Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.694
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Emerg Infect Dis ; 30(3): 510-518, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38407142

RESUMO

Disseminated leishmaniasis (DL) is an emergent severe disease manifesting with multiple lesions. To determine the relationship between immune response and clinical and therapeutic outcomes, we studied 101 DL and 101 cutaneous leishmaniasis (CL) cases and determined cytokines and chemokines in supernatants of mononuclear cells stimulated with leishmania antigen. Patients were treated with meglumine antimoniate (20 mg/kg) for 20 days (CL) or 30 days (DL); 19 DL patients were instead treated with amphotericin B, miltefosine, or miltefosine and meglumine antimoniate. High levels of chemokine ligand 9 were associated with more severe DL. The cure rate for meglumine antimoniate was low for both DL (44%) and CL (60%), but healing time was longer in DL (p = 0.003). The lowest cure rate (22%) was found in DL patients with >100 lesions. However, meglumine antimoniate/miltefosine treatment cured all DL patients who received it; therefore, that combination should be considered as first choice therapy.


Assuntos
Leishmania braziliensis , Leishmania , Leishmaniose Cutânea , Fosforilcolina/análogos & derivados , Humanos , Antimoniato de Meglumina/uso terapêutico , Leishmaniose Cutânea/diagnóstico , Leishmaniose Cutânea/tratamento farmacológico
2.
Antimicrob Agents Chemother ; 68(7): e0032824, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38842325

RESUMO

Miltefosine (MTS) is the only approved oral drug for treating leishmaniasis caused by intracellular Leishmania parasites that localize in macrophages of the liver, spleen, skin, bone marrow, and lymph nodes. MTS is extensively distributed in tissues and has prolonged elimination half-lives due to its high plasma protein binding, slow metabolic clearance, and minimal urinary excretion. Thus, understanding and predicting the tissue distribution of MTS help assess therapeutic and toxicologic outcomes of MTS, especially in special populations, e.g., pediatrics. In this study, a whole-body physiologically-based pharmacokinetic (PBPK) model of MTS was built on mice and extrapolated to rats and humans. MTS plasma and tissue concentration data obtained by intravenous and oral administration to mice were fitted simultaneously to estimate model parameters. The resulting high tissue-to-plasma partition coefficient values corroborate extensive distribution in all major organs except the bone marrow. Sensitivity analysis suggests that plasma exposure is most susceptible to changes in fraction unbound in plasma. The murine oral-PBPK model was further validated by assessing overlay of simulations with plasma and tissue profiles obtained from an independent study. Subsequently, the murine PBPK model was extrapolated to rats and humans based on species-specific physiological and drug-related parameters, as well as allometrically scaled parameters. Fold errors for pharmacokinetic parameters were within acceptable range in both extrapolated models, except for a slight underprediction in the human plasma exposure. These animal and human PBPK models are expected to provide reliable estimates of MTS tissue distribution and assist dose regimen optimization in special populations.


Assuntos
Antiprotozoários , Fosforilcolina , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacocinética , Animais , Antiprotozoários/farmacocinética , Camundongos , Humanos , Ratos , Distribuição Tecidual , Administração Oral , Masculino , Feminino
3.
Antimicrob Agents Chemother ; 68(5): e0136823, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38572959

RESUMO

Leishmaniasis is a neglected tropical disease infecting the world's poorest populations. Miltefosine (ML) remains the primary oral drug against the cutaneous form of leishmaniasis. The ATP-binding cassette (ABC) transporters are key players in the xenobiotic efflux, and their inhibition could enhance the therapeutic index. In this study, the ability of beauvericin (BEA) to overcome ABC transporter-mediated resistance of Leishmania tropica to ML was assessed. In addition, the transcription profile of genes involved in resistance acquisition to ML was inspected. Finally, we explored the efflux mechanism of the drug and inhibitor. The efficacy of ML against all developmental stages of L. tropica in the presence or absence of BEA was evaluated using an absolute quantification assay. The expression of resistance genes was evaluated, comparing susceptible and resistant strains. Finally, the mechanisms governing the interaction between the ABC transporter and its ligands were elucidated using molecular docking and dynamic simulation. Relative quantification showed that the expression of the ABCG sub-family is mostly modulated by ML. In this study, we used BEA to impede resistance of Leishmania tropica. The IC50 values, following BEA treatment, were significantly reduced from 30.83, 48.17, and 16.83 µM using ML to 8.14, 11.1, and 7.18 µM when using a combinatorial treatment (ML + BEA) against promastigotes, axenic amastigotes, and intracellular amastigotes, respectively. We also demonstrated a favorable BEA-binding enthalpy to L. tropica ABC transporter compared to ML. Our study revealed that BEA partially reverses the resistance development of L. tropica to ML by blocking the alternate ATP hydrolysis cycle.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Antiprotozoários , Depsipeptídeos , Resistência a Medicamentos , Leishmania tropica , Simulação de Acoplamento Molecular , Fosforilcolina , Fosforilcolina/análogos & derivados , Leishmania tropica/efeitos dos fármacos , Leishmania tropica/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Depsipeptídeos/farmacologia , Antiprotozoários/farmacologia , Fosforilcolina/farmacologia , Humanos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/antagonistas & inibidores
4.
J Antimicrob Chemother ; 79(7): 1547-1554, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38727613

RESUMO

INTRODUCTION: Post-kala-azar dermal leishmaniasis (PKDL) arises as a dermal complication following a visceral leishmaniasis (VL) infection. Current treatment options for PKDL are unsatisfactory, and there is a knowledge gap regarding the distribution of antileishmanial compounds within human skin. The present study investigated the skin distribution of miltefosine in PKDL patients, with the aim to improve the understanding of the pharmacokinetics at the skin target site in PKDL. METHODS: Fifty-two PKDL patients underwent treatment with liposomal amphotericin B (20 mg/kg) plus miltefosine (allometric dosing) for 21 days. Plasma concentrations of miltefosine were measured on study days 8, 15, 22 and 30, while a punch skin biopsy was taken on day 22. A physiologically based pharmacokinetic (PBPK) model was developed to evaluate the distribution of miltefosine into the skin. RESULTS: Following the allometric weight-based dosing regimen, median miltefosine concentrations on day 22 were 43.73 µg/g (IQR: 21.94-60.65 µg/g) in skin and 33.29 µg/mL (IQR: 25.9-42.58 µg/mL) in plasma. The median individual concentration ratio of skin to plasma was 1.19 (IQR: 0.79-1.9). In 87% (45/52) of patients, skin exposure was above the suggested EC90 PK target of 10.6 mg/L associated with in vitro susceptibility. Simulations indicated that the residence time of miltefosine in the skin would be more than 2-fold longer than in plasma, estimated by a mean residence time of 604 versus 266 hours, respectively. CONCLUSION: This study provides the first accurate measurements of miltefosine penetration into the skin, demonstrating substantial exposure and prolonged retention of miltefosine within the skin. These findings support the use of miltefosine in cutaneous manifestations of leishmaniasis. In combination with parasitological and clinical data, these results are critical for the future optimization of combination therapies with miltefosine in the treatment of PKDL.


Assuntos
Anfotericina B , Antiprotozoários , Leishmaniose Cutânea , Leishmaniose Visceral , Fosforilcolina , Pele , Humanos , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacocinética , Fosforilcolina/administração & dosagem , Fosforilcolina/uso terapêutico , Antiprotozoários/farmacocinética , Antiprotozoários/administração & dosagem , Antiprotozoários/uso terapêutico , Masculino , Adulto , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Feminino , Pele/parasitologia , Leishmaniose Visceral/tratamento farmacológico , Pessoa de Meia-Idade , Adulto Jovem , Anfotericina B/farmacocinética , Anfotericina B/uso terapêutico , Anfotericina B/administração & dosagem , Adolescente , Ásia Meridional
5.
J Bioenerg Biomembr ; 56(4): 461-473, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38833041

RESUMO

Miltefosine (MLT) is a broad-spectrum drug included in the alkylphospholipids (APL) used against leishmania and various types of cancer. The most crucial feature of APLs is that they are thought to only kill cancerous cells without harming normal cells. However, the molecular mechanism of action of APLs is not completely understood. The increase in the phosphatidylserine (PS) ratio is a marker showing the stage of cancer and even metastasis. The goal of this research was to investigate the molecular effects of miltefosine at the molecular level in different PS ratios. The effects of MLT on membrane phase transition, membrane orders, and dynamics were studied using DPPC/DPPS (3:1) and DPPC/DPPS (1:1) multilayer (MLV) vesicles mimicking DPPS ratio variation, Differential Scanning Calorimetry (DSC), and Fourier Transform Infrared spectroscopy (FTIR). Our findings indicate that miltefosine is evidence at the molecular level that it is directed towards the tumor cell and that the drug's effect increases with the increase of anionic lipids in the membrane depending on the stage of cancer.


Assuntos
Fosfatidilserinas , Fosforilcolina , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Fosfatidilserinas/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Membrana Celular/metabolismo , Antineoplásicos/farmacologia
6.
Cytokine ; 179: 156627, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38703436

RESUMO

Leishmaniasis, a major globally re-emerging neglected tropical disease, has a restricted repertoire of chemotherapeutic options due to a narrow therapeutic index, drug resistance, or patient non-compliance due to toxicity. The disease is caused by the parasite Leishmania that resides in two different forms in two different environments: as sessile intracellular amastigotes within mammalian macrophages and as motile promastigotes in sandfly gut. As mitogen-activated protein kinases (MAPKs) play important roles in cellular differentiation and survival, we studied the expression of Leishmania donovani MAPKs (LdMAPKs). The homology studies by multiple sequence alignment show that excepting LdMAPK1 and LdMAPK2, all thirteen other LdMAPKs share homology with human ERK and p38 isoforms. Expression of LdMAPK4 and LdMAPK5 is less in avirulent promastigotes and amastigotes. Compared to miltefosine-sensitive L. donovani parasites, miltefosine-resistant parasites have higher LdMAPK1, LdMAPK3-5, LdMAPK7-11, LdMAPK13, and LdMAPK14 expression. IL-4-treatment of macrophages down-regulated LdMAPK11, in virulent amastigotes whereas up-regulated LdMAPK5, but down-regulated LdMAPK6, LdMAPK12-15, expression in avirulent amastigotes. IL-4 up-regulated LdMAPK1 expression in both virulent and avirulent amastigotes. IFN-γ-treatment down-regulated LdMAPK6, LdMAPK13, and LdMAPK15 in avirulent amastigotes but up-regulated in virulent amastigotes. This complex profile of LdMAPKs expression among virulent and avirulent parasites, drug-resistant parasites, and in amastigotes within IL-4 or IFN-γ-treated macrophages suggests that LdMAPKs are differentially controlled at the host-parasite interface regulating parasite survival and differentiation, and in the course of IL-4 or IFN-γ dominated immune response.


Assuntos
Interações Hospedeiro-Parasita , Leishmania donovani , Macrófagos , Proteínas Quinases Ativadas por Mitógeno , Leishmania donovani/enzimologia , Animais , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Camundongos , Macrófagos/parasitologia , Macrófagos/metabolismo , Humanos , Camundongos Endogâmicos BALB C , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/imunologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Interferon gama/metabolismo , Resistência a Medicamentos
7.
Cell Commun Signal ; 22(1): 58, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254202

RESUMO

BACKGROUND: The Ca2+-independent contraction of vascular smooth muscle is a leading cause of cardiovascular and cerebrovascular spasms. In the previous study, we demonstrated the involvement of Src family protein tyrosine kinase Fyn and Rho-kinase in the sphingosylphosphorylcholine (SPC)-induced abnormal and Ca2+-independent contraction of vascular smooth muscle, but the specific mechanism has not been completely clarified. METHODS: Paxillin knockdown human coronary artery smooth muscle cells (CASMCs) and smooth muscle-specific paxillin knockout mice were generated by using paxillin shRNA and the tamoxifen-inducible Cre-LoxP system, respectively. CASMCs contraction was observed by time-lapse recording. The vessel contractility was measured by using a myography assay. Fyn, Rho-kinase, and myosin light chain activation were assessed by immunoprecipitation and western blotting. The paxillin expression and actin stress fibers were visualized by histological analysis and immunofluorescent staining. RESULTS: The SPC-induced abnormal contraction was inhibited in paxillin knockdown CASMCs and arteries of paxillin knockout mice, indicating that paxillin is involved in this abnormal contraction. Further study showed that paxillin knockdown inhibited the SPC-induced Rho-kinase activation without affecting Fyn activation. In addition, paxillin knockdown significantly inhibited the SPC-induced actin stress fiber formation and myosin light chain phosphorylation. These results suggest that paxillin, as an upstream molecule of Rho-kinase, is involved in the SPC-induced abnormal contraction of vascular smooth muscle. CONCLUSIONS: The present study demonstrated that paxillin participates in the SPC-induced abnormal vascular smooth muscle contraction by regulating Rho-kinase activation. Video Abstract.


Assuntos
Músculo Liso Vascular , Paxilina , Quinases Associadas a rho , Animais , Humanos , Camundongos , Actinas , Camundongos Knockout , Cadeias Leves de Miosina , Fosforilcolina/análogos & derivados , Esfingosina/análogos & derivados
8.
Langmuir ; 40(21): 10957-10965, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38752656

RESUMO

Zwitterionic coatings provide a promising antifouling strategy against biofouling adhesion. Quaternary ammonium cationic polymers can effectively kill bacteria on the surface, owing to their positive charges. This strategy can avoid the release of toxic biocides, which is highly desirable for constructing coatings for biomedical devices. The present work aims to develop a facile method by covalently grafting zwitterionic and cationic copolymers containing aldehydes to the remaining amine groups of self-polymerized dopamine. Reversible addition-fragmentation chain transfer polymerization was used to copolymerize either zwitterionic 2-methacryloyloxyethyl phosphorylcholine monomer (MPC) or cationic 2-(methacryloyloxy)ethyl trimethylammonium monomer (META) with 4-formyl phenyl methacrylate monomer (FPMA), and the formed copolymers poly(MPC-st-FPMA) and poly(META-st-FPMA) are denoted as MPF and MTF, respectively. MPF and MTF copolymers were then covalently grafted onto the amino groups of polydopamine-coated surfaces. PDA/MPF/MTF-coated surfaces exhibited antibacterial and antifouling properties against S. aureus, E. coli, and bovine serum albumin protein. In addition, they showed excellent viability of normal human lung fibroblast cells MRC-5. We expect the facile surface modification strategy discussed here to be applicable to medical device manufacturing.


Assuntos
Antibacterianos , Polímeros , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Polímeros/química , Polímeros/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Incrustação Biológica/prevenção & controle , Escherichia coli/efeitos dos fármacos , Bivalves/química , Propriedades de Superfície , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Fosforilcolina/farmacologia , Soroalbumina Bovina/química , Humanos , Metacrilatos/química , Metacrilatos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Indóis
9.
Macromol Rapid Commun ; 45(8): e2300690, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38207336

RESUMO

The compositional scope of polymer zwitterions has grown significantly in recent years and now offers designer synthetic materials that are broadly applicable across numerous areas, including supracolloidal structures, electronic materials interfaces, and macromolecular therapeutics. Among recent developments in polymer zwitterion syntheses are those that allow insertion of reactive functionality directly into the zwitterionic moiety, yielding new monomer and polymer structures that hold potential for maximizing the impact of zwitterions on the macromolecular materials chemistry field. This manuscript describes the preparation of zwitterionic choline phosphate (CP) methacrylates containing either aromatic or aliphatic thiols embedded directly into the zwitterionic moiety. The polymerization of these functional CP methacrylates by reversible addition-fragmentation chain-transfer methodology yields polymeric zwitterionic thiols containing protected thiol functionality in the zwitterionic units. After polymerization, the protected thiols are liberated to yield thiol-rich polymer zwitterions which serve as precursors to subsequent reactions that produce polymer networks as well as polymer-protein bioconjugates.


Assuntos
Polimerização , Polímeros , Compostos de Sulfidrila , Compostos de Sulfidrila/química , Polímeros/química , Polímeros/síntese química , Fosforilcolina/química , Fosforilcolina/análogos & derivados , Estrutura Molecular , Metacrilatos/química
10.
Acta Pharmacol Sin ; 45(2): 312-326, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37833535

RESUMO

Apoptosis plays a critical role in the development of heart failure, and sphingosylphosphorylcholine (SPC) is a bioactive sphingolipid naturally occurring in blood plasma. Some studies have shown that SPC inhibits hypoxia-induced apoptosis in myofibroblasts, the crucial non-muscle cells in the heart. Calmodulin (CaM) is a known SPC receptor. In this study we investigated the role of CaM in cardiomyocyte apoptosis in heart failure and the associated signaling pathways. Pressure overload was induced in mice by trans-aortic constriction (TAC) surgery. TAC mice were administered SPC (10 µM·kg-1·d-1) for 4 weeks post-surgery. We showed that SPC administration significantly improved survival rate and cardiac hypertrophy, and inhibited cardiac fibrosis in TAC mice. In neonatal mouse cardiomyocytes, treatment with SPC (10 µM) significantly inhibited Ang II-induced cardiomyocyte hypertrophy, fibroblast-to-myofibroblast transition and cell apoptosis accompanied by reduced Bax and phosphorylation levels of CaM, JNK and p38, as well as upregulated Bcl-2, a cardiomyocyte-protective protein. Thapsigargin (TG) could enhance CaM functions by increasing Ca2+ levels in cytoplasm. TG (3 µM) annulled the protective effect of SPC against Ang II-induced cardiomyocyte apoptosis. Furthermore, we demonstrated that SPC-mediated inhibition of cardiomyocyte apoptosis involved the regulation of p38 and JNK phosphorylation, which was downstream of CaM. These results offer new evidence for SPC regulation of cardiomyocyte apoptosis, potentially providing a new therapeutic target for cardiac remodeling following stress overload.


Assuntos
Calmodulina , Insuficiência Cardíaca , Fosforilcolina/análogos & derivados , Esfingosina/análogos & derivados , Camundongos , Animais , Calmodulina/metabolismo , Calmodulina/farmacologia , Calmodulina/uso terapêutico , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos , Transdução de Sinais , Remodelação Ventricular , Camundongos Endogâmicos C57BL
11.
Exp Parasitol ; 257: 108687, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38114040

RESUMO

OBJECTIVES: Post-kala-azar-dermal leishmaniasis (PKDL) is an infectious skin disease that occurs as sequela of visceral leishmaniasis (VL) and causes cutaneous lesions on the face and other exposed body parts. While the first-line drug miltefosine is typically used for 28 days to treat VL, 12 weeks of therapy is required for PKDL, highlighting the need to evaluate the extent of drug penetration at the dermal site of infection. In this proof-of-concept study, we demonstrate the use of a minimally invasive sampling technique called microdialysis to measure dermal drug exposure in a PKDL patient, providing a tool for the optimization of treatment regimens. METHODS AND MATERIALS: One PKDL patient receiving treatment with miltefosine (50 mg twice daily for 12 weeks) was recruited to this proof-of-concept study and consented to undergo dermal microdialysis. Briefly, a µDialysis Linear Catheter 66 for skin and muscle, a probe with a semi-permeable membrane, was inserted in the dermis. A perfusate (a drug-free physiological solution) was pumped through the probe at a low flow rate, allowing miltefosine present in the dermis to cross the membrane and be collected in the dialysates over time. Protein-free (dialysates) and total (blood and skin biopsies) drug concentrations were analysed using LC-MS/MS. RESULTS: and conclusions: Using microdialysis, protein-free miltefosine drug concentrations could be detected in the infected dermis over time (Cmax ≈ 450 ng/ml). This clinical proof-of-concept study thus illustrates the potential of dermal microdialysis as a minimally invasive alternative to invasive skin biopsies to quantify drug concentrations directly at the pharmacological site of action in PKDL.


Assuntos
Antiprotozoários , Leishmaniose Cutânea , Leishmaniose Visceral , Fosforilcolina/análogos & derivados , Humanos , Leishmaniose Visceral/complicações , Leishmaniose Visceral/tratamento farmacológico , Cromatografia Líquida , Microdiálise/efeitos adversos , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/etiologia , Antiprotozoários/uso terapêutico , Espectrometria de Massas em Tandem , Soluções para Diálise/uso terapêutico
12.
Clin Oral Investig ; 28(6): 323, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761310

RESUMO

OBJECTIVES: White spot lesions are the most common iatrogenic effect observed during orthodontic treatment. This study aimed to compare the surface characteristics and antibacterial action of uncoated and coated orthodontic brackets. MATERIALS AND METHODS: Sixty commercially available stainless steel brackets were coated with TiO2 nanotubes and methacryloyloxyethylphosphorylcholine. The sample was divided into Group 1: uncoated orthodontic brackets, Group 2: Stainless steel brackets with TiO2 nanotubes coating, Group 3: Stainless steel brackets with methacryloyloxyethylphosphorylcholine coating, and Group 4: Stainless steel brackets with TiO2 nanotubes combined with methacryloyloxyethylphosphorylcholine coating. Surface characterization was assessed using atomic force microscopy and scanning electron microscopy. Streptococcus mutans was selected to test the antibacterial ability of the orthodontic brackets, total bacterial adhesion and bacterial viability were assessed. The brackets were subjected to scanning electron microscopy to detect the presence of biofilm. RESULTS: The surface roughness was the greatest in Group 1 and least in Group 2 followed by Group 4 and Group 3 coated brackets. The optical density values were highest in Group 1 and lowest in Group 4. Comparison of colony counts revealed high counts in Group 1 and low counts in Group 4. A positive correlation between surface roughness and colony counts was obtained, however, was not statistically significant. CONCLUSIONS: The coated orthodontic brackets exhibited less surface roughness than the uncoated orthodontic brackets. Group 4 coated orthodontic brackets showed the best antibacterial properties. CLINICAL RELEVANCE: Coated orthodontic brackets prevent adhesion of streptococcus mutans and reduces plaque accumulation around the brackets thereby preventing formation of white spot lesions during orthodontic treatment.


Assuntos
Antibacterianos , Aderência Bacteriana , Microscopia Eletrônica de Varredura , Nanotubos , Braquetes Ortodônticos , Fosforilcolina , Streptococcus mutans , Propriedades de Superfície , Titânio , Titânio/química , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Fosforilcolina/química , Streptococcus mutans/efeitos dos fármacos , Antibacterianos/farmacologia , Nanotubos/química , Aderência Bacteriana/efeitos dos fármacos , Microscopia de Força Atômica , Teste de Materiais , Aço Inoxidável/química , Metacrilatos/farmacologia , Metacrilatos/química , Biofilmes/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química
13.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542280

RESUMO

Cardiomyocyte survival is a critical contributing process of host adaptive responses to cardiovascular diseases (CVD). Cells of the cardiovascular endothelium have recently been reported to promote cardiomyocyte survival through exosome-loading cargos. Sphingosylphosphorylcholine (SPC), an intermediate metabolite of sphingolipids, mediates protection against myocardial infarction (MI). Nevertheless, the mechanism of SPC delivery by vascular endothelial cell (VEC)-derived exosomes (VEC-Exos) remains uncharacterized at the time of this writing. The present study utilized a mice model of ischemia/reperfusion (I/R) to demonstrate that the administration of exosomes via tail vein injection significantly diminished the severity of I/R-induced cardiac damage and prevented apoptosis of cardiomyocytes. Moreover, SPC was here identified as the primary mediator of the observed protective effects of VEC-Exos. In addition, within this investigation, in vitro experiments using cardiomyocytes showed that SPC counteracted myocardial I/R injury by activating the Parkin and nuclear receptor subfamily group A member 2/optineurin (NR4A2/OPTN) pathways, in turn resulting in increased levels of mitophagy within I/R-affected myocardium. The present study highlights the potential therapeutic effects of SPC-rich exosomes secreted by VECs on alleviating I/R-induced apoptosis in cardiomyocytes, thereby providing strong experimental evidence to support the application of SPC as a potential therapeutic target in the prevention and treatment of myocardial infarction.


Assuntos
Exossomos , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Fosforilcolina/análogos & derivados , Esfingosina/análogos & derivados , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/metabolismo , Mitofagia , Miócitos Cardíacos/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Células Endoteliais/metabolismo , Exossomos/metabolismo , Apoptose
14.
J Cell Mol Med ; 27(1): 76-88, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36523175

RESUMO

An acidic environment and hypoxia within the tumour are hallmarks of cancer that contribute to cell resistance to therapy. Deregulation of the PI3K/Akt pathway is common in colon cancer. Numerous Akt-targeted therapies are being developed, the activity of Akt-inhibitors is, however, strongly pH-dependent. Combination therapy thus represents an opportunity to increase their efficacy. In this study, the cytotoxicity of the Akt inhibitor perifosine and the Bcl-2/Bcl-xL inhibitor ABT-737 was tested in colon cancer HT-29 and HCT-116 cells cultured in monolayer or in the form of spheroids. The efficacy of single drugs and their combination was analysed in different tumour-specific environments including acidosis and hypoxia using a series of viability assays. Changes in protein content and distribution were determined by immunoblotting and a "peeling analysis" of immunohistochemical signals. While the cytotoxicity of single agents was influenced by the tumour-specific microenvironment, perifosine and ABT-737 in combination synergistically induced apoptosis in cells cultured in both 2D and 3D independently on pH and oxygen level. Thus, the combined therapy of perifosine and ABT-737 could be considered as a potential treatment strategy for colon cancer.


Assuntos
Antineoplásicos , Neoplasias do Colo , Fosforilcolina , Humanos , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Sinergismo Farmacológico , Fosfatidilinositol 3-Quinases , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Microambiente Tumoral , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia
15.
Proteins ; 90(2): 560-565, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34596903

RESUMO

Oleosin is a hydrophobic protein that punctuates the surface of plant seed lipid droplets, which are 20 nm-100 µm entities that serve as reservoirs for high-energy metabolites. Oleosin is purported to stabilize lipid droplets, but its exact mechanism of stabilization has not been established. Probing the structure of oleosin directly in lipid droplets is challenging due to the size of lipid droplets and their high degree of light scattering. Therefore, a medium in which the native structure of oleosin is retained, but is also amenable to spectroscopic studies is needed. Here, we show, using a suite of biophysical techniques, that dodecylphosphocholine micelles appear to support the tertiary structure of the oleosin protein (i.e., hairpin conformation) and render the protein in an oligomeric state that is amenable to more sophisticated biophysical techniques such as NMR.


Assuntos
Gotículas Lipídicas/química , Micelas , Fosforilcolina/análogos & derivados , Proteínas de Plantas/química , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Fosforilcolina/química
16.
Clin Infect Dis ; 75(8): 1423-1432, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-35147680

RESUMO

BACKGROUND: Visceral leishmaniasis (VL) in patients with human immunodeficiency virus (HIV) presents an increasingly important patient cohort in areas where both infections are endemic. Evidence for treatment is sparce, with no high-quality studies from the Indian subcontinent. METHODS: This is a randomized, open-label, parallel-arm, phase 3 trial conducted within a single hospital in Patna, India. One hundred and fifty patients aged ≥18 years with serologically confirmed HIV and parasitologically confirmed VL were randomly allocated to 1 of 2 treatment arms, either a total 40 mg/kg intravenous liposomal amphotericin B (AmBisome; Gilead Pharmaceuticals) administered in 8 equal doses over 24 days or a total 30 mg/kg intravenous AmBisome administered in 6 equal doses given concomitantly with a total 1.4 g oral miltefosine administered through 2 daily doses of 50 mg over 14 days. The primary outcome was intention-to-treat relapse-free survival at day 210, defined as absence of signs and symptoms of VL or, if symptomatic, negative parasitological investigations. RESULTS: Among 243 patients assessed for eligibility, 150 were recruited between 2 January 2017 and 5 April 2018, with no loss to follow-up. Relapse-free survival at day 210 was 85% (64/75; 95% CI, 77-100%) in the monotherapy arm, and 96%, (72/75; 90-100%) in the combination arm. Nineteen percent (28/150) were infected with concurrent tuberculosis, divided equally between arms. Excluding those with concurrent tuberculosis, relapse-free survival at day 210 was 90% (55/61; 82-100%) in the monotherapy and 97% (59/61; 91-100%) in the combination therapy arm. Serious adverse events were uncommon and similar in each arm. CONCLUSIONS: Combination therapy appears to be safe, well tolerated, and effective, and halves treatment duration of current recommendations. CLINICAL TRIALS REGISTRATION: Clinical Trial Registry India (CTRI/2015/05/005807; the protocol is available online at https://osf.io/avz7r).


Assuntos
Antiprotozoários , Coinfecção , Infecções por HIV , Leishmaniose Visceral , Adolescente , Adulto , Anfotericina B , Antiprotozoários/efeitos adversos , Coinfecção/tratamento farmacológico , Quimioterapia Combinada , HIV , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Humanos , Índia , Leishmaniose Visceral/complicações , Leishmaniose Visceral/tratamento farmacológico , Preparações Farmacêuticas , Fosforilcolina/efeitos adversos , Fosforilcolina/análogos & derivados , Recidiva , Resultado do Tratamento
17.
Antimicrob Agents Chemother ; 66(1): e0142521, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34694879

RESUMO

Failure of treatment of cutaneous leishmaniasis with antimonial drugs and miltefosine is frequent. Use of oral combination therapy represents an attractive strategy to increase efficacy of treatment and reduce the risk of drug resistance. We evaluated the potency of posaconazole, itraconazole, voriconazole, and fluconazole and the potential synergy of those demonstrating the highest potency, in combination with miltefosine (HePC), against infection with Leishmania (Viannia) panamensis. Synergistic activity was determined by isobolograms and calculation of the fractional inhibitory concentration index (FICI), based on parasite quantification using an ex vivo model of human peripheral blood mononuclear cells (PBMCs) infected with a luciferase-transfected, antimony and miltefosine sensitive line of L. panamensis. The drug combination and concentrations that displayed synergy were then evaluated for antileishmanial effect in 10 clinical strains of L. panamensis by reverse transcription-quantitative (qRT-PCR) of Leishmania 7SLRNA. High potency was substantiated for posaconazole and itraconazole against sensitive as well as HePC- and antimony-resistant lines of L. panamensis, whereas fluconazole and voriconazole displayed low potency. HePC combined with posaconazole (Poz) demonstrated evidence of synergy at free drug concentrations achieved in plasma during treatment (2 µM HePC plus 4 µM Poz). FICI, based on 70% and 90% reduction of infection, was 0.5 for the sensitive line. The combination of 2 µM HePC plus 4 µM Poz effected a significantly greater reduction of infection by clinical strains of L. panamensis than individual drugs. Orally administrable miltefosine/posaconazole combinations demonstrated synergistic antileishmanial capacity ex vivo against L. panamensis, supporting their potential as a novel therapeutic strategy to improve efficacy and effectiveness of treatment.


Assuntos
Antiprotozoários , Leishmania guyanensis , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Azóis/farmacologia , Humanos , Leucócitos Mononucleares , Fosforilcolina/análogos & derivados , Fosforilcolina/uso terapêutico
18.
J Membr Biol ; 255(2-3): 151-160, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35257227

RESUMO

Non-hemolytic antimicrobial peptides (AMPs) are vital lead molecules for the designing and development of peptide-based antibiotics. Thanatin a 21-amino acid long single disulfide bonded AMP is known to be highly non-hemolytic with a limited toxicity to human cells and model animals. Thanatin demonstrates a potent antibacterial activity against multidrug-resistant Gram-negative pathogens. A single mutated variant of thanatin replaced last residue Met21 to Phe or thanatin M21F has recently been found to be more active compared to the native peptide. In order to gain mechanistic insights toward bacterial cell lysis versus non-hemolysis, here, we report atomic resolution structure and mode insertion of thanatinM21F reconstituted into zwitterionic detergent micelle by use of solution NMR spectroscopy. The 3D structure of thanatinM21F in DPC micelle is defined by an anti-parallel ß-sheet between residues I9-F21 with a central cationic loop, residues N12-R14. PRE NMR studies revealed hydrophobic core residues of thanatinM21F are deeply inserted in the DPC micelle, while residues at the extended N-terminal half of the peptide are appeared to be mostly surface localized. Marked structural differences of thanatin and thanatinM21F in negatively charged LPS and DPC micelle could be correlated with non-hemolytic and antibacterial activity.


Assuntos
Anti-Infecciosos , Micelas , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/química , Hemólise , Espectroscopia de Ressonância Magnética , Fosforilcolina/análogos & derivados
19.
Toxicol Appl Pharmacol ; 452: 116207, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35995203

RESUMO

Doxorubicin (DOX, C27H29NO11), is an anthracycline tumor chemotherapy drug, which has significant side effects on many organs including the heart. In recent years, mitochondrial dysfunction caused by DOX was identified as an important reason for cardiotoxic injury. Sphingosylphosphorylcholine (SPC) is essential for mitochondrial homeostasis in our previous report, however, its role in DOX-caused cardiomyopathy has remained elusive. Herein, DOX treated zebrafish embryos (90 µM) and adult fish (2.5 µM/g) were used to simulate DOX-induced cardiotoxic damage. Histopathological and ultrastructural observations showed that SPC (2.5 µM) significantly ameliorated DOX-induced pericardial edema, myocardial vacuolization and apoptosis. Furthermore, SPC (2.5 µM) can significantly inhibit DOX-induced apoptosis and promote cell proliferation in DOX treated H9c2 cells (1 µM), which is dependent on the restoration of mitochondrial homeostasis, including restored mitochondrial membrane potential, mitochondrial superoxide and ATP levels. We finally confirmed that SPC restored mitochondrial homeostasis through ameliorating DOX-induced excessive mitophagy. Mechanistically, SPC reduced calmodulin (CaM) levels and thus inhibiting Parkin activation and Parkin-dependent mitophagy. These results suggest that reducing the cardiotoxicity of chemotherapeutic drugs by targeting SPC may be a new solution to rescue chemotherapy injury.


Assuntos
Cardiotoxicidade , Mitofagia , Animais , Antibióticos Antineoplásicos/toxicidade , Apoptose , Cardiotoxicidade/etiologia , Doxorrubicina/efeitos adversos , Mitocôndrias , Miócitos Cardíacos , Fosforilcolina/análogos & derivados , Esfingosina/análogos & derivados , Ubiquitina-Proteína Ligases/metabolismo , Peixe-Zebra/metabolismo
20.
Cell Biol Int ; 46(11): 1947-1958, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35998255

RESUMO

Lipophosphoglycan (LPG), the major Leishmania glycoconjugate, induces pro-inflammatory/immunosuppressive innate immune responses. Here, we evaluated functional/biochemical LPG properties from six Leishmania amazonensis strains from different hosts/clinical forms. LPGs from three strains (GV02, BA276, and LV79) had higher pro-inflammatory profiles for most of the mediators, including tumor necrosis factor alpha and interleukin 6. For this reason, glycoconjugates from all strains were biochemically characterized and had polymorphisms in their repeat units. They consisted of three types: type I, repeat units devoid of side chains; type II, containing galactosylated side chains; and type III, containing glucosylated side chains. No relationship was observed between LPG type and the pro-inflammatory properties. Finally, to evaluate the susceptibility against antileishmanial agents, two strains with high (GV02, BA276) and one with low (BA336) pro-inflammatory activity were selected for chemotherapeutic tests in THP-1 cells. All analyzed strains were susceptible to amphotericin B (AmB) but displayed various responses against miltefosine (MIL) and glucantime (GLU). The GV02 strain (canine visceral leishmaniasis) had the highest IC50 for MIL (3.34 µM), whereas diffuse leishmaniasis strains (BA276 and BA336) had a higher IC50 for GLU (6.87-12.19 mM). The highest IC50 against MIL shown by the GV02 strain has an impact on clinical management. Miltefosine is the only drug approved for dog treatment in Brazil. Further studies into drug susceptibility of L. amazonensis strains are warranted, especially in areas where dog infection by this species overlaps with those caused by Leishmania infantum.


Assuntos
Anfotericina B , Leishmania , Anfotericina B/farmacologia , Animais , Cães , Glicoesfingolipídeos , Interleucina-6 , Leishmania/genética , Antimoniato de Meglumina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Fosforilcolina/análogos & derivados , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA