Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 407
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Environ Toxicol ; 39(2): 905-914, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37955343

RESUMO

Fumonisins are common contaminants in the global food and environment, pose a variety of health risks to humans and animals. However, the method of mitigating fumonisin toxicity is still unclear. Resveratrol is a natural compound with antioxidant and anti-inflammatory properties. In this study, the protective effect of resveratrol against fumonisin-induced intestinal toxicity was investigated by the porcine intestinal epithelial cell line (IPEC-J2). The cells were treated with 0-40 µM fumonisin for 24 or 48 h with or without the 24 h resveratrol (15 µM) pretreatment. The data showed that resveratrol could alleviate the fumonisin B1 (FB1)-induced decrease in cell viability and amplify in membrane permeability. At the same time, it could reduce the accumulation of intracellular reactive oxygen species and increase the expression ranges of Nrf2 and downstream genes (SOD1 and NQO-1), thereby counteracting FB1-induced apoptosis. Furthermore, resveratrol was able to reduce the expression levels of inflammatory factors (TNF-α, IL-1ß, and IL-6), increase the expression levels of tight junction proteins (Claudin-1, Occludin, and ZO-1), and the integrity of the IPEC-J2 monolayer. Our data also showed that resveratrol could attenuate the toxicity of the co-occurrence of three fumonisins. It is implied that resveratrol represents a promising protective approach for fumonisin, even other mycotoxins in the future. This provided a new strategy for further blocking and controlling the toxicity of fumonisin, subsequently avoiding adverse effects on the human and animal health.


Assuntos
Fumonisinas , Animais , Suínos , Humanos , Fumonisinas/toxicidade , Fumonisinas/metabolismo , Resveratrol/farmacologia , Junções Íntimas/metabolismo , Células Epiteliais , Inflamação/induzido quimicamente , Inflamação/metabolismo , Apoptose
2.
Appl Environ Microbiol ; 89(12): e0121123, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38054733

RESUMO

IMPORTANCE: Fumonisins can cause diseases in animals and humans consuming Fusarium-contaminated food or feed. The search for microbes capable of fumonisin degradation, or for enzymes that can detoxify fumonisins, currently relies primarily on chemical detection methods. Our constructed fumonisin B1-sensitive yeast strain can be used to phenotypically detect detoxification activity and should be useful in screening for novel fumonisin resistance genes and to elucidate fumonisin metabolism and resistance mechanisms in fungi and plants, and thereby, in the long term, help to mitigate the threat of fumonisins in feed and food.


Assuntos
Fumonisinas , Fusarium , Humanos , Animais , Fumonisinas/toxicidade , Fumonisinas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ração Animal , Fusarium/genética , Fusarium/metabolismo
3.
Pestic Biochem Physiol ; 192: 105398, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37105621

RESUMO

Fusarium ear rot (FER) is a serious fungal disease occurring the late growth stage of maize. FER not only reduces the yield of maize but also causes mycotoxin contamination, which affects the quality of maize and threatens human and animal health. Fusarium verticillioides is the predominant causative pathogen of FER worldwide. At present, there is no registered fungicide for use against maize FER in China. The novel isopropyl alcohol-triazole fungicide mefentrifluconazole (MFZ) has been shown to be effective against several Fusarium spp., but little is known about its specific activity against F. verticillioides. MFZ exhibited strong antifungal activities against 50 strains of F. verticillioides collected from the major maize-growing areas in China. MFZ inhibited mycelial growth, conidium production, germination and germ tube elongation of F. verticillioides. MFZ treatment significantly reduced fumonisin production and the expression levels of fumonisin biosynthetic genes. Genome-wide transcriptional profiling of F. verticillioides in response to MFZ indicated that the expression of genes involved in ergosterol biosynthesis, including fungicide target genes (cyp51 genes), was significantly downregulated by MFZ. MFZ treatment resulted in reduced ergosterol production and increased glycerol and malonaldehyde production as well as relative conductivity in F. verticillioides. A 2-year field experiment showed a significant reduction in FER severity in maize after spraying with MFZ at the tasseling stage. This study evaluated the potential of MFZ to control FER in maize and provides insights into its antifungal activities and mechanism of action against F. verticillioides.


Assuntos
Fumonisinas , Fungicidas Industriais , Fusarium , Animais , Humanos , Fumonisinas/metabolismo , Antifúngicos/farmacologia , Fungicidas Industriais/farmacologia , Fusarium/genética , Triazóis/farmacologia , Zea mays/microbiologia
4.
Plant J ; 106(5): 1387-1400, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33735457

RESUMO

ATP is secreted to the extracellular matrix, where it activates plasma membrane receptors for controlling plant growth and stress-adaptive processes. DOES NOT RESPOND TO NUCLEOTIDES 1 (DORN1), was the first plant ATP receptor to be identified but key downstream proteins remain sought after. Here, we identified 120 proteins secreted by Arabidopsis cell cultures and screened them for putative stress-responsive proteins using ATP-affinity purification. We report three Arabidopsis proteins isolated by ATP-affinity: PEROXIDASE 52, SUBTILASE-LIKE SERINE PROTEASE 1.7 and PHOSPHOLIPASE C-LIKE 1. In wild-type Arabidopsis, the expression of genes encoding all three proteins responded to fumonisin B1, a cell death-activating mycotoxin. The expression of PEROXIDASE 52 and PHOSPHOLIPASE C-LIKE 1 was altered in fumonisin B1-resistant salicylic acid induction-deficient (sid2) mutants. Exposure to fumonisin B1 suppressed PHOSPHOLIPASE C-LIKE 1 expression in sid2 mutants, suggesting that the inactivation of this gene might provide mycotoxin tolerance. Accordingly, gene knockout mutants of PHOSPHOLIPASE C-LIKE 1 were resistant to fumonisin B1-induced death. The activation of PHOSPHOLIPASE C-LIKE 1 gene expression by exogenous ATP was not blocked in dorn1 loss-of-function mutants, indicating that DORN1 is not required. Furthermore, exogenous ATP rescued both the wild type and the dorn1 mutants from fumonisin-B1 toxicity, suggesting that different ATP receptor(s) are operational in this process. Our results point to the existence of additional plant ATP receptor(s) and provide crucial downstream targets for use in designing screens to identify these receptors. Finally, PHOSPHOLIPASE C-LIKE 1 serves as a convergence point for fumonisin B1 and extracellular ATP signalling, and functions in the Arabidopsis stress response to fumonisin B1.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fumonisinas/metabolismo , Fosfolipases/metabolismo , Transdução de Sinais , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Morte Celular , Membrana Celular/metabolismo , Matriz Extracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Peroxidases/genética , Peroxidases/metabolismo , Fosfolipases/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteômica , Estresse Fisiológico , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo
5.
PLoS Pathog ; 16(7): e1008595, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32628727

RESUMO

Sarocladium zeae is a fungal endophyte of maize and can be found co-inhabiting a single seed with Fusarium verticillioides, a major mycotoxigenic food safety threat. S. zeae produces pyrrocidines A and B that inhibit the growth of F. verticillioides and may limit its spread within the seed to locations lacking S. zeae. Although coinhabiting single seeds, the fungi are generally segregated in separate tissues. To understand F. verticillioides' protective physiological response to pyrrocidines we sequenced the F. verticillioides transcriptome upon exposure to purified pyrrocidine A or B at sub-inhibitory concentrations. Through this work we identified a F. verticillioides locus FvABC3 (FVEG_11089) encoding a transporter critical for resistance to pyrrocidine. We also identified FvZBD1 (FVEG_00314), a gene directly adjacent to the fumonisin biosynthetic gene cluster that was induced several thousand-fold in response to pyrrocidines. FvZBD1 is postulated to act as a genetic repressor of fumonisin production since deletion of the gene resulted in orders of magnitude increase in fumonisin. Further, pyrrocidine acts, likely through FvZBD1, to shut off fumonisin biosynthesis. This suggests that S. zeae is able to hack the secondary metabolic program of a competitor fungus, perhaps as preemptive self-protection, in this case impacting a mycotoxin of central concern for food safety.


Assuntos
Acremonium , Fumonisinas/metabolismo , Fusarium/genética , Micoses/microbiologia , Doenças das Plantas/microbiologia , Zea mays/microbiologia , Hidrocarbonetos Aromáticos com Pontes/metabolismo , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Coinfecção , Resistência à Doença/genética , Genes Fúngicos , Micoses/metabolismo , Pirrolidinonas/metabolismo , Pirrolidinonas/farmacologia
6.
J Appl Microbiol ; 133(4): 2430-2444, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35809236

RESUMO

AIMS: In the study, seven Plant Growth Promoting Rhizobacteria (PGPR) Azotobacter species were screened against three strains of Fusarium verticillioides to test its antifungal activity. Azotobacter strains were tested for the degradation of fumonisin produced by F. verticillioides. Secondary metabolites were isolated and characterized from the Azotobacter strains for the first time. METHODS AND RESULTS: Potential seven Azotobacter species antifungal activity was tested following the dual culture assay against three strains of Fusarium verticillioides namely FVM-42, FVM-86 and MTCC156 estimating the substantial zone of inhibition. Azotobacter species AZT-31 and AZT-50 strains significantly inhibited the growth of F. verticillioides recording drastic growth enhancement of maize under in-vitro conditions by calculating the infection incidence, vigour index and germination percentage. As confirmation, dereplication studies were conducted for the reconfirmation of Azotobacter strains by isolating from rhizoplane. Azotobacter strains played a key role in the degradation of fumonisin produced by F. verticillioides reporting 98% degradation at 2 h of incubation with the pathogen. Furthermore, in the study first time, we have tried to isolate and characterize the secondary metabolites from the Azotobacter strains exhibiting six compounds from the species AZT-31 (2) and AZT-50 (4). Preliminary in-vitro experiments were carried out using the compounds extracted to check the reduction of infection incidence (90%) and increase in germination percentage upto 50 to 70% when compared to the test pathogen. CONCLUSION: Azotobacter strains referred as PGPR on influencing the growth of plant by producing certain substances that act as stimulators on inhibiting the growth of the pathogen. SIGNIFICANCE AND IMPACT OF THE STUDY: The future perspective would be the production of an active combination of carboxamide compound and Azotobacter species for preventively controlling the phytopathogenic fungi of plants and crops and also towards the treatment of seeds.


Assuntos
Azotobacter , Fumonisinas , Fusarium , Antifúngicos/farmacologia , Fumonisinas/metabolismo , Zea mays/microbiologia
7.
Appl Microbiol Biotechnol ; 106(19-20): 6595-6609, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36121485

RESUMO

Fusarium verticillioides, a well-known fungal pathogen that causes severe disease in maize and contaminates the grains with fumonisin B1 (FB1) mycotoxin, affects the yield and quality of maize worldwide. The intrinsic roles of peroxisome targeting signal (PTS)-containing proteins in phytopathogens remain elusive. We therefore explored the regulatory role and other biological functions of the components of PTS2 receptor complex, FvPex7 and FvPex20, in F. verticillioides. We found that FvPex7 directly interacts with the carboxyl terminus of FvPex20 in F. verticillioides. PTS2-containing proteins are recognized and bound by the FvPex7 receptor or the FvPex7-Pex20 receptor complex in the cytoplasm, but the peroxisome localization of the PTS2-Pex7-Pex20 complex is only determined by Pex20 in F. verticillioides. However, we observed that some putative PTS2 proteins that interact with Pex7 are not transported into the peroxisomes, but a PTS1 protein that interacts with Pex5 was detected in the peroxisomes. Furthermore, ΔFvpex7pex20 as well as ΔFvpex7pex5 double mutants exhibited reduced pathogenicity and FB1 biosynthesis, along with defects in conidiation. The PTS2 receptor complex mutants (ΔFvpex7pex20) grew slowly on minimal media and showed reduced sensitivity to cell wall and cell membrane stress-inducing agents compared to the wild type. Taken together, we conclude that the PTS2 receptor complex mediates peroxisome matrix proteins import and contributes to pathogenicity and FB1 biosynthesis in F. verticillioides. KEY POINTS: • FvPex7 directly interacts with FvPex20 in F. verticillioides. • vThe PTS2 receptor complex is essential for the importation of PTS2-containing matrix protein into peroxisomes in F. verticillioides. • Fvpex7/pex20 is involved in pathogenicity and FB1 biosynthesis in F. verticillioides.


Assuntos
Fumonisinas , Fusarium , Fumonisinas/metabolismo , Fusarium/genética , Fusarium/metabolismo , Receptor 2 de Sinal de Orientação para Peroxissomos/metabolismo , Sinais de Orientação para Peroxissomos , Receptor 1 de Sinal de Orientação para Peroxissomos/genética , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Peroxissomos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Virulência
8.
Plant Cell Rep ; 41(8): 1733-1750, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35751667

RESUMO

KEY MESSAGE: Fumonisin B1 induces rapid programmed cell death in Arabidopsis cells, oxidative and nitrosative bursts, and differentially modulates cell death responsive genes. Glutathione is the main antioxidant involved in the stress response. Fumonisin B1 (FB1) is a fungal toxin produced by Fusarium spp. able to exert pleiotropic toxicity in plants. FB1 is known to be a strong inducer of the programmed cell death (PCD); however, the exact mechanism underling the plant-toxin interactions and the molecular events that lead to PCD are still unclear. Therefore, in this work, we provided a comprehensive investigation of the response of the model organism Arabidopsis thaliana at the nuclear, transcriptional, and biochemical level after the treatment with FB1 at two different concentrations, namely 1 and 5 µM during a time-course of 96 h. FB1 induced oxidative and nitrosative bursts and a rapid cell death in Arabidopsis cell cultures, which resembled a HR-like PCD event. Different genes involved in the regulation of PCD, antioxidant metabolism, photosynthesis, pathogenesis, and sugar transport were upregulated, especially during the late treatment time and with higher FB1 concentration. Among the antioxidant enzymes and compounds studied, only glutathione appeared to be highly induced in both treatments, suggesting that it might be an important stress molecule induced during FB1 exposure. Collectively, these findings highlight the complexity of the signaling network of A. thaliana and provide information for the understanding of the physiological, molecular, and biochemical responses to counteract FB1-induced toxicity.


Assuntos
Arabidopsis , Fumonisinas , Micotoxinas , Antioxidantes/metabolismo , Arabidopsis/metabolismo , Técnicas de Cultura de Células , Morte Celular , Fumonisinas/metabolismo , Fumonisinas/toxicidade , Glutationa/metabolismo , Micotoxinas/metabolismo , Micotoxinas/toxicidade , Estresse Oxidativo
9.
Compr Rev Food Sci Food Saf ; 21(6): 5131-5152, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36084140

RESUMO

Fermented soybean products are widely consumed worldwide, and their popularity is increasing. Filamentous fungi, such as Actinomucor, Aspergillus, Monascus, Mucor, Penicillium, Rhizopus, and Zymomonas, play critical roles in the fermentation processes of many soybean foods. However, besides producing essential enzymes for food fermentation, filamentous fungi can release undesirable or even toxic metabolites into the food. Mycotoxins are toxic secondary metabolites produced by certain filamentous fungi and may be detected during the food production process. Without effective prevention strategies, mycotoxin contamination in fermented soybean products poses a risk to human health. This review focused on the changes in mycotoxigenic fungal abundance and mycotoxin contamination at different stages during the production of soybean-based fermented foods, as well as effective strategies for preventing mycotoxin contamination in such products. Data from relevant studies demonstrated a tendency of change in the genera of mycotoxigenic fungi and types of mycotoxins (aflatoxins, alternariol, alternariol monomethyl ether, deoxynivalenol, fumonisins, ochratoxin A, rhizoxins, T-2 toxin, and zearalenone) present in the raw materials and the middle and final products. The applicability of traditional chemical and physical mitigation strategies and novel eco-friendly biocontrol approaches to prevent mycotoxin contamination in soybean-based fermented foods were discussed. The present review highlights the risks of mycotoxin contamination during the production of fermented soybean products and recommends promising strategies for eliminating mycotoxin contamination risk in soybean-based fermented foods.


Assuntos
Fumonisinas , Micotoxinas , Humanos , Micotoxinas/análise , Glycine max/metabolismo , Glycine max/microbiologia , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise , Fumonisinas/análise , Fumonisinas/metabolismo , Fumonisinas/toxicidade , Fungos/metabolismo
10.
Curr Genet ; 67(2): 305-315, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33392742

RESUMO

Fumonisins are a group of mycotoxins produced by maize pathogen Fusarium verticillioides that pose health concerns to humans and animals. Yet we still lack a clear understanding of the mechanism of fumonisins regulation during pathogenesis. The heterotrimeric G protein complex, which consists of canonical subunits and various regulators of G-protein signaling (RGS) proteins, plays an important role in transducing signals under environmental stress. Earlier studies demonstrated that Gα and Gß subunits are positive regulators of fumonisin B1 (FB1) biosynthesis and that two RGS genes, FvFlbA1 and FvFlbA2, were highly upregulated in Gß deletion mutant ∆Fvgbb1. Notably, FvFlbA2 has a negative role in FB1 regulation. While many fungi contain a single copy of FlbA, F. verticillioides harbors two putative FvFlbA paralogs, FvFlbA1 and FvFlbA2. In this study, we further characterized functional roles of FvFlbA1 and FvFlbA2. While ∆FvflbA1 deletion mutant exhibited no significant defects, ∆FvflbA2 and ∆FvflbA2/A1 mutants showed thinner aerial hyphal growth while promoting FB1 production. FvFlbA2 is required for proper expression of key conidia regulation genes, including putative FvBRLA, FvWETA, and FvABAA, while suppressing FUM21, FUM1, and FUM8 expression. Split luciferase assays determined that FvFlbA paralogs interact with key heterotrimeric G protein components, which in turn will lead altered G-protein-mediated signaling pathways that regulate FB1 production and asexual development in F. verticillioides.


Assuntos
Fumonisinas/metabolismo , Fusarium/genética , Proteínas de Ligação ao GTP/genética , Transativadores/genética , Fumonisinas/química , Proteínas Fúngicas/genética , Fusariose/genética , Fusariose/microbiologia , Fusarium/patogenicidade , Regulação Fúngica da Expressão Gênica , Transdução de Sinais/genética , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento
11.
Chem Res Toxicol ; 34(6): 1604-1611, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33891387

RESUMO

Fumonisins are mycotoxins produced by a number of species of Fusarium and Aspergillus. They are polyketides that possess a linear polyol structure with two tricarballylic acid side chains and an amine moiety. Toxicity results from their inhibition of Ceramide Synthase (CerS), which perturbs sphingolipid concentrations. The tricarballylic side chains and amine group of fumonisins are key molecular features responsible for inhibiting CerS, however their individual contributions toward overall toxicity are not fully understood. We have recently reported novel, deaminated fumonisins produced by A. niger and have identified an enzyme (AnFAO) responsible for their synthesis. Here we performed a structure/function activity assay to investigate the individual contributions of the tricarballylic acid and amine toward overall fumonisin toxicity. Lemna minor was treated at 40 µM against FB1, hydrolyzed FB1 (hFB1), deaminated FB1 (FPy1), or hydrolyzed/deaminated (hFPy1). Four end points were monitored: plant dry weight, frond surface area, lipidomics, and metabolomics. Overall, hFB1 was less toxic than FB1 and FPy1 was less toxic than hFB1. hFPy1 which lacks both the amine group and tricarballylic side chains was also less toxic than FB1 and hFB1, however it was not significantly less toxic than FPy1. Lipidomic analysis showed that FB1 treatment significantly increased levels of phosphotidylcholines, ceramides, and pheophorbide A, while significantly decreasing the levels of diacylglycerides, sulfoquinovosyl diacylglycerides, and chlorophyll. Metabolomic profiling revealed a number of significantly increased compounds that were unique to FB1 treatment including phenylalanine, asymmetric dimethylarginine (ADMA), S-methylmethionine, saccharopine, and tyrosine. Conversely, citrulline, N-acetylornithine and ornithine were significantly elevated in the presence of hFB1 but not any of the other fumonisin analogues. These data provide evidence that although removal of the tricarballylic side chains significantly reduces toxicity of fumonisins, the amine functional group is a key contributor to fumonisin toxicity in L. minor and justify future toxicity studies in mammalian systems.


Assuntos
Araceae/efeitos dos fármacos , Fumonisinas/toxicidade , Animais , Fumonisinas/química , Fumonisinas/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade
12.
J Appl Microbiol ; 130(4): 1285-1293, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32969574

RESUMO

AIMS: This work aimed to identify secondary metabolites from aerial parts of Euphorbia species functional for control of toxigenic Fusarium species responsible of cereal grain rots. METHODS AND RESULTS: Aerial parts of Euphorbia serpens, Euphorbia schickendantzii and Euphorbia collina were sequentially extracted with hexane, ethyl acetate and methanol. The extracts were tested against strains of Fusarium verticillioides and Fusarium graminearum by microdilution tests. The hexane extract of E. collina provided the lowest IC50 s on both fungal species. Further fractionation showed that cycloartenol (CA) and 24-methylenecycloartanol are associated to the moderate inhibitory effect of the hexane extract on fungal growth.Sublethal concentrations of CA and 24MCA blocked deoxynivalenol (DON) and fumonisins production.CA and 24MCA co-applied with potassium sorbate, a food preservative used for Fusarium control, synergized the growth inhibition of fungi. The mixtures reduced mycotoxins accumulation when applied at sublethal concentrations. CONCLUSIONS: CA and 24MCA inhibited both fungal growth and mycotoxins production. This fact is an advantage respect to potassium sorbate which increased the mycotoxins accumulation at sublethal concentrations. SIGNIFICANCE AND IMPACT OF THE STUDY: CA and 24MCA synergized potassium sorbate and their mixtures offer a lower mycotoxigenic risk than potassium sorbate for control of the Fusarium species.


Assuntos
Antifúngicos/farmacologia , Grão Comestível/microbiologia , Euphorbia/química , Extratos Vegetais/farmacologia , Euphorbia/classificação , Conservantes de Alimentos/farmacologia , Fumonisinas/metabolismo , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Micotoxinas/metabolismo , Metabolismo Secundário
13.
J Sci Food Agric ; 101(10): 4059-4075, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33349945

RESUMO

BACKGROUND: Rice spikelet rot disease (RSRD) is an emerging disease that significantly reduces rice yield and quality. In this study, we evaluated the potential use of the broad-spectrum endophytic fungus Phomopsis liquidambaris B3 as a biocontrol agent against RSRD. We also compared the control effects of different treatments, including chemical fungicides and treatment with multiple strains and single strains in combination or individually, against RSRD. The objective of this study was to find an effective and environmentally friendly control strategy to reduce the occurrence of RSRD and improve the rice yield. RESULTS: In pot experiments, the effect of B3 alone was better than that of fungicide or combined measures. The results showed that root colonization by B3 significantly reduced the incidence and disease index of RSRD by 41.0% and 53.8%, respectively. This was related to enhanced superoxide dismutase (SOD), peroxidase (POD), and polyphenol oxidase (PPO) activity, and to significantly upregulated expression levels of OsAOX, OsLOX, OsPAL, and OsPR10 in rice. Moreover, B3 improved the diversity of the bacterial community rather than the fungal community in the rice rhizosphere. It also led to a decrease in Fusarium proliferatum colonization and fumonisin content in the grain. Finally, root development was markedly promoted after B3 inoculation, and the yield improved by 48.60%. The result of field experiments showed that the incidence of RSRD and the fumonisin content were observably reduced in rice receiving B3, by 24.41% and 37.87%, respectively. CONCLUSION: The endophytic fungus Phomopsis liquidambaris B3 may become an effective tool to relieve rice spikelet rot disease. © 2020 Society of Chemical Industry.


Assuntos
Endófitos/fisiologia , Fusarium/fisiologia , Oryza/crescimento & desenvolvimento , Phomopsis/fisiologia , Doenças das Plantas/imunologia , Catecol Oxidase/genética , Catecol Oxidase/imunologia , Resistência à Doença , Fumonisinas/metabolismo , Oryza/genética , Oryza/imunologia , Oryza/microbiologia , Peroxidase/genética , Peroxidase/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/microbiologia , Superóxido Dismutase/genética , Superóxido Dismutase/imunologia
14.
World J Microbiol Biotechnol ; 37(5): 78, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33797632

RESUMO

Fusarium verticillioides is a prolific producer of useful secondary metabolites such as naphthoquinone pigments, monoterpenes, and sesquiterpenes, as well as the harmful mycotoxins fumonisins. A strategy to increase their production includes creating a proper nutritional environment that enables the fungus to produce the compounds of interest. The aim of the present work was to study the effect of different carbon sources (glucose, fructose, xylose, sucrose, and lactose) on secondary metabolites biosynthesis in F. verticillioides submerged cultures. The production of volatile terpenes was evaluated through gas chromatography coupled to mass spectrometry. The quantification and identification of pigments was conducted using a UV/VIS spectrophotometer and NMR spectrometer, respectively. The quantification of fumonisin B1 and fumonisin B2 was performed by high-performance liquid chromatography. Our results showed that the biosynthesis of naphthoquinone pigments, monoterpenes, and sesquiterpenes was highest in cultures with fructose (13.00 ± 0.71 mmol/g), lactose [564.52 × 10-11 ± 11.50 × 10-11 µg/g dry weight (DW)], and xylose (54.41 × 10-11 ± 1.55 × 10-11 µg/g DW), respectively, with fumonisin being absent or present in trace amounts in the presence of these carbon sources. The highest biosynthesis of fumonisins occurred in sucrose-containing medium (fumonisin B1: 7.85 × 103 ± 0.25 × 103 µg/g DW and fumonisin B2: 0.38 × 103 ± 0.03 × 103 µg/g DW). These results are encouraging since we were able to enhance the production of useful fungal metabolites without co-production with harmful mycotoxins by controlling the carbon source provided in the culture medium.


Assuntos
Carbono/metabolismo , Fusarium/metabolismo , Micotoxinas/metabolismo , Pigmentos Biológicos/biossíntese , Terpenos/metabolismo , Cromatografia Líquida de Alta Pressão , Meios de Cultura , Fumonisinas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Monoterpenos/metabolismo , Naftoquinonas/metabolismo , Metabolismo Secundário , Sesquiterpenos/metabolismo , Terpenos/química
15.
J Environ Sci Health B ; 56(4): 387-395, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33645426

RESUMO

The purpose of this study was to determine the chemical profile of Litsea cubeba essential oil, carry out an in vitro evaluation of its antioxidant potential and its cytotoxicity, as well as its antifungal and antimicotoxigenic activities against Fusarium verticillioides. Most of the compounds observed in the EO were neral (32.75%) and geranial (37.67%). The radical scavenging capacity of 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid was 104.4 and 56.4 mmol Trolox mg-1, respectively, indicating good antioxidant activity. The EO studied by us revealed cytotoxic effect against HT-29 and HeLa cancer cells. The Minimum Inhibitory and Minimum Fungicidal Concentrations against F. verticillioides were both 125 µg mL-1. Morphological investigation, performed by fluorescence microscopy and scanning electron microscopy, showed that hyphae and microconidia structures underwent changes after treatment with the EO. Analyses performed with the EO strongly reduced the mycelial development of F. verticillioides and the synthesis of fumonisins B1 and B2 in dose-dependence effect compared (P < 0.01) with the fungal control (105 conidia mL-1) and positive control (fludioxonil + metalaxyl-M). Thus, the results obtained in vitro suggest that L. cubeba EO has excellent antioxidant, fungicidal, and antimycotoxigenic effects.


Assuntos
Antifúngicos/farmacologia , Antioxidantes/farmacologia , Fusarium/efeitos dos fármacos , Litsea/química , Óleos Voláteis/farmacologia , Monoterpenos Acíclicos/análise , Antifúngicos/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/química , Relação Dose-Resposta a Droga , Fumonisinas/metabolismo , Fusarium/metabolismo , Células HT29 , Células HeLa , Humanos , Testes de Sensibilidade Microbiana , Micélio/efeitos dos fármacos , Óleos Voláteis/administração & dosagem , Óleos Voláteis/química
16.
Mol Plant Microbe Interact ; 33(7): 958-971, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32293993

RESUMO

Fusarium verticillioides is one of the most important pathogens of maize, causing rot and producing fumonisin mycotoxins during infection. Ingestion of fumonisin-contaminated corn causes underperformance and even fatal toxicity in livestock and is associated with neural tube birth defects, growth stunting in children, and some cancers. StuA, an APSES-class transcription factor, is a major developmental transcriptional regulator in fungi. It has been shown to regulate crucial developmental processes, such as sporulation, virulence, and mycotoxin synthesis among others. In this study, the role of FvSTUA in F. verticillioides was examined by characterizing ∆FvstuA deletion mutants functionally and transcriptomally. The deletion mutants exhibited reduced vegetative growth, stunted aerial hyphae, and significant reductions in microconidiation. Macroconidiation and hydrophobicity of the deletion strains were reduced as well. Additionally, fumonisin production and virulence of the deletion mutants were greatly reduced. Transcriptomic analysis revealed downregulation of expression of several genes in the fumonisin and fusarin C biosynthetic clusters and differential expression of genes involved in conidiation and virulence. Nuclear localization of FvSTUA supported its likely function as a transcription factor. Together, our results indicate that FvSTUA plays a global role in transcriptional regulation in F. verticillioides influencing morphogenesis, toxin production, and virulence.


Assuntos
Fumonisinas , Fusarium/patogenicidade , Fatores de Transcrição/genética , Zea mays/microbiologia , Fumonisinas/metabolismo , Fusarium/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Metabolismo Secundário , Fatores de Transcrição/metabolismo , Virulência
17.
Environ Microbiol ; 22(2): 615-628, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31760684

RESUMO

Fusarium verticillioides is a fungal pathogen that is responsible for maize ear rot and stalk rot diseases worldwide. The fungus also produces carcinogenic mycotoxins, fumonisins on infested maize. Unfortunately, we still lack clear understanding of how the pathogen responds to host and environmental stimuli to trigger fumonisin biosynthesis. The heterotrimeric G protein complex, consisting of canonical Gα, Gß and Gγ subunits, is involved in transducing signals from external stimuli to regulate downstream signal transduction pathways. Previously, we demonstrated that Gß protein FvGbb1 directly impacts fumonisin regulation but not other physiological aspects in F. verticillioides. In this study, we identified and characterized a RACK1 (Receptor for Activated C Kinase 1) homolog FvGbb2 as a putative Gß-like protein in F. verticillioides. The mutant exhibited severe defects not only in fumonisin biosynthesis but also vegetative growth and conidiation. FvGbb2 was positively associated with carbon source utilization and stress agents but negatively regulated general amino acid control. While FvGbb2 does not interact with canonical G protein subunits, it may associate with diverse proteins in the cytoplasm to regulate vegetative growth, virulence, fumonisin biosynthesis and stress response in F. verticillioides.


Assuntos
Fumonisinas/metabolismo , Fusarium/genética , Fusarium/metabolismo , Receptores de Quinase C Ativada/metabolismo , Proteínas Fúngicas/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Doenças das Plantas/microbiologia , Receptores de Quinase C Ativada/genética , Metabolismo Secundário/fisiologia , Transdução de Sinais/fisiologia , Virulência , Zea mays/microbiologia
18.
Curr Genet ; 66(1): 205-216, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31292685

RESUMO

Rab GTPases are responsible for a variety of membrane trafficking and vesicular transportation in fungi. But the role of Rab GTPases in Fusarium verticillioides, one of the key corn pathogens worldwide, remains elusive. These Small GTPases in fungi, particularly those homologous to Saccharomyces cerevisiae Sec4, are known to be associated with protein secretion, vesicular trafficking, secondary metabolism and pathogenicity. In this study, our aim was to investigate the molecular functions of FvSec4 in F. verticillioides associated with physiology and virulence. Interestingly, the FvSec4 null mutation did not impair the expression of key conidiation-related genes. Also, the mutant did not show any defect in sexual development, including perithecia production. Meanwhile, GFP-FvSec4 localized to growing hyphal tips and raised the possibility that FvSec4 is involved in protein trafficking and endocytosis. The mutant exhibited defect in corn stalk rot virulence and also significant alteration of fumonisin B1 production. The mutation led to higher sensitivity to oxidative and cell wall stress agents, and defects in carbon utilization. Gene complementation fully restored the defects in the mutant demonstrating that FvSec4 plays important roles in these functions. Taken together, our data indicate that FvSec4 is critical in F. verticillioides hyphal development, virulence, mycotoxin production and stress responses.


Assuntos
Fumonisinas/metabolismo , Fusarium/genética , Fusarium/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/patogenicidade , Deleção de Genes , Espaço Intracelular/metabolismo , Transporte Proteico , Virulência/genética , Proteínas rab de Ligação ao GTP/química
19.
Int Microbiol ; 23(1): 89-96, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31144067

RESUMO

Mycotoxins are a significant food safety concern. Aflatoxins, trichothecenes, fumonisins, and ochratoxin A are considered the most important mycotoxins due to their frequent occurrence in food products and their well-known toxicity. The regulation of mycotoxin biosynthesis occurs mainly at transcriptional level, and specific regulators have been described in every biosynthetic cluster. Secondary metabolite production, including mycotoxin synthesis, is also regulated by general regulator pathways affected by light, osmotic stress and oxidative stress, among others. This review is focused on this genetic regulation of mycotoxin biosynthesis by specific genes and global regulators.


Assuntos
Aflatoxinas/genética , Fumonisinas/metabolismo , Fungos/genética , Fungos/metabolismo , Regulação Fúngica da Expressão Gênica , Ocratoxinas/metabolismo , Tricotecenos/metabolismo , Aflatoxinas/metabolismo , Vias Biossintéticas , Pressão Osmótica , Estresse Oxidativo
20.
J Chem Ecol ; 46(11-12): 1059-1068, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32946025

RESUMO

The aim of the current study was to investigate the entomopathogenic capacity of the mold Fusarium verticillioides and the effect of its mycotoxins fumonisins, on the grain beetle Sitophilus zeamais. We evaluated the capacity of this fungus to infect live insects, the antifungal activity of constituents of the insect's epicuticle, and the effect of a fumonisin extract on the fitness of the insects. We found that F. verticillioides could not penetrate the cuticle of S. zeamais and that the fumonisin extract had no negative effects on the fitness of the insects. However, the progeny of the insects increased, and the fumonisin extract had repellent effects. This is the first report about the effects of fumonisins on the relationship between F. verticillioides and S. zeamais, which may provide useful information about interactions between pathogenic microorganisms and insects, especially on stored product pests.


Assuntos
Antifúngicos/metabolismo , Fumonisinas/metabolismo , Fusarium/fisiologia , Extratos Vegetais/metabolismo , Gorgulhos/fisiologia , Animais , Antifúngicos/análise , Comportamento Animal/efeitos dos fármacos , Desenvolvimento de Medicamentos , Comportamento Alimentar/efeitos dos fármacos , Fumonisinas/análise , Insetos/efeitos dos fármacos , Extratos Vegetais/análise , Relação Estrutura-Atividade , Zea mays/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA