Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 109(3): 568-584, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34767672

RESUMO

Charophyte green algae (CGA) are assigned to be the closest relatives of land plants and therefore enlighten processes in the colonization of terrestrial habitats. For the transition from water to land, plants needed significant physiological and structural changes, as well as with regard to cell wall composition. Sequential extraction of cell walls of Nitellopsis obtusa (Charophyceae) and Spirogyra pratensis (Zygnematophyceae) offered a comparative overview on cell wall composition of late branching CGA. Because arabinogalactan-proteins (AGPs) are considered common for all land plant cell walls, we were interested in whether these special glycoproteins are present in CGA. Therefore, we investigated both species with regard to characteristic features of AGPs. In the cell wall of Nitellopsis, no hydroxyproline was present and no AGP was precipitable with the ß-glucosyl Yariv's reagent (ßGlcY). By contrast, ßGlcY precipitation of the water-soluble cell wall fraction of Spirogyra yielded a glycoprotein fraction rich in hydroxyproline, indicating the presence of AGPs. Putative AGPs in the cell walls of non-conjugating Spirogyra filaments, especially in the area of transverse walls, were detected by staining with ßGlcY. Labelling increased strongly in generative growth stages, especially during zygospore development. Investigations of the fine structure of the glycan part of ßGlcY-precipitated molecules revealed that the galactan backbone resembled that of AGPs with 1,3- 1,6- and 1,3,6-linked Galp moieties. Araf was present only in small amounts and the terminating sugars consisted predominantly of pyranosidic terminal and 1,3-linked rhamnose residues. We introduce the term 'rhamnogalactan-protein' for this special AGP-modification present in S. pratensis.


Assuntos
Evolução Biológica , Parede Celular/química , Embriófitas/química , Galactanos/química , Mucoproteínas/química , Proteínas de Plantas/química , Spirogyra/química , Spirogyra/genética , Carofíceas/química , Carofíceas/genética , Galactanos/genética , Mucoproteínas/genética , Proteínas de Plantas/genética
2.
Proc Natl Acad Sci U S A ; 116(28): 14349-14357, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31239335

RESUMO

Endocytosis is essential to all eukaryotes, but how cargoes are selected for internalization remains poorly characterized. Extracellular cargoes are thought to be selected by transmembrane receptors that bind intracellular adaptors proteins to initiate endocytosis. Here, we report a mechanism for clathrin-mediated endocytosis (CME) of extracellular lanthanum [La(III)] cargoes, which requires extracellular arabinogalactan proteins (AGPs) that are anchored on the outer face of the plasma membrane. AGPs were colocalized with La(III) on the cell surface and in La(III)-induced endocytic vesicles in Arabidopsis leaf cells. Superresolution imaging showed that La(III) triggered AGP movement across the plasma membrane. AGPs were then colocalized and physically associated with the µ subunit of the intracellular adaptor protein 2 (AP2) complexes. The AGP-AP2 interaction was independent of CME, whereas AGP's internalization required CME and AP2. Moreover, we show that AGP-dependent endocytosis in the presence of La(III) also occurred in human cells. These findings indicate that extracellular AGPs act as conserved CME cargo receptors, thus challenging the current paradigm about endocytosis of extracellular cargoes.


Assuntos
Endocitose/genética , Galactanos/metabolismo , Lantânio/farmacologia , Metais Terras Raras/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Membrana Celular/efeitos dos fármacos , Clatrina/química , Endocitose/efeitos dos fármacos , Galactanos/genética , Humanos , Lantânio/química , Lantânio/metabolismo , Metais Terras Raras/química , Metais Terras Raras/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo
3.
BMC Plant Biol ; 21(1): 16, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407116

RESUMO

BACKGROUND: Arabinogalactan-proteins (AGPs) are a class of hydroxyproline-rich proteins (HRGPs) that are heavily glycosylated (> 90%) with type II arabinogalactans (AGs). AGPs are implicated in various plant growth and development processes including cell expansion, somatic embryogenesis, root and stem growth, salt tolerance, hormone signaling, male and female gametophyte development, and defense. To date, eight Hyp-O-galactosyltransferases (GALT2-6, HPGT1-3) have been identified; these enzymes are responsible for adding the first sugar, galactose, onto AGPs. Due to gene redundancy among the GALTs, single or double galt genetic knockout mutants are often not sufficient to fully reveal their biological functions. RESULTS: Here, we report the successful application of CRISPR-Cas9 gene editing/multiplexing technology to generate higher-order knockout mutants of five members of the GALT gene family (GALT2-6). AGPs analysis of higher-order galt mutants (galt2 galt5, galt3 galt4 galt6, and galt2 galt3 galt4 galt5 gal6) demonstrated significantly less glycosylated AGPs in rosette leaves, stems, and siliques compared to the corresponding wild-type organs. Monosaccharide composition analysis of AGPs isolated from rosette leaves revealed significant decreases in arabinose and galactose in all the higher-order galt mutants. Phenotypic analyses revealed that mutation of two or more GALT genes was able to overcome the growth inhibitory effect of ß-D-Gal-Yariv reagent, which specifically binds to ß-1,3-galactan backbones on AGPs. In addition, the galt2 galt3 galt4 galt5 gal6 mutant exhibited reduced overall growth, impaired root growth, abnormal pollen, shorter siliques, and reduced seed set. Reciprocal crossing experiments demonstrated that galt2 galt3 galt4 galt5 gal6 mutants had defects in the female gametophyte which were responsible for reduced seed set. CONCLUSIONS: Our CRISPR/Cas9 gene editing/multiplexing approach provides a simpler and faster way to generate higher-order mutants for functional characterization compared to conventional genetic crossing of T-DNA mutant lines. Higher-order galt mutants produced and characterized in this study provide insight into the relationship between sugar decorations and the various biological functions attributed to AGPs in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Galactanos/metabolismo , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Edição de Genes , Mucoproteínas/metabolismo , Proteínas de Arabidopsis/genética , Sistemas CRISPR-Cas , Galactanos/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genoma de Planta , Genótipo , Glicosilação , Mucoproteínas/genética , Mutação , Melhoramento Vegetal/métodos
4.
Genomics ; 112(2): 1536-1544, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31494197

RESUMO

Red algae are a major source of marine sulfated galactans. In this study, orthologs and inparalogs from seven red algae were analyzed and compared with the aim to discover differences in algal galactan biosynthesis and related pathways of these algae. Red algal orthologs for putative carbohydrate sulfotransferases were found to be prevalent in Porphyridium purpureum, Florideophytes and Bangiophytes, while red algal orthologs for putative chondroitin sulfate synthases, sulfurylases, and porphyranases /carrageenases were found exclusively in Florideophytes and Bangiophytes. The acquirement of these genes could have happened after the divergence from Cyanidiales red algae. Cyanidiales red algae were found to have more number and types of putative sulfate permeases, suggesting that these genes could have been acquired in adaptation to the environmental stresses and biogeochemistry of respective habitats. The findings of this study shed lights on the evolution of different homeostasis mechanisms by the early and late diverging red algal orders.


Assuntos
Galactanos/biossíntese , Especiação Genética , Genoma de Planta , Porphyridium/genética , Galactanos/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Porphyridium/classificação , Sulfotransferases/genética , Sulfotransferases/metabolismo , Carboidrato Sulfotransferases
5.
BMC Plant Biol ; 20(1): 305, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611364

RESUMO

BACKGROUND: Nicotiana benthamiana is widely used as a model plant to study plant-pathogen interactions. Fasciclin-like arabinogalactan proteins (FLAs), a subclass of arabinogalactan proteins (AGPs), participate in mediating plant growth, development and response to abiotic stress. However, the members of FLAs in N. benthamiana and their response to plant pathogens are unknown. RESULTS: 38 NbFLAs were identified from a genome-wide study. NbFLAs could be divided into four subclasses, and their gene structure and motif composition were conserved in each subclass. NbFLAs may be regulated by cis-acting elements such as STRE and MBS, and may be the targets of transcription factors like C2H2. Quantitative real time polymerase chain reaction (RT-qPCR) results showed that selected NbFLAs were differentially expressed in different tissues. All of the selected NbFLAs were significantly downregulated following infection by turnip mosaic virus (TuMV) and most of them also by Pseudomonas syringae pv tomato strain DC3000 (Pst DC3000), suggesting possible roles in response to pathogenic infection. CONCLUSIONS: This study systematically identified FLAs in N. benthamiana, and indicates their potential roles in response to biotic stress. The identification of NbFLAs will facilitate further studies of their role in plant immunity in N. benthamiana.


Assuntos
Galactanos/genética , Nicotiana/genética , Motivos de Aminoácidos , Galactanos/química , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estudo de Associação Genômica Ampla , Família Multigênica , Filogenia , Estresse Fisiológico , Fatores de Transcrição/química , Fatores de Transcrição/genética
6.
Plant Physiol ; 179(2): 544-557, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30459263

RESUMO

Tomato (Solanum lycopersicum) is a globally important crop with an economic value in the tens of billions of dollars, and a significant supplier of essential vitamins, minerals, and phytochemicals in the human diet. Shelf life is a key quality trait related to alterations in cuticle properties and remodeling of the fruit cell walls. Studies with transgenic tomato plants undertaken over the last 20 years have indicated that a range of pectin-degrading enzymes are involved in cell wall remodeling. These studies usually involved silencing of only a single gene and it has proved difficult to compare the effects of silencing these genes across the different experimental systems. Here we report the generation of CRISPR-based mutants in the ripening-related genes encoding the pectin-degrading enzymes pectate lyase (PL), polygalacturonase 2a (PG2a), and ß-galactanase (TBG4). Comparison of the physiochemical properties of the fruits from a range of PL, PG2a, and TBG4 CRISPR lines demonstrated that only mutations in PL resulted in firmer fruits, although mutations in PG2a and TBG4 influenced fruit color and weight. Pectin localization, distribution, and solubility in the pericarp cells of the CRISPR mutant fruits were investigated using the monoclonal antibody probes LM19 to deesterified homogalacturonan, INRA-RU1 to rhamnogalacturonan I, LM5 to ß-1,4-galactan, and LM6 to arabinan epitopes, respectively. The data indicate that PL, PG2a, and TBG4 act on separate cell wall domains and the importance of cellulose microfibril-associated pectin is reflected in its increased occurrence in the different mutant lines.


Assuntos
Sistemas CRISPR-Cas , Enzimas/genética , Frutas/fisiologia , Pectinas/metabolismo , Solanum lycopersicum/fisiologia , Parede Celular/química , Parede Celular/metabolismo , Enzimas/metabolismo , Esterificação , Galactanos/genética , Galactanos/metabolismo , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Solanum lycopersicum/genética , Mutação , Pectinas/genética , Pectinas/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
7.
Fungal Genet Biol ; 123: 53-59, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30496805

RESUMO

l-Arabinose and d-galactose are the principal constituents of l-arabinogalactan, and also co-occur in other hemicelluloses and pectins. In this work we hypothesized that similar to the induction of relevant glycoside hydrolases by monomers liberated from these plant heteropolymers, their respective catabolisms in saprophytic and phytopathogenic fungi may respond to the presence of the other sugar to promote synergistic use of the complex growth substrate. We showed that these two sugars are indeed consumed simultaneously by Aspergillus nidulans, while l-arabinose is utilised faster in the presence than in the absence of d-galactose. Furthermore, the first two genes of the Leloir pathway for d-galactose catabolism - encoding d-galactose 1-epimerase and galactokinase - are induced more rapidly by l-arabinose than by d-galactose eventhough deletion mutants thereof grow as well as a wild type strain on the pentose. d-Galactose 1-epimerase is hyperinduced by l-arabinose, d-xylose and l-arabitol but not by xylitol. The results suggest that in A. nidulans, l-arabinose and d-xylose - both requiring NADPH for their catabolisation - actively promote the enzyme infrastructure necessary to convert ß-d-galactopyranose via the Leloir pathway with its α-anomer specific enzymes, into ß-d-glucose-6-phosphate (the starting substrate of the oxidative part of the pentose phosphate pathway) even in the absence of d-galactose.


Assuntos
Arabinose/metabolismo , Aspergillus nidulans/genética , Galactose/metabolismo , Xilose/metabolismo , Aspergillus nidulans/metabolismo , Galactanos/genética , Galactanos/metabolismo , Regulação Fúngica da Expressão Gênica , Redes e Vias Metabólicas/genética , Metabolismo/genética , Pectinas/genética , Pectinas/metabolismo , Polissacarídeos/genética , Polissacarídeos/metabolismo , UDPglucose 4-Epimerase/genética , UDPglucose 4-Epimerase/metabolismo , Xilose/genética
8.
Physiol Plant ; 164(1): 95-105, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29688577

RESUMO

Antibody-based approaches have been used to study cell wall architecture and modifications during the ripening process of two important fleshy fruit crops: tomato and strawberry. Cell wall polymers in both unripe and ripe fruits have been sequentially solubilized and fractions analyzed with sets of monoclonal antibodies focusing on the pectic polysaccharides. We demonstrate the specific detection of the LM26 branched galactan epitope, associated with rhamnogalacturonan-I, in cell walls of ripe strawberry fruit. Analytical approaches confirm that the LM26 epitope is linked to sets of rhamnogalacturonan-I and homogalacturonan molecules. The cellulase-degradation of cellulose-rich residues that releases cell wall polymers intimately linked with cellulose microfibrils has been used to explore aspects of branched galactan occurrence and galactan metabolism. In situ analyses of ripe strawberry fruits indicate that the LM26 epitope is present in all primary cell walls and also particularly abundant in vascular tissues. The significance of the occurrence of branched galactan structures in the side chains of rhamnogalacturonan-I pectins in the context of ripening strawberry fruit is discussed.


Assuntos
Epitopos/química , Fragaria/metabolismo , Frutas/metabolismo , Galactanos/metabolismo , Solanum lycopersicum/metabolismo , Celulose/metabolismo , Fragaria/genética , Frutas/genética , Galactanos/genética , Solanum lycopersicum/genética , Pectinas/metabolismo
9.
J Biol Chem ; 291(36): 18867-79, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27417139

RESUMO

The unique cell wall of mycobacteria is essential to their viability and the target of many clinically used anti-tuberculosis drugs and inhibitors under development. Despite intensive efforts to identify the ligase(s) responsible for the covalent attachment of the two major heteropolysaccharides of the mycobacterial cell wall, arabinogalactan (AG) and peptidoglycan (PG), the enzyme or enzymes responsible have remained elusive. We here report on the identification of the two enzymes of Mycobacterium tuberculosis, CpsA1 (Rv3267) and CpsA2 (Rv3484), responsible for this function. CpsA1 and CpsA2 belong to the widespread LytR-Cps2A-Psr (LCP) family of enzymes that has been shown to catalyze a variety of glycopolymer transfer reactions in Gram-positive bacteria, including the attachment of wall teichoic acids to PG. Although individual cpsA1 and cpsA2 knock-outs of M. tuberculosis were readily obtained, the combined inactivation of both genes appears to be lethal. In the closely related microorganism Corynebacterium glutamicum, the ortholog of cpsA1 is the only gene involved in this function, and its conditional knockdown leads to dramatic changes in the cell wall composition and morphology of the bacteria due to extensive shedding of cell wall material in the culture medium as a result of defective attachment of AG to PG. This work marks an important step in our understanding of the biogenesis of the unique cell envelope of mycobacteria and opens new opportunities for drug development.


Assuntos
Proteínas de Bactérias/genética , Parede Celular/metabolismo , Galactanos/metabolismo , Mycobacterium tuberculosis/metabolismo , Peptidoglicano/metabolismo , Ácidos Teicoicos/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Galactanos/genética , Mycobacterium tuberculosis/genética , Peptidoglicano/genética , Ácidos Teicoicos/genética
10.
Int J Med Microbiol ; 306(2): 89-98, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26723873

RESUMO

Klebsiella pneumoniae ST258 is a globally disseminated, extremely drug resistant, nosocomial clone with limited treatment options. We show that the vast majority of ST258 isolates express modified d-galactan-I lipopolysaccharide O-antigen, termed hereinafter as D-galactan-III. The genetic determinant required for galactan-III synthesis was identified as a distinct operon adjacent to the rfb (wb) locus encoding D-galactan-I synthesis. The three genes within the operon encode predicted glycosyltransferases. Testing an isogenic transformant pair revealed that expression of D-galactan-III, in comparison to D-galactan-I, conferred improved survival in the presence of human serum. Eighty-three percent of the more than 200 ST258 draft genome sequences currently available carries the corresponding operon and hence these isolates are predicted to express galactan-III antigens. A D-galactan-III specific monoclonal antibody (mAb) was shown to bind to extracted LPS from a panel of ST258 isolates. The same mAb confirmed accessibility of galactan-III in surface staining of ST258 irrespective of the distinct capsular antigens expressed by both clades described previously. Based on these data, the galactan-III antigen may represent an attractive target for active and passive immunization approaches against K. pneumoniae ST258.


Assuntos
Galactanos/metabolismo , Klebsiella pneumoniae/imunologia , Antígenos O/imunologia , Animais , Anticorpos Monoclonais/imunologia , Antígenos de Superfície/imunologia , Clonagem Molecular , Epitopos/imunologia , Feminino , Galactanos/classificação , Galactanos/genética , Galactanos/imunologia , Hibridomas , Klebsiella pneumoniae/classificação , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidade , Lipopolissacarídeos/imunologia , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Antígenos O/análise , Antígenos O/genética , Óperon/genética , Virulência
11.
J Biol Chem ; 288(42): 30309-30319, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-23986448

RESUMO

Because tuberculosis is one of the most prevalent and serious infections, countermeasures against it are urgently required. We isolated the antitubercular agents caprazamycins from the culture of an actinomycete strain and created CPZEN-45 as the most promising derivative of the caprazamycins. Herein, we describe the mode of action of CPZEN-45 first against Bacillus subtilis. Unlike the caprazamycins, CPZEN-45 strongly inhibited incorporation of radiolabeled glycerol into growing cultures and showed antibacterial activity against caprazamycin-resistant strains, including a strain overexpressing translocase-I (MraY, involved in the biosynthesis of peptidoglycan), the target of the caprazamycins. By contrast, CPZEN-45 was not effective against a strain overexpressing undecaprenyl-phosphate-GlcNAc-1-phosphate transferase (TagO, involved in the biosynthesis of teichoic acid), and a mutation was found in the tagO gene of the spontaneous CPZEN-45-resistant strain. This suggested that the primary target of CPZEN-45 in B. subtilis is TagO, which is a different target from that of the parent caprazamycins. This suggestion was confirmed by evaluation of the activities of these enzymes. Finally, we showed that CPZEN-45 was effective against WecA (Rv1302, also called Rfe) of Mycobacterium tuberculosis, the ortholog of TagO and involved in the biosynthesis of the mycolylarabinogalactan of the cell wall of M. tuberculosis. The outlook for WecA as a promising target for the development of antituberculous drugs as a countermeasure of drug resistant tuberculosis is discussed.


Assuntos
Antituberculosos/farmacologia , Azepinas/farmacocinética , Parede Celular/enzimologia , Mycobacterium tuberculosis/enzimologia , Transferases (Outros Grupos de Fosfato Substituídos)/antagonistas & inibidores , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/genética , Galactanos/biossíntese , Galactanos/genética , Mycobacterium tuberculosis/genética , Transferases/antagonistas & inibidores , Transferases/genética , Transferases/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/enzimologia , Tuberculose Resistente a Múltiplos Medicamentos/genética
12.
J Biol Chem ; 287(47): 39933-41, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23038254

RESUMO

The biosynthesis of the major cell envelope glycoconjugates of Mycobacterium tuberculosis is topologically split across the plasma membrane, yet nothing is known of the transporters required for the translocation of lipid-linked sugar donors and oligosaccharide intermediates from the cytoplasmic to the periplasmic side of the membrane in mycobacteria. One of the mechanisms used by prokaryotes to translocate lipid-linked phosphate sugars across the plasma membrane relies on translocases that share resemblance with small multidrug resistance transporters. The presence of an small multidrug resistance-like gene, Rv3789, located immediately upstream from dprE1/dprE2 responsible for the formation of decaprenyl-monophosphoryl-ß-D-arabinose (DPA) in the genome of M. tuberculosis led us to investigate its potential involvement in the formation of the major arabinosylated glycopolymers, lipoarabinomannan (LAM) and arabinogalactan (AG). Disruption of the ortholog of Rv3789 in Mycobacterium smegmatis resulted in a reduction of the arabinose content of both AG and LAM that accompanied the accumulation of DPA in the mutant cells. Interestingly, AG and LAM synthesis was restored in the mutant not only upon expression of Rv3789 but also upon that of the undecaprenyl phosphate aminoarabinose flippase arnE/F genes from Escherichia coli. A bacterial two-hybrid system further indicated that Rv3789 interacts in vivo with the galactosyltransferase that initiates the elongation of the galactan domain of AG. Biochemical and genetic evidence is thus consistent with Rv3789 belonging to an AG biosynthetic complex, where its role is to reorient DPA to the periplasm, allowing this arabinose donor to then be used in the buildup of the arabinan domains of AG and LAM.


Assuntos
Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla/fisiologia , Galactanos/metabolismo , Lipopolissacarídeos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mycobacterium tuberculosis/metabolismo , Arabinose/genética , Arabinose/metabolismo , Proteínas de Bactérias/genética , Galactanos/genética , Teste de Complementação Genética , Glicosilação , Lipopolissacarídeos/genética , Proteínas de Membrana Transportadoras/genética , Mutação , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/genética
13.
Mol Plant Microbe Interact ; 25(2): 250-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21995765

RESUMO

Rhizobium leguminosarum bv. viciae can attach to the roots of legume and non-legume plants. We wanted to determine whether root exudates could affect in vitro surface attachment in a confocal microscopy assay. Root exudate from pea, other legumes, wheat, and Arabidopsis induced R. leguminosarum bv. viciae to attach end-on (in a polar manner) to glass in hexagonal close-packed arrays, rather than attaching along their long axis. This did not involve a reorientation but was probably due to altered growth. The polar attachment involves a novel bacterial component because it occurred in mutants lacking a symbiosis plasmid (and hence nodulation genes) and polar glucomannan. The major surface (acidic) exopolysaccharide was required, and mutations affecting exported proteins and flagella delayed but did not block polar attachment. The polar attachment activity was purified as a high molecular weight fraction from pea root exudate and is an arabinogalactan protein (AGP) based on its carbohydrate content, reactivity with AGP-specific monoclonal antibodies and Yariv reagent, and sensitivity to enzymes that degrade proteins and carbohydrates. We propose that this novel mode of AGP-induced attachment may be important for growth of these bacteria on the roots of both legumes and non-legumes.


Assuntos
Arabidopsis/química , Fabaceae/química , Galactanos/metabolismo , Pisum sativum/química , Rhizobium leguminosarum/crescimento & desenvolvimento , Triticum/química , Anticorpos Monoclonais/imunologia , Arabidopsis/microbiologia , Aderência Bacteriana/genética , Aderência Bacteriana/fisiologia , Biofilmes/crescimento & desenvolvimento , Carboidratos/análise , Fabaceae/microbiologia , Galactanos/genética , Galactanos/isolamento & purificação , Vidro , Glicoproteínas/genética , Glicoproteínas/isolamento & purificação , Glicoproteínas/metabolismo , Mutagênese Insercional , Pisum sativum/microbiologia , Exsudatos de Plantas/química , Exsudatos de Plantas/isolamento & purificação , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/microbiologia , Plasmídeos , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/fisiologia , Plântula/química , Plântula/microbiologia , Simbiose , Triticum/microbiologia
14.
J Biol Chem ; 285(18): 13638-45, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20194500

RESUMO

Virtually nothing is known about the mechanisms and enzymes responsible for the glycosylation of arabinogalactan proteins (AGPs). The glycosyltransferase 37 family contains plant-specific enzymes, which suggests involvement in plant-specific organs such as the cell wall. Our working hypothesis is that AtFUT4 and AtFUT6 genes encode alpha(1,2)fucosyltransferases (FUTs) for AGPs. Multiple lines of evidence support this hypothesis. First, overexpression of the two genes in tobacco BY2 cells, known to contain nonfucosylated AGPs, resulted in a staining of transgenic cells with eel lectin, which specifically binds to terminal alpha-linked fucose. Second, monosaccharide analysis by high pH anion exchange chromatography and electrospray ionization mass spectrometry indicated the presence of fucose in AGPs from transgenic cell lines but not in AGPs from wild type cells. Third, detergent extracts from microsomal membranes prepared from transgenic lines were able to fucosylate, in vitro, purified AGPs from BY2 wild type cells. Susceptibility of [(14)C]fucosylated AGPs to alpha(1,2)fucosidase, and not to alpha(1,3/4)fucosidase, indicated that an alpha(1,2) linkage is formed. Furthermore, dearabinosylated AGPs were not substrate acceptors for these enzymes, indicating that arabinosyl residues represent the fucosylation sites on these molecules. Testing of several polysaccharides, oligosaccharides, and glycoproteins as potential substrate acceptors in the fucosyl transfer reactions indicated that the two enzymes are specific for AGPs but are not functionally redundant because they differentially fucosylate certain AGPs. AtFUT4 and AtFUT6 are the first enzymes to be characterized for AGP glycosylation and further our understanding of cell wall biosynthesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Fucose/metabolismo , Fucosiltransferases/metabolismo , Galactanos/metabolismo , Microssomos/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fucose/genética , Fucosiltransferases/genética , Galactanos/genética , Glicosilação , Especificidade por Substrato/fisiologia , Nicotiana/citologia , Nicotiana/enzimologia , Nicotiana/genética
15.
J Biol Chem ; 285(35): 27192-27200, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20576600

RESUMO

Art v 1, the major pollen allergen of the composite plant mugwort (Artemisia vulgaris) has been identified recently as a thionin-like protein with a bulky arabinogalactan-protein moiety. A close relative of mugwort, ragweed (Ambrosia artemisiifolia) is an important allergen source in North America, and, since 1990, ragweed has become a growing health concern in Europe as well. Weed pollen-sensitized patients demonstrated IgE reactivity to a ragweed pollen protein of apparently 29-31 kDa. This reaction could be inhibited by the mugwort allergen Art v 1. The purified ragweed pollen protein consisted of a 57-amino acid-long defensin-like domain with high homology to Art v 1 and a C-terminal proline-rich domain. This part contained hydroxyproline-linked arabinogalactan chains with one galactose and 5 to 20 and more alpha-arabinofuranosyl residues with some beta-arabinoses in terminal positions as revealed by high field NMR. The ragweed protein contained only small amounts of the single hydroxyproline-linked beta-arabinosyl residues, which form an important IgE binding determinant in Art v 1. cDNA clones for this protein were obtained from ragweed flowers. Immunological characterization revealed that the recombinant ragweed protein reacted with >30% of the weed pollen allergic patients. Therefore, this protein from ragweed pollen constitutes a novel important ragweed allergen and has been designated Amb a 4.


Assuntos
Alérgenos/genética , Ambrosia/genética , Artemisia/genética , Proteínas de Plantas/genética , Pólen/imunologia , Rinite Alérgica Sazonal/imunologia , Alérgenos/química , Alérgenos/imunologia , Alérgenos/isolamento & purificação , Ambrosia/química , Ambrosia/imunologia , Antígenos de Plantas , Artemisia/química , Artemisia/imunologia , DNA Complementar/genética , DNA Complementar/imunologia , Europa (Continente)/epidemiologia , Galactanos/química , Galactanos/genética , Galactanos/imunologia , Humanos , Imunoglobulina E/imunologia , América do Norte/epidemiologia , Proteínas de Plantas/química , Proteínas de Plantas/imunologia , Proteínas de Plantas/isolamento & purificação , Pólen/química , Estrutura Terciária de Proteína , Rinite Alérgica Sazonal/epidemiologia , Homologia de Sequência de Aminoácidos
16.
Gene ; 791: 145727, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34010707

RESUMO

Cluster bean (Guar) is the major source of industrial gum. Knowledge on the molecular events regulating galactomannan gum accumulation in guar will pave way for accelerated development of gummy guar genotypes. RNA Seq analysis in the immature seeds of contrasting cluster bean genotypes HGS 563 (gum type) and Pusa Navbahar (vegetable type) resulted in the generation of 19,855,490 and 21,488,472 quality reads. Data analysis identified 4938 differentially expressed genes between the gummy vs vegetable genotypes. A set of 2241 genes were up-regulated and 2587 genes were down-regulated in gummy guar. Significant up-regulation of genes involved in the biosynthesis of galactomannan and cell wall storage polysaccharides was observed in the gummy HGS 563. Genes involved in carotenoids, flavonoids, non mevalonic acid, terpenoids, and wax metabolism were also up-regulated in HGS 563. Mannose and galactose were the major nucleotide sugars in Pusa Navbahar and HGS 563 immature seeds. Immature seeds of HGS 563 showed high concentration of mannose and galactose accumulation compared to Pusa Navbahar. qRT-PCR analysis of selected genes confirmed the findings of transcriptome data.


Assuntos
Cyamopsis/genética , Cyamopsis/metabolismo , Galactanos/genética , Mananas/genética , Gomas Vegetais/genética , Cyamopsis/crescimento & desenvolvimento , Galactanos/metabolismo , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Mananas/metabolismo , Metaboloma/genética , Metabolômica/métodos , Gomas Vegetais/metabolismo , Polissacarídeos/metabolismo , Sementes/genética , Transcriptoma/genética
17.
Genes (Basel) ; 12(7)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206279

RESUMO

Guar (Cyamopsis tetragonoloba (L.) Taub.) is an annual legume crop native to India and Pakistan. Seeds of the plant serve as a source of galactomannan polysaccharide (guar gum) used in the food industry as a stabilizer (E412) and as a gelling agent in oil and gas fracturing fluids. There were several attempts to introduce this crop to countries of more northern latitudes. However, guar is a plant of a short photoperiod, therefore, its introduction, for example, to Russia is complicated by a long day length during the growing season. Breeding of new guar varieties insensitive to photoperiod slowed down due to the lack of information on functional molecular markers, which, in turn, requires information on guar genome. Modern breeding strategies, e.g., genomic predictions, benefit from integration of multi-omics approaches such as transcriptome, proteome and metabolome assays. Here we present an attempt to use transcriptome-metabolome integration to understand the genetic determination of flowering time variation among guar plants that differ in their photoperiod sensitivity. This study was performed on nine early- and six delayed-flowering guar varieties with the goal to find a connection between 63 metabolites and 1,067 differentially expressed transcripts using Shiny GAM approach. For the key biomarker of flowering in guar myo-inositol we also evaluated the KEGG biochemical pathway maps available for Arabidopsis thaliana. We found that the phosphatidylinositol signaling pathway is initiated in guar plants that are ready for flowering through the activation of the phospholipase C (PLC) gene, resulting in an exponential increase in the amount of myo-inositol in its free form observed on GC-MS chromatograms. The signaling pathway is performed by suppression of myo-inositol phosphate kinases (phosphorylation) and alternative overexpression of phosphatases (dephosphorylation). Our study suggests that metabolome and transcriptome information taken together, provide valuable information about biomarkers that can be used as a tool for marker-assisted breeding, metabolomics and functional genomics of this important legume crop.


Assuntos
Cyamopsis/genética , Redes e Vias Metabólicas/genética , Metaboloma/genética , Transcriptoma/genética , Biomarcadores/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Galactanos/genética , Galactanos/metabolismo , Perfilação da Expressão Gênica , Humanos , Mananas/genética , Mananas/metabolismo , Fotoperíodo , Desenvolvimento Vegetal/genética , Gomas Vegetais/genética , Gomas Vegetais/metabolismo
18.
J Bacteriol ; 192(11): 2691-700, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20363942

RESUMO

Corynebacterineae is a specific suborder of Gram-positive bacteria that includes Mycobacterium tuberculosis and Corynebacterium glutamicum. The ultrastructure of the cell envelope is very atypical. It is composed of a heteropolymer of peptidoglycan and arabinogalactan (AG) covalently associated to an outer membrane. Five arabinosyltransferases are involved in the biosynthesis of AG in C. glutamicum. AftB catalyzes the transfer of Araf (arabinofuranosyl) onto the arabinan domain of the arabinogalactan to form terminal beta(1 --> 2)-linked Araf residues. Here we show that Delta aftB cells lack half of the arabinogalactan mycoloylation sites but are still able to assemble an outer membrane. In addition, we show that a Delta aftB mutant grown on a rich medium has a perturbed cell envelope and sheds a significant amount of membrane fragments in the external culture medium. These fragments contain mono- and dimycolate of trehalose and PorA/H, the major porin of C. glutamicum, but lack conventional phospholipids that typify the plasma membrane, suggesting that they are derived from the atypical mycolate outer membrane of the cell envelope. This is the first report of outer membrane destabilization in the Corynebacterineae, and it suggests that a strong interaction between the mycolate outer membrane and the underlying polymer is essential for cell envelope integrity. The presence of outer membrane-derived fragments (OMFs) in the external medium of the Delta aftB mutant is also a very promising tool for outer membrane characterization. Indeed, fingerprint analysis of major OMF-associated proteins has already led to the identification of 3 associated mycoloyltransferases and an unknown protein with a C-terminal hydrophobic anchoring domain reminiscent of that found for the S-layer protein PS2 of C. glutamicum.


Assuntos
Membrana Celular/metabolismo , Corynebacterium glutamicum/metabolismo , Galactanos/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Western Blotting , Membrana Celular/genética , Membrana Celular/ultraestrutura , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/ultraestrutura , Microscopia Crioeletrônica , Eletroforese em Gel de Poliacrilamida , Galactanos/química , Galactanos/genética , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Transmissão
19.
Transgenic Res ; 19(3): 385-97, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19771527

RESUMO

During differential screening of inflorescence-specific cDNA libraries from Oryza sativa indica, an arabinogalactan protein (OSIAGP) cDNA (586 bp) expressing preferentially in the inflorescence has been isolated. It encodes an arabinogalactan protein of 59 amino acids (6.4 kDa) with a transmembrane domain and a secretory domain at the N terminus. The protein shows homology with AGP23 from Arabidopsis, and its homologue in japonica rice is located on chromosome 6. OSIAGP transcripts also accumulate in shoots and roots of rice seedling grown in the dark, but light represses expression of the gene. Analysis of a genomic clone of OSIAGP revealed that its promoter contains several pollen-specificity and light-regulatory elements. The promoter confers pollen-preferential activity on gus, starting from the release of microspores to anther dehiscence in transgenic tobacco, and is also active during pollen tube growth. Analysis of pollen preferential activity of the promoter in the transgenic rice system revealed that even the approximately 300 bp fragment has activity in pollen and the anther wall and further deletion down to approximately 100 bp completely abolishes this activity, which is consistent with in-silico analysis of the promoter. Arabinogalactan proteins have been shown to be involved in the cell elongation process. The homology of OSIAGP with AGP23 and the fact that seedling growth in the dark and pollen tube growth are events based on cell elongation strengthen the possibility of OSIAGP performing a similar function.


Assuntos
Galactanos/genética , Oryza/genética , Tubo Polínico/crescimento & desenvolvimento , Pólen/crescimento & desenvolvimento , Regiões Promotoras Genéticas/genética , Sequência de Aminoácidos , Sequência de Bases , Northern Blotting , Clonagem Molecular , Primers do DNA/genética , DNA Complementar/genética , Biblioteca Genômica , Glucuronidase/metabolismo , Dados de Sequência Molecular , Pólen/genética , Tubo Polínico/genética , Análise de Sequência de DNA , Homologia de Sequência
20.
Plant Cell Rep ; 29(2): 193-202, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20041253

RESUMO

Cotton fibers, important natural raw materials for the textile industry, are trichomes elongated from epidermal cells of cotton ovules. To date, a number of genes have been shown to be critical for fiber development. In this study, the roles of genes encoding fasciclin-like arabinoglactan proteins (FLAs) in cotton fiber were examined by transforming RNA interfering (RNAi) construct. The RNAi according to the sequence of GhAGP4 caused a significant reduction of its mRNA level, and the expression of other three FLAs (GhAGP2, GhAGP3, GhFLA1) were also partially suppressed. The fiber initiation and fiber elongation were inhibited in the transgenic plants. As for the mature fibers of transgenic cotton, the fiber length became significantly shorter and the fiber quality became worse. In addition, the RNAi of GhAGP4 also affected the cytoskeleton network and the cellulose deposition of fiber cells. Through ovule culture, it was found that the expression of cotton FLA genes were upregulated by GA(3), especially for GhAGP2 and GhAGP4. These results indicate that the FLAs are essential for the initiation and elongation of cotton fiber development.


Assuntos
Fibra de Algodão , Galactanos/genética , Gossypium/crescimento & desenvolvimento , Gossypium/genética , Celulose/metabolismo , Citoesqueleto/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas/farmacologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Interferência de RNA , RNA Mensageiro/genética , RNA de Plantas/genética , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA