mutant in the polybasic cluster that cannot bind the anionic phospholipid phosphatidylinositol 4, 5-bisphosphate (PIP(2)) did not translocate to the phagocytic cup. Moreover, an enhanced yellow fluorescent protein (EYFP)-cPLA(2)alpha and an enhanced cyan fluorescent protein-pleckstrin homology (PH) domain of the phospholipase Cdelta1 (PLCdelta(1)) construct that specifically recognizes endogenous PIP(2) in the cells both localized at the same sites on the phagosome. High cellular expression of the PH domain inhibited EYFP-cPLA(2)alpha translocation. On the other hand, group V-secreted phospholipase A(2) and group VIA calcium-independent phospholipase A(2) were also studied, but the results indicated that neither of these translocated to the phagosome. Collectively, these data indicate that the polybasic cluster of cPLA(2)alpha (Lys(488)/Lys(541)/Lys(543)/Lys(544)) regulates the subcellular localization of the enzyme in intact cells under physiologically relevant conditions.


Assuntos
Fosfolipases A2 do Grupo IV/química , Fosfolipases A2 do Grupo IV/metabolismo , Lisina , Macrófagos/citologia , Macrófagos/metabolismo , Fagossomos/metabolismo , Domínio Catalítico , Ativação Enzimática/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Fosfolipases A2 do Grupo IV/genética , Humanos , Mutação , Fagocitose , Transporte Proteico , Zimosan/metabolismo , Zimosan/farmacologia
12.
Biochim Biophys Acta ; 1791(10): 1011-22, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19501189

RESUMO

cPLA2gamma was identified as an ortholog of cPLA2alpha, which is a key enzyme in eicosanoid production. cPLA2gamma was reported to be located in endoplasmic reticulum (ER) and mitochondria and to have lysophospholipase activity beside phospholipase A2 (PLA2) activity. However, subcellular localization, mechanism of membrane binding, regulation and physiological function have not been fully established. In the present study, we examined the subcellular localization and enzymatic properties of cPLA2gamma with C-terminal FLAG-tag. We found that cPLA2gamma was located not only in ER but also mitochondria even in the absence of the prenylation. Purified recombinant cPLA2gamma catalyzed an acyltransferase reaction from one molecule of lysophosphatidylcholine (LPC) to another, forming phosphatidylcholine (PC). LPC or lysophosphatidylethanolamine acted as acyl donor and acceptor, but lysophosphatidylserine, lysophosphatidylinositol and lysophosphatidic acid (LPA) did not. PC and phosphatidylethanolamine (PE) also acted as weak acyl donors. Reaction conditions changed the balance of lysophospholipase and transacylation activities, with addition of LPA/PA, pH>8, and elevated temperature markedly increasing transacylation activity; this suggests that lysophospholipase/transacylation activities of cPLA2gamma may be regulated by various factors. As lysophospholipids are known to accumulate in ischemia heart and to induce arryhthmia, the cPLA2gamma that is abundant in heart may have a protective role through clearance of lysophospholipids by its transacylation activity.


Assuntos
Fosfolipases A2 do Grupo IV/metabolismo , Lisofosfolipase/metabolismo , Acilação/efeitos dos fármacos , Motivos de Aminoácidos , Eletroforese em Gel de Poliacrilamida , Epitopos , Fosfolipases A2 do Grupo IV/química , Fosfolipases A2 do Grupo IV/isolamento & purificação , Células HeLa , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Lisofosfatidilcolinas/química , Lisofosfatidilcolinas/metabolismo , Modelos Biológicos , Octoxinol/farmacologia , Transporte Proteico/efeitos dos fármacos , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Solubilidade/efeitos dos fármacos , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/enzimologia , Especificidade por Substrato/efeitos dos fármacos , Temperatura
13.
Anal Chem ; 82(1): 163-71, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20000356

RESUMO

Herein, we employ the unique chemical properties of the quaternary amine present in thiocholine (2-mercapto-N,N,N-trimethyl-ethanaminium) in conjunction with alkaline beta-elimination and Michael addition (BEMA) reactions for the specific detection, identification, and quantitation of phosphorylated serine/threonine containing peptides. Through replacement of the phosphate with thiocholine, the negative charge on the phosphopeptide is switched to a quaternary amine containing a permanent positive charge. This strategy resulted in a 100-fold increase in ionization sensitivity during ESI (sub-500 amol/microL detection limit) accompanied by a markedly enhanced production of informative peptidic fragment ions during CID that dramatically increase sequence coverage. Moreover, the definitive localization of phosphorylated residues is greatly facilitated through the generation of diagnostic triads of fragmentation ions resulting from peptide bond cleavage and further neutral loss of either trimethylamine (-59 Da) or thiocholine thiolate (-119 Da) during collision induced dissociation (CID) in tandem mass spectrometry (MS(2) and MS(3)). Synthesis of stable isotope labeled thiocholine enabled the quantitation of protein phosphorylation with high precision by ratiometric comparisons using heavy and light thiocholine. Collectively, this study demonstrates a sensitive and efficient strategy for mapping of phosphopeptides by BEMA using thiocholine through the production of a diagnostic repertoire of unique fragment ions during liquid chromatography-tandem mass spectrometry (LC-MS(2)/MS(3)) analyses, facilitating phosphosite identification and quantitative phosphoproteomics.


Assuntos
Fosfolipases A2 do Grupo IV/química , Tiocolina/química , Animais , Linhagem Celular , Regulação da Expressão Gênica , Fosfolipases A2 do Grupo IV/metabolismo , Insetos , Estrutura Molecular , Fosforilação
14.
J Exp Bot ; 61(9): 2469-78, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20388744

RESUMO

The low-molecular weight secretory phospholipase A2alpha (CssPLA2alpha) and beta (CsPLA2beta) cloned in this study exhibited diurnal rhythmicity in leaf tissue of Citrus sinensis. Only CssPLA2alpha displayed distinct diurnal patterns in fruit tissues. CssPLA2alpha and CsPLA2beta diurnal expression exhibited periods of approximately 24 h; CssPLA2alpha amplitude averaged 990-fold in the leaf blades from field-grown trees, whereas CsPLA2beta amplitude averaged 6.4-fold. Diurnal oscillation of CssPLA2alpha and CsPLA2beta gene expression in the growth chamber experiments was markedly dampened 24 h after transfer to continuous light or dark conditions. CssPLA2alpha and CsPLA2beta expressions were redundantly mediated by blue, green, red and red/far-red light, but blue light was a major factor affecting CssPLA2alpha and CsPLA2beta expression. Total and low molecular weight CsPLA2 enzyme activity closely followed diurnal changes in CssPLA2alpha transcript expression in leaf blades of seedlings treated with low intensity blue light (24 micromol m(-2) s(-1)). Compared with CssPLA2alpha basal expression, CsPLA2beta expression was at least 10-fold higher. Diurnal fluctuation and light regulation of PLA2 gene expression and enzyme activity in citrus leaf and fruit tissues suggests that accompanying diurnal changes in lipophilic second messengers participate in the regulation of physiological processes associated with phospholipase A2 action.


Assuntos
Citrus sinensis/enzimologia , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Fosfolipases A2 do Grupo IV/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Sequência de Bases , Citrus sinensis/química , Citrus sinensis/genética , Citrus sinensis/efeitos da radiação , Escuridão , Fosfolipases A2 do Grupo IV/química , Fosfolipases A2 do Grupo IV/metabolismo , Luz , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alinhamento de Sequência
15.
PLoS One ; 15(2): e0229657, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32106235

RESUMO

Plasma in several organisms has components that promote resistance to envenomation by inhibiting specific proteins from snake venoms, such as phospholipases A2 (PLA2s). The major hypothesis for inhibitor's presence would be the protection against self-envenomation in venomous snakes, but the occurrence of inhibitors in non-venomous snakes and other animals has opened new perspectives for this molecule. Thus, this study showed for the first time the structural and functional characterization of the PLA2 inhibitor from the Boa constrictor serum (BoaγPLI), a non-venomous snake that dwells extensively the Brazilian territory. Therefore, the inhibitor was isolated from B. constrictor serum, with 0.63% of recovery. SDS-PAGE showed a band at ~25 kDa under reducing conditions and ~20 kDa under non-reducing conditions. Chromatographic analyses showed the presence of oligomers formed by BoaγPLI. Primary structure of BoaγPLI suggested an estimated molecular mass of 22 kDa. When BoaγPLI was incubated with Asp-49 and Lys-49 PLA2 there was no severe change in its dichroism spectrum, suggesting a non-covalent interaction. The enzymatic assay showed a dose-dependent inhibition, up to 48.2%, when BoaγPLI was incubated with Asp-49 PLA2, since Lys-49 PLA2 has a lack of enzymatic activity. The edematogenic and myotoxic effects of PLA2s were also inhibited by BoaγPLI. In summary, the present work provides new insights into inhibitors from non-venomous snakes, which possess PLIs in their plasma, although the contact with venom is unlikely.


Assuntos
Boidae/sangue , Fosfolipases A2 do Grupo IV/antagonistas & inibidores , Inibidores de Fosfolipase A2/sangue , Sequência de Aminoácidos , Animais , Bothrops/metabolismo , Brasil , Venenos de Crotalídeos/antagonistas & inibidores , Venenos de Crotalídeos/química , Fosfolipases A2 do Grupo IV/química , Peso Molecular , Inibidores de Fosfolipase A2/química , Domínios e Motivos de Interação entre Proteínas , Venenos de Serpentes/antagonistas & inibidores , Venenos de Serpentes/química , Espectrometria de Massas em Tandem
16.
Biomolecules ; 10(4)2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331436

RESUMO

Group IV phospholipase A2α (cPLA2α) regulates the production of prostaglandins and leukotrienes via the formation of arachidonic acid from membrane phospholipids. The targeting and membrane binding of cPLA2α to the Golgi involves the N-terminal C2 domain, whereas the catalytic domain produces arachidonic acid. Although most studies of cPLA2α concern its catalytic activity, it is also linked to homeostatic processes involving the generation of vesicles that traffic material from the Golgi to the plasma membrane. Here we investigated how membrane curvature influences the homeostatic role of cPLA2α in vesicular trafficking. The cPLA2α C2 domain is known to induce changes in positive membrane curvature, a process which is dependent on cPLA2α membrane penetration. We showed that cPLA2α undergoes C2 domain-dependent oligomerization on membranes in vitro and in cells. We found that the association of the cPLA2α C2 domain with membranes is limited to membranes with positive curvature, and enhanced C2 domain oligomerization was observed on vesicles ~50 nm in diameter. We demonstrated that the cPLA2α C2 domain localizes to cholesterol enriched Golgi-derived vesicles independently of cPLA2α catalytic activity. Moreover, we demonstrate the C2 domain selectively localizes to lipid droplets whereas the full-length enzyme to a much lesser extent. Our results therefore provide novel insight into the molecular forces that mediate C2 domain-dependent membrane localization in vitro and in cells.


Assuntos
Domínios C2 , Membrana Celular/metabolismo , Fosfolipases A2 do Grupo IV/química , Fosfolipases A2 do Grupo IV/metabolismo , Multimerização Proteica , Células A549 , Calcimicina/farmacologia , Membrana Celular/ultraestrutura , Colesterol/metabolismo , Citosol/enzimologia , Complexo de Golgi/metabolismo , Fosfolipases A2 do Grupo IV/ultraestrutura , Células HeLa , Humanos , Gotículas Lipídicas/química , Lipídeos/química , Ligação Proteica , Domínios Proteicos
17.
J Am Chem Soc ; 131(23): 8083-91, 2009 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-19459633

RESUMO

An analysis of group IVA (GIVA) phospholipase A(2) (PLA(2)) inhibitor binding was conducted using a combination of deuterium exchange mass spectrometry (DXMS) and molecular dynamics (MD). Models of the GIVA PLA(2) inhibitors pyrrophenone and the 2-oxoamide AX007 docked into the protein were designed on the basis of deuterium exchange results, and extensive molecular dynamics simulations were run to determine protein-inhibitor contacts. The models show that both inhibitors interact with key residues that also exhibit changes in deuterium exchange upon inhibitor binding. Pyrrophenone is bound to the protein through numerous hydrophobic residues located distal from the active site, while the oxoamide is bound mainly through contacts near the active site. We also show differences in protein dynamics around the active site between the two inhibitor-bound complexes. This combination of computational and experimental methods is useful in defining more accurate inhibitor binding sites and can be used in the generation of better inhibitors against GIVA PLA(2).


Assuntos
Anti-Inflamatórios não Esteroides/química , Inibidores Enzimáticos/química , Fosfolipases A2 do Grupo IV/antagonistas & inibidores , Fosfolipases A2 do Grupo IV/química , Amidas/química , Amidas/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Benzoatos/química , Benzoatos/farmacologia , Sítios de Ligação , Caprilatos/química , Caprilatos/farmacologia , Deutério/química , Medição da Troca de Deutério , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Espectrometria de Massas , Modelos Moleculares , Pirrolidinas/química , Pirrolidinas/farmacologia , Sulfonamidas/química , Sulfonamidas/farmacologia
18.
Cell Signal ; 20(5): 815-24, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18280113

RESUMO

Calmodulin (CaM)-dependent protein kinase (CaM kinase) is proposed to regulate the type alpha of cytosolic phospholipase A(2) (cPLA(2)alpha), which has a dominant role in the release of arachidonic acid (AA), via phosphorylation of Ser515 of the enzyme. However, the exact role of CaM kinase in the activation of cPLA(2)alpha has not been well established. We investigated the effects induced by transfection with mutant cPLA(2)alpha and inhibitors for CaM and CaM kinase on the Ca(2+)-stimulated release of AA and translocation of cPLA(2)alpha. The mutation of Ser515 to Ala (S515A) did not change cPLA(2)alpha activity, although S228A and S505A completely and partially decreased the activity, respectively. Stimulation with hydrogen peroxide (H(2)O(2), 1 mM) and A23187 (10 microM) markedly released AA in C12 cells expressing S515A and wild-type cPLA(2)alpha, but the responses in C12-S505A, C12-S727A, and C12-S505A/S515A/S727A (AAA) cells were reduced. In HEK293T cells expressing cPLA(2)alpha, A23187 caused the translocation of the wild-type, the every mutants, cPLA(2)alpha-C2 domain, and cPLA(2)alpha-Delta397-749 lacking proposed phosphorylation sites such as Ser505 and Ser515. Treatment with inhibitors of CaM (W-7) and CaM kinase (KN-93) at 10 microM significantly decreased the release of AA in C12-cPLA(2)alpha cells and C12-S515A cells. KN-93 inhibited the A23187-induced translocation of the wild-type, S515A, AAA and cPLA(2)alpha-Delta397-749, but not cPLA(2)alpha-C2 domain. Our findings show a possible effect of CaM kinase on cPLA(2)alpha in a catalytic domain A-dependent and Ser515-independent manner.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Fosfolipases A2 do Grupo IV/química , Fosfolipases A2 do Grupo IV/metabolismo , Substituição de Aminoácidos , Animais , Ácido Araquidônico/metabolismo , Sequência de Bases , Benzilaminas/farmacologia , Transporte Biológico Ativo/efeitos dos fármacos , Calcimicina/farmacologia , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/antagonistas & inibidores , Domínio Catalítico , Linhagem Celular , Citosol/enzimologia , Primers do DNA/genética , Inibidores Enzimáticos/farmacologia , Fosfolipases A2 do Grupo IV/genética , Humanos , Ionóforos/farmacologia , Camundongos , Mutagênese Sítio-Dirigida , Fosforilação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/química , Transdução de Sinais , Sulfonamidas/farmacologia
19.
Elife ; 82019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31050338

RESUMO

Ca2+-stimulated translocation of cytosolic phospholipase A2α (cPLA2α) to the Golgi induces arachidonic acid production, the rate-limiting step in pro-inflammatory eicosanoid synthesis. Structural insights into the cPLA2α preference for phosphatidylcholine (PC)-enriched membranes have remained elusive. Here, we report the structure of the cPLA2α C2-domain (at 2.2 Å resolution), which contains bound 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) and Ca2+ ions. Two Ca2+ are complexed at previously reported locations in the lipid-free C2-domain. One of these Ca2+ions, along with a third Ca2+, bridges the C2-domain to the DHPC phosphate group, which also interacts with Asn65. Tyr96 plays a key role in lipid headgroup recognition via cation-π interaction with the PC trimethylammonium group. Mutagenesis analyses confirm that Tyr96 and Asn65 function in PC binding selectivity by the C2-domain and in the regulation of cPLA2α activity. The DHPC-binding mode of the cPLA2α C2-domain, which differs from phosphatidylserine or phosphatidylinositol 4,5-bisphosphate binding by other C2-domains, expands and deepens knowledge of the lipid-binding mechanisms mediated by C2-domains.


Assuntos
Cálcio/metabolismo , Fosfolipases A2 do Grupo IV/química , Fosfolipases A2 do Grupo IV/metabolismo , Fosfatidilcolinas/metabolismo , Substituição de Aminoácidos , Cátions Bivalentes/metabolismo , Análise Mutacional de DNA , Fosfolipases A2 do Grupo IV/genética , Mutagênese Sítio-Dirigida , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
20.
J Biochem ; 165(4): 343-352, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30517655

RESUMO

N-Acyl-phosphatidylethanolamines (NAPEs) represent a class of glycerophospholipids and serve as the precursors of bioactive N-acylethanolamines, including arachidonoylethanolamide (anandamide), palmitoylethanolamide and oleoylethanolamide. NAPEs are produced in mammals by N-acyltransferases, the enzymes which transfer an acyl chain of glycerophospholipids to the amino group of phosphatidylethanolamine. Recently, the ɛ isoform of cytosolic phospholipase A2 (cPLA2ɛ, also called PLA2G4E) was identified as Ca2+-dependent N-acyltransferase. We showed that the activity is remarkably stimulated by phosphatidylserine (PS) in vitro. In the present study, we investigated whether or not endogenous PS regulates the function of cPLA2ɛ in living cells. When PS synthesis was suppressed by the knockdown of PS synthases in cPLA2ɛ-expressing cells, the cPLA2ɛ level and its N-acyltransferase activity were significantly reduced. Mutagenesis studies revealed that all of C2, lipase and polybasic domains of cPLA2ɛ were required for its proper localization as well as the enzyme activity. Liposome-based assays showed that several anionic glycerophospholipids, including PS, phosphatidic acid and phosphatidylinositol 4,5-bisphosphate, enhance the Ca2+-dependent binding of purified cPLA2ɛ to liposome membrane and stimulate its N-acyltransferase activity. Altogether, these results suggested that endogenous PS and other anionic phospholipids affect the localization and enzyme activity of cPLA2ɛ.


Assuntos
Cálcio/metabolismo , Fosfolipases A2 do Grupo IV , Fosfolipases A2 do Grupo IV/química , Fosfolipases A2 do Grupo IV/genética , Fosfolipases A2 do Grupo IV/metabolismo , Células HEK293 , Humanos , Fosfatidiletanolaminas/biossíntese , Fosfatidiletanolaminas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA