Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.758
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Neuroinflammation ; 21(1): 144, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822334

RESUMO

Cumulative evidence has established that Interferon (IFN)-γ has both pathogenic and protective roles in Multiple Sclerosis and the animal model, Experimental Autoimmune Encephalomyelitis (EAE). However, the underlying mechanisms to the beneficial effects of IFN-γ are not well understood. In this study, we found that IFN-γ exerts therapeutic effects on chronic, relapsing-remitting, and chronic progressive EAE models. The frequency of regulatory T (Treg) cells in spinal cords from chronic EAE mice treated with IFN-γ was significantly increased with no effect on Th1 and Th17 cells. Consistently, depletion of FOXP3-expressing cells blocked the protective effects of IFN-γ, indicating that the therapeutic effect of IFN-γ depends on the presence of Treg cells. However, IFN-γ did not trigger direct in vitro differentiation of Treg cells. In vivo administration of blocking antibodies against either interleukin (IL)-10, transforming growth factor (TGF)-ß or program death (PD)-1, revealed that the protective effects of IFN-γ in EAE were also dependent on TGF-ß and PD-1, but not on IL-10, suggesting that IFN-γ might have an indirect role on Treg cells acting through antigen-presenting cells. Indeed, IFN-γ treatment increased the frequency of a subset of splenic CD11b+ myeloid cells expressing TGF-ß-Latency Associated Peptide (LAP) and program death ligand 1 (PD-L1) in a signal transducer and activator of transcription (STAT)-1-dependent manner. Furthermore, splenic CD11b+ cells from EAE mice preconditioned in vitro with IFN-γ and myelin oligodendrocyte glycoprotein (MOG) peptide exhibited a tolerogenic phenotype with the capability to induce conversion of naïve CD4+ T cells mediated by secretion of TGF-ß. Remarkably, adoptive transfer of splenic CD11b+ cells from IFN-γ-treated EAE mice into untreated recipient mice ameliorated clinical symptoms of EAE and limited central nervous system infiltration of mononuclear cells and effector helper T cells. These results reveal a novel cellular and molecular mechanism whereby IFN-γ promotes beneficial effects in EAE by endowing splenic CD11b+ myeloid cells with tolerogenic and therapeutic activities.


Assuntos
Antígeno CD11b , Encefalomielite Autoimune Experimental , Interferon gama , Camundongos Endogâmicos C57BL , Células Mieloides , Baço , Animais , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Camundongos , Interferon gama/metabolismo , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Baço/imunologia , Antígeno CD11b/metabolismo , Feminino , Glicoproteína Mielina-Oligodendrócito/toxicidade , Glicoproteína Mielina-Oligodendrócito/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade , Fragmentos de Peptídeos/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Fatores de Transcrição Forkhead/metabolismo , Modelos Animais de Doenças
2.
Exp Eye Res ; 242: 109861, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522635

RESUMO

Amyloid-beta (Aß), a family of aggregation-prone and neurotoxic peptides, has been implicated in the pathophysiology of age-related macular degeneration (AMD). We have previously shown that oligomeric and fibrillar species of Aß42 exerted retinal toxicity in rats, but while the consequences of exposure to amyloid were related to intracellular effects, the mechanism of Aß42 internalization in the retina is not well characterized. In the brain, the 67 kDa laminin receptor (67LR) participates in Aß-related neuronal cell death. A short peptide derived from pigment epithelium-derived factor (PEDF), formerly designated PEDF-335, was found to mitigate experimental models of ischemic retinopathy via targeting of 67LR. In the present study, we hypothesized that 67LR mediates the uptake of pathogenic Aß42 assemblies in the retina, and that targeting of this receptor by PEDF-335 may limit the internalization of Aß, thereby ameliorating its retinotoxicity. To test this assumption ARPE-19 cells in culture were incubated with PEDF-335 before treatment with fibrillar or oligomeric structures of Aß42. Immunostaining confirmed that PEDF-335 treatment substantially prevented amyloid internalization into ARPE-19 cells and maintained their viability in the presence of toxic oligomeric and fibrillar Aß42 entities in vitro. FRET competition assay was performed and confirmed the binding of PEDF-335 to 67LR in RPE-like cells. Wild-type rats were treated with intravitreal PEDF-335 in the experimental eye 2 days prior to administration of retinotoxic Aß42 oligomers or fibrils to both eyes. Retinal function was assessed by electroretinography through 6 weeks post injection. The ERG responses in rats treated with oligomeric or fibrillar Aß42 assemblies were near-normal in eyes previously treated with intravitreal PEDF-335, whereas those measured in the control eyes treated with injection of the Aß42 assemblies alone showed pathologic attenuation of the retinal function through 6 weeks. The retinal presence of 67LR was determined ex vivo by immunostaining and western blotting. Retinal staining demonstrated the constitutional expression of 67LR mainly in the retinal nuclear layers. In the presence of Aß42, the levels of 67LR were increased, although its retinal distribution remained largely unaltered. In contrast, no apparent differences in the retinal expression level of 67LR were noted following exposure to PEDF-335 alone, and its pattern of localization in the retina remained similarly concentrated primarily in the inner and outer nuclear layers. In summary, we found that PEDF-335 confers protection against Aß42-mediated retinal toxicity, with significant effects noted in cells as well as in vivo in rats. The effects of PEDF-335 in the retina are potentially mediated via binding to 67LR and by at least partial inhibition of Aß42 internalization. These results suggest that PEDF-335 may merit further consideration in the development of targeted inhibition of amyloid-related toxicity in the retina. More broadly, our observations provide evidence on the importance of extracellular versus intracellular Aß42 in the retina and suggest concepts on the molecular mechanism of Aß retinal pathogenicity.


Assuntos
Peptídeos beta-Amiloides , Eletrorretinografia , Proteínas do Olho , Fatores de Crescimento Neural , Serpinas , Animais , Serpinas/metabolismo , Proteínas do Olho/metabolismo , Fatores de Crescimento Neural/metabolismo , Ratos , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Fragmentos de Peptídeos/toxicidade , Modelos Animais de Doenças , Receptores de Laminina/metabolismo , Masculino , Retina/efeitos dos fármacos , Retina/metabolismo , Humanos , Injeções Intravítreas , Western Blotting , Doenças Retinianas/prevenção & controle , Doenças Retinianas/metabolismo , Doenças Retinianas/induzido quimicamente , Células Cultivadas
3.
Neurochem Res ; 49(1): 99-116, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37615884

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease that is the main form of dementia. Abnormal deposition of amyloid-beta (Aß) peptides in neurons and synapses cause neuronal loss and cognitive deficits. We have previously reported that ferroptosis and necroptosis were implicated in Aß25-35 neurotoxicity, and their specific inhibitors had attenuating effects on cognitive impairment induced by Aß25-35 neurotoxicity. Here, we aimed to examine the impact of ferroptosis and necroptosis inhibition following the Aß25-35 neurotoxicity on the neuronal excitability of dentate gyrus (DG) and the possible involvement of voltage-gated Ca2+ channels in their effects. After inducing Aß25-35 neurotoxicity, electrophysiological alterations in the intrinsic properties and excitability were recorded by the whole-cell patch-clamp under current-clamp condition. Voltage-clamp recordings were also performed to shed light on the involvement of calcium channel currents. Aß25-35 neurotoxicity induced a considerable reduction in input resistance (Rin), accompanied by a profoundly decreased excitability and a reduction in the amplitude of voltage-gated calcium channel currents in the DG granule cells. However, three days of administration of either ferrostatin-1 (Fer-1), a ferroptosis inhibitor, or Necrostatin-1 (Nec-1), a necroptosis inhibitor, in the entorhinal cortex could almost preserve the normal excitability and the Ca2+ currents. In conclusion, these findings suggest that ferroptosis and necroptosis involvement in EC amyloidopathy could be a potential candidate to prevent the suppressive effect of Aß on the Ca2+ channel current and neuronal function, which might take place in neurons during the development of AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Humanos , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/toxicidade , Fragmentos de Peptídeos/metabolismo , Peptídeos beta-Amiloides/metabolismo , Canais de Cálcio , Giro Denteado
4.
J Toxicol Environ Health A ; 87(10): 436-447, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38557424

RESUMO

One of the main pathological features noted in Alzheimer's disease (AD) is the presence of plagues of aggregated ß-amyloid (Aß1-42)-peptides. Excess deposition of amyloid-ß oligomers (AßO) are known to promote neuroinflammation. Sequentially, following neuroinflammation astrocytes become activated with cellular characteristics to initiate activated astrocytes. The purpose of this study was to determine whether total flavonoids derived from Dracocephalum moldavica L. (TFDM) inhibited Aß1-42-induced damage attributed to activated C8-D1A astrocytes. Western blotting and ELISA were used to determine the expression of glial fibrillary acidic protein (GFAP), and complement C3 to establish the activation status of astrocytes following induction from exposure to Aß1-42. Data demonstrated that stimulation of C8-D1A astrocytes by treatment with 40 µM Aß1-42 for 24 hr produced significant elevation in protein expression and protein levels of acidic protein (GFAP) and complement C3 accompanied by increased expression and levels of inflammatory cytokines. Treatment with TFDM or the clinically employed drug donepezil in AD therapy reduced production of inflammatory cytokines, and toxicity initiated following activation of C8-D1A astrocytes following exposure to Aß1-42. Therefore, TFDM similar to donepezil inhibited inflammatory secretion in reactive astrocytes, suggesting that TFDM may be considered as a potential compound to be utilized in AD therapy.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Lamiaceae , Humanos , Peptídeos beta-Amiloides/farmacologia , Doença de Alzheimer/tratamento farmacológico , Flavonoides/farmacologia , Complemento C3/metabolismo , Complemento C3/farmacologia , Complemento C3/uso terapêutico , Doenças Neuroinflamatórias , Astrócitos/metabolismo , Donepezila/metabolismo , Donepezila/farmacologia , Donepezila/uso terapêutico , Citocinas/metabolismo , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/toxicidade
5.
Inflammopharmacology ; 32(2): 1461-1474, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37758932

RESUMO

Lately, interest surrounding the utilization of plant-derived compounds as a viable beneficial approach for treating Alzheimer's disease (AD) has significantly increased. This study aimed to assess the defensive properties of rosavin against Alzheimer's disease induced by amyloid-ß, utilizing experimental models. We found that rosavin exhibited anti-aggregation and disaggregation properties, suggesting its potential to prevent the gathering of Aß-aggregates. In vitro experiments revealed that rosavin effectively mitigated the neurotoxicity induced by Aß in Neuro-2a cells, showcasing its protective potential. Rosavin significantly improved the Aß-induced cognitive deficits in Wistar rats, particularly in spatial memory. Which the pathophysiology of AD includes oxidative damage, which negatively impacts biological macromolecules. Triggers the apoptotic process, causing macromolecular destruction. Interestingly, rosavin attenuated Aß-induced macromolecular damages, thereby preserving neuronal integrity. Furthermore, the activation of antioxidative defense enzymes by rosavin inhibited oxidative damage. The positive outcomes associated with rosavin were primarily attributed to its capacity to enhance acetylcholine-mediated effects. Finally, rosavin has the potential to alleviate Aß-induced neurotoxicity and macromolecular damages, ultimately resulting in enhanced memorial and reasoning function in Wistar rats, offering promising prospects for the treatment of AD.


Assuntos
Doença de Alzheimer , Ratos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/induzido quimicamente , Ratos Wistar , Peptídeos beta-Amiloides/toxicidade , Dissacarídeos/efeitos adversos , Fragmentos de Peptídeos/toxicidade , Modelos Animais de Doenças
6.
Molecules ; 29(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731472

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid beta (Aß) plaques in the brain. Aß1-42 is the main component of Aß plaque, which is toxic to neuronal cells. Si nanowires (Si NWs) have the advantages of small particle size, high specific surface area, and good biocompatibility, and have potential application prospects in suppressing Aß aggregation. In this study, we employed the vapor-liquid-solid (VLS) growth mechanism to grow Si NWs using Au nanoparticles as catalysts in a plasma-enhanced chemical vapor deposition (PECVD) system. Subsequently, these Si NWs were transferred to a phosphoric acid buffer solution (PBS). We found that Si NWs significantly reduced cell death in PC12 cells (rat adrenal pheochromocytoma cells) induced by Aß1-42 oligomers via double staining with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and fluorescein diacetate/propyl iodide (FDA/PI). Most importantly, pre-incubated Si NWs largely prevented Aß1-42 oligomer-induced PC12 cell death, suggesting that Si NWs exerts an anti-Aß neuroprotective effect by inhibiting Aß aggregation. The analysis of Fourier Transform Infrared (FTIR) results demonstrates that Si NWs reduce the toxicity of fibrils and oligomers by intervening in the formation of ß-sheet structures, thereby protecting the viability of nerve cells. Our findings suggest that Si NWs may be a potential therapeutic agent for AD by protecting neuronal cells from the toxicity of Aß1-42.


Assuntos
Peptídeos beta-Amiloides , Nanofios , Fármacos Neuroprotetores , Silício , Animais , Ratos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Sobrevivência Celular/efeitos dos fármacos , Nanofios/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Células PC12 , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/toxicidade , Fragmentos de Peptídeos/farmacologia , Agregados Proteicos/efeitos dos fármacos , Silício/química
7.
AAPS PharmSciTech ; 25(6): 149, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38954224

RESUMO

Silibinin (SIL) Encapsulated Nanoliquid Crystalline (SIL-NLCs) particles were prepared to study neuroprotective effect against amyloid beta (Aß1-42) neurotoxicity in Balb/c mice model. Theses NLCs were prepared through hot emulsification and probe sonication technique. The pharmacodynamics was investigatigated on Aß1-42 intracerebroventricular (ICV) injected Balb/c mice. The particle size, zeta potential and drug loading were optimized to be 153 ± 2.5 nm, -21 mV, and 8.2%, respectively. Small angle X-ray (SAXS) and electron microscopy revealed to crystalline shape of SIL-NLCs. Thioflavin T (ThT) fluroscence and circular dichroism (CD) technique were employed to understand monomer inhibition effect of SIL-NLCs on Aß1-4. In neurobehavioral studies, SIL-NLCs exhibited enhanced mitigation of memory impairment induced on by Aß1-42 in T-maze and new object recognition test (NORT). Whereas biochemical and histopathological estimation of brain samples showed reduction in level of Aß1-42 aggregate, acetylcholine esterase (ACHE) and reactive oxygen species (ROS). SIL-NLCs treated animal group showed higher protection against Aß1-42 toxicity compared to free SIL and Donopezil (DPZ). Therefore SIL-NLCs promises great prospect in neurodegenerative diseases such as Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides , Camundongos Endogâmicos BALB C , Fármacos Neuroprotetores , Fragmentos de Peptídeos , Silibina , Animais , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Camundongos , Silibina/farmacologia , Silibina/administração & dosagem , Fragmentos de Peptídeos/toxicidade , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/administração & dosagem , Masculino , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Tamanho da Partícula , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Modelos Animais de Doenças , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Acetilcolinesterase/metabolismo
8.
Chemistry ; 29(58): e202301879, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37706579

RESUMO

The underlying biophysical principle governing the cytotoxicity of the oligomeric aggregates of ß-amyloid (Aß) peptides has long been an enigma. Here we show that the size of Aß40 oligomers can be actively controlled by incubating the peptides in reverse micelles. Our approach allowed for the first time a detailed comparison of the structures and dynamics of two Aß40 oligomers of different sizes, viz., 10 and 23 nm, by solid-state NMR. From the chemical shift data, we infer that the conformation and/or the chemical environments of the residues from K16 to K28 are different between the 10-nm and 23-nm oligomers. We find that the 10-nm oligomers are more cytotoxic, and the molecular motion of the sidechain of its charged residue K16 is more dynamic. Interestingly, the residue A21 exhibits unusually high structural rigidity. Our data raise an interesting possibility that the cytotoxicity of Aß40 oligomers could also be correlated to the motional dynamics of the sidechains.


Assuntos
Peptídeos beta-Amiloides , Micelas , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/química , Espectroscopia de Ressonância Magnética , Fragmentos de Peptídeos/toxicidade , Fragmentos de Peptídeos/química , Amiloide/química
9.
Chemistry ; 29(56): e202301865, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37470691

RESUMO

Alzheimer's disease (AD) continues to be a major global health challenge, and the recent approval of Aduhelm and Leqembi has opened new avenues for its treatment. Small-molecule inhibitors targeting Aß aggregation hold promise as an alternative to monoclonal antibodies. In this study, we evaluated the ability of berbamine hydrochloride (BBMH), a member of the bisbenzylisoquinoline alkaloids, to reduce Aß aggregation and cytotoxicity. Thioflavin T kinetics, circular dichroism spectroscopy, and atomic force microscopy results indicated that BBMH effectively inhibited Aß aggregation. Surface plasmon resonance and molecular docking results further revealed that BBMH could bind to Aß fibrils, thereby hindering the aggregation process. This physical picture has been confirmed in a quantitative way by chemical kinetics analysis, which showed BBMH tends to bind with the fibril ends and thus prevents the transition from protofibrils to mature fibrils as well as the elongation process. Additionally, our MTT results showed that BBMH was able to reduce the cytotoxicity of Aß40 on N2a cells. Our results demonstrate, for the first time, the potential of BBMH to inhibit Aß aggregation and cytotoxicity, offering a promising direction for further research and drug development efforts in the fight against Alzheimer's disease.


Assuntos
Doença de Alzheimer , Benzilisoquinolinas , Humanos , Peptídeos beta-Amiloides/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Simulação de Acoplamento Molecular , Fragmentos de Peptídeos/toxicidade , Fragmentos de Peptídeos/química , Benzilisoquinolinas/farmacologia , Amiloide/química
10.
Bioorg Med Chem ; 96: 117536, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38016411

RESUMO

In the present study, we evaluated the neuroprotective potential of Hesperidin Methyl Chalcone (HMC) against the neurotoxicity induced by Aß(25-35) peptide. HMC demonstrated higher free-radical scavenging activity than Hesperidin in initial cell-free studies. Investigations using the fluorescent dye thioflavin T with Aß(25-35) peptide showed that HMC has the ability to combat extracellular amyloid aggregation by possessing anti-aggregation property against oligomers and by disaggregating mature fibrils. Also, the results of the molecular simulation studies show that HMC ameliorated oligomer formation. Further, the anti-Alzheimer's property of HMC was investigated in in vitro cell conditions by pre-treating the neuro 2a (N2a) cells with HMC before inducing Aß(25-35) toxicity. The findings demonstrate that HMC increased cell viability, reduced oxidative stress, prevented macromolecular damage, allayed mitochondrial dysfunction, and exhibited anticholinesterase activity. HMC also reduced Aß induced neuronal cell death by modulating caspase-3 activity, Bax expression and Bcl2 overexpression, demonstrating that HMC pre-treatment reduced mitochondrial damage and intrinsic apoptosis induced by Aß(25-35).In silico evaluation against potential AD targets reveal that HMC could be a potent inhibitor of BACE-1, inhibiting the formation of toxic Aß peptides. Overall, the findings imply that the neuroprotective efficacy of HMC has high prospects for addressing a variety of pathogenic consequences caused by amyloid beta in AD situations and alleviating cognitive impairments.


Assuntos
Doença de Alzheimer , Chalconas , Hesperidina , Fármacos Neuroprotetores , Humanos , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Chalconas/farmacologia , Hesperidina/farmacologia , Amiloide , Fragmentos de Peptídeos/toxicidade , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia
11.
Metab Brain Dis ; 38(5): 1503-1511, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36847969

RESUMO

The present study examined the protective effect of sesamin (Ses) on ß-amyloid (Aß)-induced long-term potentiation (LTP) impairment at the PP-DG synapses in male rats. Wistar rats were randomly assigned to seven groups: control, sham, Aß; ICV Aß1-42 microinjection, Ses, Aß + Ses; first, ICV Aß injections and then receiving Ses, Ses + Aß: four weeks of pretreatment with Ses and then Aß injection, and Ses + Aß + Ses: pre (four weeks) and post (four weeks) treatment with Ses. Ses-treated groups received 30 mg/kg of Ses once a day by oral gavage for four weeks. After the treatment period, the animals were positioned in a stereotaxic device for surgery and field potential recording. The population spike (PS) amplitude and slope of excitatory postsynaptic potentials (EPSP) were evaluated in the DG region. Serum oxidative stress biomarkers (total oxidant status (TOS) and total antioxidant capacity (TAC)) were measured. Aß impaired LTP induction at the PP-DG synapses evidenced by a decrease in EPSP slope and PS amplitude of LTP. In Aß rats, Ses increased EPSP slope and PS amplitude of LTP in the DG granular cells. Also, an increase in TOS and a reduction in TAC caused by Aß were significantly corrected by Ses. Ses could prevent Aß-induced LTP impairment at the PP-DG synapses in male rats, which can be due to its preventive effects on oxidative stress.


Assuntos
Doença de Alzheimer , Ratos , Masculino , Animais , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Potenciação de Longa Duração , Ratos Wistar , Hipocampo , Peptídeos beta-Amiloides/farmacologia , Fragmentos de Peptídeos/toxicidade , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico
12.
Int J Toxicol ; 42(6): 504-514, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37556196

RESUMO

Although the regulatory influence of leptin on energy balance, glycemic control, immunity, reproduction, and cognition is well established, its clinical application to common obesity and its co-morbidities has been limited by impaired transport across the blood-brain barrier, and tendencies to induce adverse side effects. To circumvent these drawbacks, MA-[D-Leu-4]-OB3, a leptin-related synthetic peptide that mimics the metabolic and neurotrophic effects of leptin in mouse models of genetic and non-genetic obesity, diabetes, and cognitive dysfunction, has been developed. This report presents the results of our initial efforts to assess the safety of orally delivered MA-[D-Leu-4]-OB3. Two pre-clinical studies were done in male and female C57BL/6 mice: a short-term study with a high dose of MA-[D-Leu-4]-OB3 (50 mg/kg/100 µL/day) and a dose-response study with 3 increasing concentrations of MA-[D-Leu-4]-OB3 (16.6, 50, and 150 mg/kg/100 µL/day). Body weight, food and water intake, glucose tolerance, and episodic memory were evaluated. Once-daily cage-side clinical observations were conducted to detect any physical or behavioral indicators of toxicity. Our results indicate that all metabolic and neurologic endpoints tested were either unaffected or improved by MA-[D-Leu-4]-OB3, and no clinical indicators of toxicity were evident. Together with our previously reported efficacy data, these results provide additional evidence supporting further development of this novel synthetic peptide leptin mimetic as a first-in-class peptide drug candidate for the treatment of a number of metabolic and/or cognitive dysfunctions in humans.


Assuntos
Leptina , Fragmentos de Peptídeos , Humanos , Camundongos , Animais , Masculino , Feminino , Leptina/toxicidade , Fragmentos de Peptídeos/toxicidade , Camundongos Endogâmicos C57BL , Peptídeos/toxicidade , Obesidade/tratamento farmacológico
13.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36674792

RESUMO

Alzheimer's disease (AD) is known to be caused by amyloid ß-peptide (Aß) misfolded into ß-sheets, but this knowledge has not yet led to treatments to prevent AD. To identify novel molecular players in Aß toxicity, we carried out a genome-wide screen in Saccharomyces cerevisiae, using a library of 5154 gene knock-out strains expressing Aß1-42. We identified 81 mammalian orthologue genes that enhance Aß1-42 toxicity, while 157 were protective. Next, we performed interactome and text-mining studies to increase the number of genes and to identify the main cellular functions affected by Aß oligomers (oAß). We found that the most affected cellular functions were calcium regulation, protein translation and mitochondrial activity. We focused on SURF4, a protein that regulates the store-operated calcium channel (SOCE). An in vitro analysis using human neuroblastoma cells showed that SURF4 silencing induced higher intracellular calcium levels, while its overexpression decreased calcium entry. Furthermore, SURF4 silencing produced a significant reduction in cell death when cells were challenged with oAß1-42, whereas SURF4 overexpression induced Aß1-42 cytotoxicity. In summary, we identified new enhancer and protective activities for Aß toxicity and showed that SURF4 contributes to oAß1-42 neurotoxicity by decreasing SOCE activity.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Humanos , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/química , Cálcio/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Morte Celular , Canais de Cálcio/genética , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/toxicidade , Fragmentos de Peptídeos/metabolismo , Mamíferos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
14.
Inflammopharmacology ; 31(5): 2685-2699, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37515653

RESUMO

Alzheimer's disease (AD) is a major neurological disease affecting elderly individuals worldwide. Existing drugs only reduce the symptoms of the disease without addressing the underlying causes. Commonly, Aß25-35 peptide aggregation is the main reason for AD development. Recently, the discovery of multiple protein-targeting molecules has provided a new strategy for treating AD. This study demonstrates the neuroprotective potential of oxymatrine against multiple mechanisms, such as acetylcholinesterase, mitochondrial damage, and ß-amyloid-induced cell toxicity. The in vitro cell culture studies showed that oxymatrine possesses significant potential to inhibit acetylcholine esterase and promotes antioxidant, antiapoptotic effects while preventing Aß25-35 peptide aggregation in PC12 cells. Furthermore, oxymatrine protects PC12 cells against Aß25-35-induced cytotoxicity and down-regulates the reactive oxygen species generation. The in vivo acute toxicological studies confirm the safety of oxymatrine without causing organ damage or death in animals. Overall, this study provided evidence that oxymatrine is an efficient neuroprotective agent, with a potential to be a multifunctional drug for Alzheimer's disease treatment. These findings present a reliable and synergistic approach for treating AD.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Humanos , Ratos , Animais , Idoso , Peptídeos beta-Amiloides/metabolismo , Células PC12 , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Acetilcolinesterase/farmacologia , Apoptose , Fragmentos de Peptídeos/toxicidade , Técnicas de Cultura de Células , Cognição , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
15.
Am J Physiol Cell Physiol ; 322(2): C197-C204, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34910602

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have been thought as two distinct neurodegenerative diseases. However, recent genetic screening and careful investigations found the genetic and pathological overlap among these disorders. Hexanucleotide expansions in intron 1 of C9ORF72 are a leading cause of familial ALS and familial FTD. These expansions facilitate the repeat-associated non-ATG-initiated translation (RAN translation), producing five dipeptide repeat proteins (DRPs), including Arg-rich poly(PR: Pro-Arg) and poly(GR: Gly-Arg) peptides. Arg is a positively charged, highly polar amino acid that facilitates interactions with anionic molecules such as nucleic acids and acidic amino acids via electrostatic forces and aromatic amino acids via cation-π interaction, suggesting that Arg-rich DRPs underlie the pathophysiology of ALS via Arg-mediated molecular interactions. Arg-rich DRPs have also been reported to induce neurodegeneration in cellular and animal models via multiple mechanisms; however, it remains unclear why the Arg-rich DRPs exhibit such diverse toxic properties, because not all Arg-rich peptides are toxic. In this mini-review, we discuss the current understanding of the pathophysiology of Arg-rich C9ORF72 DRPs and introduce recent findings on the role of Arg distribution as a determinant of the toxicity and its contribution to the pathogenesis of ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/metabolismo , Dipeptídeos/metabolismo , Fragmentos de Peptídeos/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Proteína C9orf72/química , Dipeptídeos/química , Dipeptídeos/toxicidade , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/toxicidade , Relação Estrutura-Atividade
16.
J Biol Chem ; 296: 100664, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33865852

RESUMO

The formation of neurofibrillary tangles and amyloid plaques accompanies the progression of Alzheimer's disease. Tangles are made of fibrillar aggregates formed by the microtubule-associated protein tau, whereas plaques comprise fibrillar forms of amyloid-beta (Aß). Both form toxic oligomers during aggregation and are thought to interact synergistically to each promote the accumulation of the other. Recent in vitro studies have suggested that the monomeric nonphosphorylated full-length tau protein hinders the aggregation of Aß1-40 peptide, but whether the same is true for the more aggregation-prone Aß1-42 was not determined. We used in vitro and in vivo techniques to explore this question. We have monitored the aggregation kinetics of Aß1-42 by thioflavine T fluorescence in the presence or the absence of different concentrations of nonphosphorylated tau. We observed that elongation of Aß1-42 fibrils was inhibited by tau in a dose-dependent manner. Interestingly, the fibrils were structurally different in the presence of tau but did not incorporate tau. Surface plasmon resonance indicated that tau monomers bound to Aß1-42 oligomers (but not monomers) and hindered their interaction with the anti-Aß antibody 4G8, suggesting that tau binds to the hydrophobic central core of Aß recognized by 4G8. Tau monomers also antagonized the toxic effects of Aß oligomers in Caenorhabditis elegans. This suggests that nonphosphorylated tau might have a neuroprotective effect by binding Aß1-42 oligomers formed during the aggregation and shielding their hydrophobic patches.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Amiloide/antagonistas & inibidores , Caenorhabditis elegans/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/antagonistas & inibidores , Proteínas tau/farmacologia , Peptídeos beta-Amiloides/toxicidade , Animais , Caenorhabditis elegans/efeitos dos fármacos , Humanos , Cinética , Larva/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade
17.
Chembiochem ; 23(8): e202200029, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35165998

RESUMO

Amyloid ß (Aß) oligomers play a critical role in the pathology of Alzheimer's disease. Recently, we reported that a conformation-restricted Aß42 with an intramolecular disulfide bond through cysteine residues at positions 17/28 formed stable oligomers with potent cytotoxicity. To further optimize this compound as a toxic conformer model, we synthesized three analogues with a combination of cysteine and homocysteine at positions 17/28. The analogues with Cys-Cys, Cys-homoCys, or homoCys-Cys, but not the homoCys-homoCys analogue, exhibited potent cytotoxicity against SH-SY5Y and THP-1 cells even at 10 nM. In contrast, the cytotoxicity of conformation-restricted analogues at positions 16/29 or 18/27 was significantly weaker than that of wild-type Aß42. Furthermore, thioflavin-T assay, non-denaturing gel electrophoresis, and morphological studies suggested that the majority of these conformation-restricted analogues exists in an oligomeric state in cell culture medium, indicating that the toxic conformation of Aß42, rather than the oligomeric state, is essential to induce cytotoxicity.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/patologia , Amiloide/química , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/toxicidade , Cisteína , Dissulfetos/química , Humanos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/toxicidade
18.
Arch Biochem Biophys ; 731: 109448, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36306919

RESUMO

Alzheimer's disease (AD), a common neurodegenerative disease, is characterised by the deposition of amyloid-ß (Aß) plaques and neurofibrillary tangles. An increasing number of studies have demonstrated that Aß causes neuronal damage and mitochondrial dysfunction. Herein, we evaluated the neuroprotective effect of sodium butyrate (NaB) against Aß induced neurotoxicity in PC12 cells. The results revealed that 3 mM of NaB promoted the expression of angiotensin-converting enzyme and brain-derived neurotrophic factor, which exert a neuroprotective effect by activating G protein-coupled receptors. Moreover, NaB could significantly improve mitochondrial dysfunction caused by Aß. In conclusion, NaB protected PC12 cells from Aß-induced cell damage, highlighting the potential of NaB in AD treatment.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Animais , Ratos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Antioxidantes/metabolismo , Apoptose , Ácido Butírico/farmacologia , Sobrevivência Celular , Potencial da Membrana Mitocondrial , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Células PC12 , Fragmentos de Peptídeos/toxicidade , Fragmentos de Peptídeos/metabolismo
19.
Neurochem Res ; 47(7): 2090-2108, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35484426

RESUMO

Hippocampal oxidative stress has a vital role in the pathophysiology of Alzheimer's disease (AD)-associated behavioral deficits. Ecdysterone (Ecdy), a natural product and primary steroid hormone, exhibits anti-oxidative and neuroprotective effects. High-intensity interval training (HIIT) has emerged as an effective method for improving physiological brain functions. The present study was designed to investigate the comparative effects of separate and combined HIIT and Ecdy treatment on behavioral functions, hippocampal oxidative status, histological changes in an amyloid-beta (Aß)-induced rat model of AD. Adult male rats were treated simultaneously with HIIT exercise and Ecdy (10 mg/kg/day; P.O.), starting ten days after Aß-injection, and they continued for eight consecutive weeks. At the end of the treatment course, the behavioral functions of the rats were assessed by commonly-used behavioral paradigms. Subsequently, brain samples were collected for histological analysis and hippocampus samples were collected for biochemical analysis. Results illustrated that Aß injection impaired learning and memory performances in both novel object recognition and Barnes maze tests, reduced exploratory/locomotor activities in open field test, enhanced anxiety-like behavior in elevated plus-maze (P < 0.05). These behavioral deficits accompanied hippocampal oxidative stress (decreased total antioxidant capacity content and glutathione peroxidase enzyme activity, increased total oxidant status and malondialdehyde level) and neuronal loss in the cerebral cortex and hippocampus in H&E staining (P < 0.05). HIIT and Ecdy improved anxiety-like behavior, attenuated total oxidant status and malondialdehyde, and prevented the neuronal loss (P < 0.05). However, their combination resulted in a more complete and powerful improvement in all the above-mentioned Aß-related deficits (P < 0.05). Overall, these data provide evidence that a combination of HIIT and Ecdy treatment improves Aß-induced behavioral deficits, possibly through ameliorating hippocampal oxidative status and preventing neuronal loss.


Assuntos
Doença de Alzheimer , Treinamento Intervalado de Alta Intensidade , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/complicações , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Animais , Antioxidantes/farmacologia , Modelos Animais de Doenças , Ecdisterona/farmacologia , Hipocampo/metabolismo , Masculino , Malondialdeído/farmacologia , Aprendizagem em Labirinto , Oxidantes , Estresse Oxidativo , Fragmentos de Peptídeos/toxicidade , Ratos
20.
Brain ; 144(9): 2759-2770, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34428276

RESUMO

The molecular link between amyloid-ß plaques and neurofibrillary tangles, the two pathological hallmarks of Alzheimer's disease, is still unclear. Increasing evidence suggests that amyloid-ß peptide activates multiple regulators of cell cycle pathways, including transcription factors CDKs and E2F1, leading to hyperphosphorylation of tau protein. However, the exact pathways downstream of amyloid-ß-induced cell cycle imbalance are unknown. Here, we show that PAX6, a transcription factor essential for eye and brain development which is quiescent in adults, is increased in the brains of patients with Alzheimer's disease and in APP transgenic mice, and plays a key role between amyloid-ß and tau hyperphosphorylation. Downregulation of PAX6 protects against amyloid-ß peptide-induced neuronal death, suggesting that PAX6 is a key executor of the amyloid-ß toxicity pathway. Mechanistically, amyloid-ß upregulates E2F1, followed by the induction of PAX6 and c-Myb, while Pax6 is a direct target for both E2F1 and its downstream target c-Myb. Furthermore, PAX6 directly regulates transcription of GSK-3ß, a kinase involved in tau hyperphosphorylation and neurofibrillary tangles formation, and its phosphorylation of tau at Ser356, Ser396 and Ser404. In conclusion, we show that signalling pathways that include CDK/pRB/E2F1 modulate neuronal death signals by activating downstream transcription factors c-Myb and PAX6, leading to GSK-3ß activation and tau pathology, providing novel potential targets for pharmaceutical intervention.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/toxicidade , Fator de Transcrição PAX6/metabolismo , Fragmentos de Peptídeos/toxicidade , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA