Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 98(6): e0046124, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38780247

RESUMO

Transmissible gastroenteritis virus (TGEV)-induced enteritis is characterized by watery diarrhea, vomiting, and dehydration, and has high mortality in newborn piglets, resulting in significant economic losses in the pig industry worldwide. Conventional cell lines have been used for many years to investigate inflammation induced by TGEV, but these cell lines may not mimic the actual intestinal environment, making it difficult to obtain accurate results. In this study, apical-out porcine intestinal organoids were employed to study TEGV-induced inflammation. We found that apical-out organoids were susceptible to TGEV infection, and the expression of representative inflammatory cytokines was significantly upregulated upon TGEV infection. In addition, retinoic acid-inducible gene I (RIG-I) and the nuclear factor-kappa B (NF-κB) pathway were responsible for the expression of inflammatory cytokines induced by TGEV infection. We also discovered that the transcription factor hypoxia-inducible factor-1α (HIF-1α) positively regulated TGEV-induced inflammation by activating glycolysis in apical-out organoids, and pig experiments identified the same molecular mechanism as the ex vivo results. Collectively, we unveiled that the inflammatory responses induced by TGEV were modulated via the RIG-I/NF-κB/HIF-1α/glycolysis axis ex vivo and in vivo. This study provides novel insights into TGEV-induced enteritis and verifies intestinal organoids as a reliable model for investigating virus-induced inflammation. IMPORTANCE: Intestinal organoids are a newly developed culture system for investigating immune responses to virus infection. This culture model better represents the physiological environment compared with well-established cell lines. In this study, we discovered that inflammatory responses induced by TGEV infection were regulated by the RIG-I/NF-κB/HIF-1α/glycolysis axis in apical-out porcine organoids and in pigs. Our findings contribute to understanding the mechanism of intestinal inflammation upon viral infection and highlight apical-out organoids as a physiological model to mimic virus-induced inflammation.


Assuntos
Gastroenterite Suína Transmissível , Glicólise , Inflamação , Organoides , Vírus da Gastroenterite Transmissível , Animais , Citocinas/metabolismo , Proteína DEAD-box 58/metabolismo , Proteína DEAD-box 58/genética , Gastroenterite Suína Transmissível/virologia , Gastroenterite Suína Transmissível/metabolismo , Gastroenterite Suína Transmissível/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Inflamação/metabolismo , Inflamação/virologia , Intestinos/virologia , Intestinos/patologia , NF-kappa B/metabolismo , Organoides/virologia , Organoides/metabolismo , Organoides/patologia , Transdução de Sinais , Suínos , Vírus da Gastroenterite Transmissível/fisiologia
2.
J Gen Virol ; 105(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38814698

RESUMO

Transmissible gastroenteritis virus (TGEV), an enteropathogenic coronavirus, has caused huge economic losses to the pig industry, with 100% mortality in piglets aged 2 weeks and intestinal injury in pigs of other ages. However, there is still a shortage of safe and effective anti-TGEV drugs in clinics. In this study, phloretin, a naturally occurring dihydrochalcone glycoside, was identified as a potent antagonist of TGEV. Specifically, we found phloretin effectively inhibited TGEV proliferation in PK-15 cells, dose-dependently reducing the expression of TGEV N protein, mRNA, and virus titer. The anti-TGEV activity of phloretin was furthermore refined to target the internalization and replication stages. Moreover, we also found that phloretin could decrease the expression levels of proinflammatory cytokines induced by TGEV infection. In addition, we expanded the potential key targets associated with the anti-TGEV effect of phloretin to AR, CDK2, INS, ESR1, ESR2, EGFR, PGR, PPARG, PRKACA, and MAPK14 with the help of network pharmacology and molecular docking techniques. Furthermore, resistant viruses have been selected by culturing TGEV with increasing concentrations of phloretin. Resistance mutations were reproducibly mapped to the residue (S242) of main protease (Mpro). Molecular docking analysis showed that the mutation (S242F) significantly disrupted phloretin binding to Mpro, suggesting Mpro might be a potent target of phloretin. In summary, our findings indicate that phloretin is a promising drug candidate for combating TGEV, which may be helpful for developing pharmacotherapies for TGEV and other coronavirus infections.


Assuntos
Antivirais , Simulação de Acoplamento Molecular , Floretina , Vírus da Gastroenterite Transmissível , Replicação Viral , Vírus da Gastroenterite Transmissível/efeitos dos fármacos , Animais , Suínos , Floretina/farmacologia , Replicação Viral/efeitos dos fármacos , Linhagem Celular , Antivirais/farmacologia , Gastroenterite Suína Transmissível/tratamento farmacológico , Gastroenterite Suína Transmissível/virologia , Citocinas/metabolismo , Citocinas/genética , Internalização do Vírus/efeitos dos fármacos
3.
Microb Pathog ; 191: 106646, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631414

RESUMO

Porcine viral diarrhea is a common ailment in clinical settings, causing significant economic losses to the swine industry. Notable culprits behind porcine viral diarrhea encompass transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and porcine rotavirus-A (PoRVA). Co-infections involving the viruses are a common occurrence in clinical settings, thereby amplifying the complexities associated with differential diagnosis. As a consequence, it is therefore necessary to develop a method that can detect and differentiate all four porcine diarrhea viruses (TGEV, PEDV, PDCoV, and PoRVA) with a high sensitivity and specificity. Presently, polymerase chain reaction (PCR) is the go-to method for pathogen detection. In comparison to conventional PCR, TaqMan real-time PCR offers heightened sensitivity, superior specificity, and enhanced accuracy. This study aimed to develop a quadruplex real-time RT-qPCR assay, utilizing TaqMan probes, for the distinctive detection of TGEV, PEDV, PDCoV, and PoRVA. The quadruplex real-time RT-qPCR assay, as devised in this study, exhibited the capacity to avoid the detection of unrelated pathogens and demonstrated commendable specificity, sensitivity, repeatability, and reproducibility, boasting a limit of detection (LOD) of 27 copies/µL. In a comparative analysis involving 5483 clinical samples, the results from the commercial RT-qPCR kit and the quadruplex RT-qPCR for TGEV, PEDV, PDCoV, and PoRVA detection were entirely consistent. Following sample collection from October to March in Guangxi Zhuang Autonomous Region, we assessed the prevalence of TGEV, PEDV, PDCoV, and PoRVA in piglet diarrhea samples, revealing positive detection rates of 0.2 % (11/5483), 8.82 % (485/5483), 1.22 % (67/5483), and 4.94 % (271/5483), respectively. The co-infection rates of PEDV/PoRVA, PEDV/PDCoV, TGEV/PED/PoRVA, and PDCoV/PoRVA were 0.39 %, 0.11 %, 0.01 %, and 0.03 %, respectively, with no detection of other co-infections, as determined by the quadruplex real-time RT-qPCR. This research not only established a valuable tool for the simultaneous differentiation of TGEV, PEDV, PDCoV, and PoRVA in practical applications but also provided crucial insights into the prevalence of these viral pathogens causing diarrhea in Guangxi.


Assuntos
Vírus da Diarreia Epidêmica Suína , Reação em Cadeia da Polimerase em Tempo Real , Rotavirus , Sensibilidade e Especificidade , Doenças dos Suínos , Vírus da Gastroenterite Transmissível , Animais , Suínos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Vírus da Gastroenterite Transmissível/genética , Vírus da Gastroenterite Transmissível/isolamento & purificação , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/isolamento & purificação , Vírus da Diarreia Epidêmica Suína/classificação , Doenças dos Suínos/virologia , Doenças dos Suínos/diagnóstico , Rotavirus/genética , Rotavirus/isolamento & purificação , Rotavirus/classificação , Gastroenterite Suína Transmissível/diagnóstico , Gastroenterite Suína Transmissível/virologia , Deltacoronavirus/genética , Deltacoronavirus/isolamento & purificação , Diarreia/virologia , Diarreia/veterinária , Diarreia/diagnóstico , Coronavirus/genética , Coronavirus/isolamento & purificação , Coronavirus/classificação , Fezes/virologia , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia
4.
Vet Res ; 55(1): 97, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095890

RESUMO

Swine enteric coronaviruses (SeCoVs) pose a significant threat to the global pig industry, but no effective drugs are available for treatment. Previous research has demonstrated that thapsigargin (TG), an ER stress inducer, has broad-spectrum antiviral effects on human coronaviruses. In this study, we investigated the impact of TG on transmissible gastroenteritis virus (TGEV) infection using cell lines, porcine intestinal organoid models, and piglets. The results showed that TG effectively inhibited TGEV replication both in vitro and ex vivo. Furthermore, animal experiments demonstrated that oral administration of TG inhibited TGEV infection in neonatal piglets and relieved TGEV-associated tissue injury. Transcriptome analyses revealed that TG improved the expression of the ER-associated protein degradation (ERAD) component and influenced the biological processes related to secretion, nutrient responses, and epithelial cell differentiation in the intestinal epithelium. Collectively, these results suggest that TG is a potential novel oral antiviral drug for the clinical treatment of TGEV infection, even for infections caused by other SeCoVs.


Assuntos
Antivirais , Gastroenterite Suína Transmissível , Tapsigargina , Vírus da Gastroenterite Transmissível , Animais , Vírus da Gastroenterite Transmissível/efeitos dos fármacos , Vírus da Gastroenterite Transmissível/fisiologia , Suínos , Gastroenterite Suína Transmissível/tratamento farmacológico , Gastroenterite Suína Transmissível/virologia , Antivirais/farmacologia , Tapsigargina/farmacologia , Linhagem Celular , Replicação Viral/efeitos dos fármacos
5.
Arch Virol ; 169(9): 183, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39164596

RESUMO

Porcine transmissible gastroenteritis virus (TGEV) is a major pathogen that causes viral enteritis and severe diarrhea in newborn piglets. TGEV strains have been isolated in the USA, Europe, and China, and their molecular characteristics are well known. However, there have been few reports of molecular analysis of TGEV strains isolated in Southeast Asia. In 2016, we isolated TGEV strain VET-16 from fecal samples collected from piglets in Vietnam and determined its complete genome sequence by Sanger sequencing. We found that, while the full genome of the VET-16 strain was 92.4-99.9% identical to those of other TGEV strains, the ORF3 gene showed very little sequence similarity. Phylogenetic analysis suggested that the VET-16 strain belongs to the Purdue subgroup. Comparison of the predicted amino acid (aa) sequence of the spike protein of strain VET-16 with those of other TGEV strains revealed three aa substitutions (V378L, S379T, and D380N) and a 3-aa insertion (F383_F387insWEK) in antigenic site D of the VET-16 strain. Also, a single aa deletion (∆F1413) was found in the transmembrane domain of the spike gene of VET-16. Like the ORF3 gene from the TGEV Miller M60 vaccine strain, the VET-16 strain has a large deletion (∆725 nt) in the ORF3 gene. Previous studies have suggested that these mutations in the spike and ORF3 genes might be associated with a reduction in pathogenicity. The data from this study will facilitate further genetic analysis and research into the evolution of TGEV in pigs in Vietnam.


Assuntos
Gastroenterite Suína Transmissível , Genoma Viral , Filogenia , Vírus da Gastroenterite Transmissível , Animais , Suínos , Vietnã , Vírus da Gastroenterite Transmissível/genética , Vírus da Gastroenterite Transmissível/isolamento & purificação , Vírus da Gastroenterite Transmissível/classificação , Gastroenterite Suína Transmissível/virologia , Genoma Viral/genética , Fezes/virologia , Sequenciamento Completo do Genoma , Doenças dos Suínos/virologia , Sequência de Aminoácidos
6.
PLoS Pathog ; 17(12): e1010113, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34871328

RESUMO

Emerging coronaviruses (CoVs) pose a severe threat to human and animal health worldwide. To identify host factors required for CoV infection, we used α-CoV transmissible gastroenteritis virus (TGEV) as a model for genome-scale CRISPR knockout (KO) screening. Transmembrane protein 41B (TMEM41B) was found to be a bona fide host factor involved in infection by CoV and three additional virus families. We found that TMEM41B is critical for the internalization and early-stage replication of TGEV. Notably, our results also showed that cells lacking TMEM41B are unable to form the double-membrane vesicles necessary for TGEV replication, indicating that TMEM41B contributes to the formation of CoV replication organelles. Lastly, our data from a mouse infection model showed that the KO of this factor can strongly inhibit viral infection and delay the progression of a CoV disease. Our study revealed that targeting TMEM41B is a highly promising approach for the development of broad-spectrum anti-viral therapeutics.


Assuntos
Sistemas CRISPR-Cas , Gastroenterite Suína Transmissível/virologia , Interações Hospedeiro-Patógeno , Proteínas de Membrana/fisiologia , Organelas/virologia , Vírus da Gastroenterite Transmissível/fisiologia , Replicação Viral , Animais , Gastroenterite Suína Transmissível/genética , Gastroenterite Suína Transmissível/transmissão , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Suínos
7.
Microb Pathog ; 183: 106320, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37625663

RESUMO

BACKGROUND: Transmissible gastroenteritis virus (TGEV), which belongs to the coronaviruses (CoVs), causes diarrhea and high mortality rates in piglets and poses a huge threat and loss to the pig industry in China. METHOD: We estimated the prevalence of TGEV in Chinese pig animals from 1983 to 2022 by screening 36 papers on TGEV investigations in China from databases such as China Knowledge Network (CNKI), Wanfang Database, Science and Technology Journal Repository (VIP), PubMed, and ScienceDirect, excluding duplicate literature and other host studies according to the exclusion criteria we developed, and excluding literature with incomplete data to extract information from studies that could estimate the prevalence of TGEV infection in pigs in mainland China. RESULTS: A total of 36 studies (including data from 50,403 pigs) met our evaluation criteria. The overall estimated prevalence of TGEV infection in pigs in China is 10% (3887/50403), and the prevalence of TGEV in northeast China is 38% (2582/3078700) is significantly higher than the rest of China. The prevalence of TGEV infection was related to the sampling season and region. CONCLUSION: The results of the study show that the prevalence of TGEV is clearly seasonal and regional. Therefore, further research and monitoring of the prevalence of TGEV infection and the development of control programs based on different conditions are essential. In addition, effective and robust regulatory measures should be taken in colder regions to prevent the spread and transmission of TGEV in pigs.


Assuntos
Gastroenterite Suína Transmissível , Vírus da Gastroenterite Transmissível , Animais , China/epidemiologia , Diarreia , Gastroenterite/epidemiologia , Gastroenterite/veterinária , Prevalência , Suínos , Gastroenterite Suína Transmissível/epidemiologia , Gastroenterite Suína Transmissível/virologia
8.
J Virol ; 94(21)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796075

RESUMO

The intestinal organoid culture system is a pathbreaking working model for investigating pathogen-host interactions in the intestines. However, due to the limitations of the first generation of intestinal organoids, basal-out structure and growth in Matrigel, most pathogens can rarely attach to the apical membrane directly and hardly initiate infection. In this study, we first developed a next-generation porcine intestinal organoid culture system, characterized by an apical membrane on the surface, called apical-out. To investigate the infectivity and antiviral immune responses of this apical-out porcine intestinal organoid, a swine enteric virus, transmissible gastroenteritis virus (TGEV), was employed to inoculate the culture system. Both reverse transcription-quantitative PCR (RT-qPCR) and immunofluorescence assay (IFA) analysis demonstrated that TGEV replicated in the apical-out porcine intestinal organoid culture system. Additionally, our results illustrated that TGEV infection significantly upregulated the expression levels of alpha interferon (IFN-α), IFN-λ1, interferon-stimulated gene 15 (ISG15), ISG58, tumor necrosis factor alpha (TNF-α), and interleukin 6 (IL-6) in this culture system. Hence, we successfully developed a porcine intestinal apical-out organoid culture system, which will facilitate the investigation of pathogen-host interactions in pig intestines.IMPORTANCE Intestinal organoids are a newly developed culture system for investigating pathogen-host interactions. Intestinal organoid models have been widely used since their development, because the results obtained from this type of culture model better represent physiological conditions than those from well-established cell lines. The three-dimensional (3D) porcine intestinal organoid model was reported in 2018 and 2019 for the investigation of intestinal pathogens. However, those organoid culture models were basal-out intestinal organoids, which are not suitable for porcine enteric virus research because they invade the intestines via the apical side of epithelial cells on villi. In this study, we developed a porcine apical-out intestinal organoid culture system and verified its infectivity, type I and type III interferon (IFN) antiviral responses, and inflammatory responses following infection by a swine enteric virus. Our results imply that this apical-out porcine intestinal organoid culture system is an ideal model for the investigation of interactions between swine enteric viruses and the intestines.


Assuntos
Células Epiteliais/imunologia , Gastroenterite Suína Transmissível/imunologia , Interações Hospedeiro-Patógeno/imunologia , Mucosa Intestinal/imunologia , Organoides/imunologia , Vírus da Gastroenterite Transmissível/imunologia , Animais , Bioensaio , Quimiocina CXCL10/genética , Quimiocina CXCL10/imunologia , Células Epiteliais/patologia , Células Epiteliais/virologia , Gastroenterite Suína Transmissível/genética , Gastroenterite Suína Transmissível/virologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interferon-alfa/genética , Interferon-alfa/imunologia , Interferons/genética , Interferons/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Mucosa Intestinal/patologia , Mucosa Intestinal/virologia , Organoides/patologia , Organoides/virologia , Suínos , Vírus da Gastroenterite Transmissível/crescimento & desenvolvimento , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Ubiquitinas/genética , Ubiquitinas/imunologia , Replicação Viral
9.
FASEB J ; 34(3): 4653-4669, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32017270

RESUMO

Transmissible gastroenteritis virus (TGEV) is a swine enteropathogenic coronavirus that causes significant economic losses in swine industry. Current studies on TGEV internalization mainly focus on viral receptors, but the internalization mechanism is still unclear. In this study, we used single-virus tracking to obtain the detailed insights into the dynamic events of the TGEV internalization and depict the whole sequential process. We observed that TGEVs could be internalized through clathrin- and caveolae-mediated endocytosis, and the internalization of TGEVs was almost completed within ~2 minutes after TGEVs attached to the cell membrane. Furthermore, the interactions of TGEVs with actin and dynamin 2 in real time during the TGEV internalization were visualized. To our knowledge, this is the first report that single-virus tracking technique is used to visualize the entire dynamic process of the TGEV internalization: before the TGEV internalization, with the assistance of actin, clathrin, and caveolin 1 would gather around the virus to form the vesicle containing the TGEV, and after ~60 seconds, dynamin 2 would be recruited to promote membrane fission. These results demonstrate that TGEVs enter ST cells via clathrin- and caveolae-mediated endocytic, actin-dependent, and dynamin 2-dependent pathways.


Assuntos
Gastroenterite Suína Transmissível/metabolismo , Gastroenterite Suína Transmissível/virologia , Vírus da Gastroenterite Transmissível/patogenicidade , Actinas/metabolismo , Animais , Cavéolas/metabolismo , Caveolina 1/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Membrana Celular/virologia , Clatrina/metabolismo , Dinamina II/metabolismo , Endocitose/fisiologia , Fusão de Membrana/fisiologia , Suínos , Internalização do Vírus
10.
Arch Virol ; 166(3): 935-941, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33492525

RESUMO

Enteric coronaviruses (CoVs) are major pathogens that cause diarrhea in piglets. To date, four porcine enteric CoVs have been identified: transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and HKU2-like porcine enteric alphacoronavirus (PEAV). In this study, we investigated the replicative capacity of these four enteric CoVs in LLC-PK1 cells, a porcine kidney cell line. The results showed that LLC-PK1 cells are susceptible to all four enteric CoVs, particularly to TGEV and PDCoV infections, indicating that LLC-PK1 cells can be applied to porcine enteric CoV research in vitro, particularly for coinfection studies.


Assuntos
Deltacoronavirus/crescimento & desenvolvimento , Gastroenterite Suína Transmissível/virologia , Vírus da Diarreia Epidêmica Suína/crescimento & desenvolvimento , Vírus da Gastroenterite Transmissível/crescimento & desenvolvimento , Replicação Viral/fisiologia , Animais , Linhagem Celular , Chlorocebus aethiops , Suscetibilidade a Doenças , Técnica Indireta de Fluorescência para Anticorpo , Intestino Delgado/virologia , Células LLC-PK1 , Suínos , Doenças dos Suínos/virologia , Células Vero
11.
Virus Genes ; 56(6): 687-695, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32944812

RESUMO

Porcine deltacoronavirus (PDCoV) has been recently identified as an emerging enteropathogenic coronavirus that mainly infects newborn piglets and causes enteritis, diarrhea and high mortality. Although coronavirus N proteins have multifarious activities, the subcellular localization of the PDCoV N protein is still unknown. Here, we produced mouse monoclonal antibodies against the PDCoV N protein. Experiments using anti-haemagglutinin antibodies and these monoclonal antibodies revealed that the PDCoV N protein is shuttled into the nucleolus in both ectopic PDCoV N-expressing cells and PDCoV-infected cells. The results of deletion mutagenesis experiments demonstrated that the predicted nucleolar localization signal at amino acids 295-318 is critical for nucleolar localization. Cumulatively, our study yielded a monoclonal antibody against the PDCoV N protein and revealed a mechanism by which the PDCoV N protein translocated into the nucleolus. The tolls and findings from this work will facilitate further investigations on the functions of the PDCoV N protein.


Assuntos
Nucléolo Celular/genética , Infecções por Coronavirus/virologia , Proteínas do Nucleocapsídeo de Coronavírus/genética , Deltacoronavirus/genética , Gastroenterite Suína Transmissível/virologia , Interações Hospedeiro-Patógeno/genética , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/química , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/química , Linhagem Celular , Nucléolo Celular/metabolismo , Infecções por Coronavirus/patologia , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Deltacoronavirus/crescimento & desenvolvimento , Deltacoronavirus/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Células Epiteliais/virologia , Gastroenterite Suína Transmissível/patologia , Expressão Gênica , Hemaglutininas Virais/genética , Hemaglutininas Virais/metabolismo , Rim/patologia , Rim/virologia , Camundongos , Sinais de Localização Nuclear , Transporte Proteico , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Suínos
12.
J Infect Chemother ; 26(5): 523-526, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32147375

RESUMO

Transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV) are the main pathogens causing viral diarrhea in pig, mixed infections of these two viruses are very common in intensive pig rearing. However, there is a lack of a method to simultaneously detect and distinguish PEDV and TGEV in preclinical levels. In this study, we aimed to establish a dual ultrasensitive nanoparticle DNA probe-based PCR assay (dual UNDP-PCR) based on functionalized magnetic bead enrichment and specific nano-technology amplification for simultaneous detection and distinguish diagnosis of PEDV and TGEV. The detection limit of dual UNDP-PCR for single or multiple infections of PEDV and TGEV is 25 copies/g, which is 400 times more sensitive than the currently known duplex RT-PCR, showing better specificity and sensitivity without cross-reaction with other viruses. For pre-clinical fecal samples, the dual UNDP-PCR showed a markedly higher positive detection rate (52.08%) than conventional duplex RT-PCR (13.21%), can rapidly and accurately identify targeted pathogens whenever simple virus infection or co-infection. In summary, this study provides a technique for detecting and distinguishing PEDV and TGEV in preclinical levels, which is high sensitivity, specificity, repeatability, low cost and broad application prospect.


Assuntos
Sondas de DNA/química , Gastroenterite Suína Transmissível/diagnóstico , Nanopartículas/química , Vírus da Diarreia Epidêmica Suína/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Vírus da Gastroenterite Transmissível/isolamento & purificação , Animais , Sondas de DNA/genética , Diarreia/veterinária , Diarreia/virologia , Fezes/virologia , Gastroenterite Suína Transmissível/virologia , Limite de Detecção , Imãs , Vírus da Diarreia Epidêmica Suína/genética , RNA Viral/genética , RNA Viral/isolamento & purificação , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Sensibilidade e Especificidade , Suínos , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/virologia , Vírus da Gastroenterite Transmissível/genética
13.
Arch Virol ; 164(4): 983-994, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30729994

RESUMO

Transmissible gastroenteritis virus (TGEV) infection causes severe diarrhea in piglets and imposes a significant economic burden on pig farms. Single-chain fragment variable (scFv) antibodies effectively inhibit virus infection and could be a potential therapeutic reagent for preventing disease. In this study, a recombinant scFv antibody phage display library was constructed from peripheral blood lymphocytes of piglets infected with TGEV. The library was screened with four rounds of biopanning using purified TGEV antigen, and scFv antibodies that bound to TGEV were obtained. The scFv gene was subcloned into the pET-28a(+), and the constituted plasmid was introduced into Escherichia coli BL21 (DE3) for protein expression. All three scFv clones identified had neutralizing activity against TGEV. An immunofluorescence assay and western blot analysis demonstrated that two scFv antibodies reacted with the spike protein of TGEV. These results indicate that scFv antibodies provide protection against viral infection in vitro and may be a therapeutic candidate for both prevention and treatment of TGEV infection in swine.


Assuntos
Anticorpos Antivirais/imunologia , Gastroenterite Suína Transmissível/virologia , Anticorpos de Cadeia Única/imunologia , Vírus da Gastroenterite Transmissível/imunologia , Animais , Anticorpos Antivirais/genética , Gastroenterite Suína Transmissível/imunologia , Testes de Neutralização , Anticorpos de Cadeia Única/genética , Suínos , Vírus da Gastroenterite Transmissível/genética
14.
Appl Microbiol Biotechnol ; 103(12): 4943-4952, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31025076

RESUMO

Swine enteric coronaviruses are a group of most significant pathogens causing diarrhea in piglets with similar clinical symptoms and pathological changes. To develop a simple, rapid, accurate, and high-throughput detection method for diagnosis and differential diagnosis on swine enteric coronaviruses, specific primers and probes were designed based on the highly conserved regions of transmissible gastroenteritis virus (TGEV) N, porcine epidemic diarrhea virus (PEDV) M, porcine deltacoronavirus (PDCoV) M, and porcine enteric alphacoronavirus (PEAV) N genes respectively. A TaqMan-probe-based multiplex real-time RT-qPCR assay was developed and optimized to simultaneously detect these swine enteric coronaviruses. The results showed that the limit of detection can reach as low as 10 copies in singular real-time RT-qPCR assays and 100 copies in multiplex real-time RT-qPCR assay, with all correlation coefficients (R2) at above 0.99, and the amplification efficiency at between 90 and 120%. This multiplex real-time RT-qPCR assay demonstrated high sensitivity, extreme specificity, and excellent repeatability. The multiplex real-time RT-qPCR assay was then employed to detect the swine enteric coronavirus from 354 field diarrheal samples. The results manifested that TGEV and PDCoV were the main pathogens in these samples, accompanied by co-infections. This well-established multiplex real-time RT-qPCR assay provided a rapid, efficient, specific, and sensitive tool for detection of swine enteric coronaviruses.


Assuntos
Infecções por Coronavirus/veterinária , Coronavirus/isolamento & purificação , Reação em Cadeia da Polimerase Multiplex/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Doenças dos Suínos/diagnóstico , Animais , Coronavirus/classificação , Infecções por Coronavirus/diagnóstico , Primers do DNA/genética , Diagnóstico Diferencial , Diarreia/virologia , Fezes/virologia , Gastroenterite Suína Transmissível/diagnóstico , Gastroenterite Suína Transmissível/virologia , Limite de Detecção , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/isolamento & purificação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Suínos , Doenças dos Suínos/virologia , Vírus da Gastroenterite Transmissível/genética , Vírus da Gastroenterite Transmissível/isolamento & purificação
15.
J Virol ; 91(21)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28794036

RESUMO

Transmissible gastroenteritis virus (TGEV) is a coronavirus characterized by diarrhea and high morbidity rates, and the mortality rate is 100% in piglets less than 2 weeks old. Pigs infected with TGEV often suffer secondary infection by other pathogens, which aggravates the severity of diarrhea, but the mechanisms remain unknown. Here, we hypothesized that persistent TGEV infection stimulates the epithelial-mesenchymal transition (EMT), and thus enterotoxigenic Escherichia coli (ETEC) can more easily adhere to generating cells. Intestinal epithelial cells are the primary targets of TGEV and ETEC infections. We found that TGEV can persistently infect porcine intestinal columnar epithelial cells (IPEC-J2) and cause EMT, consistent with multiple changes in key cell characteristics. Infected cells display fibroblast-like shapes; exhibit increases in levels of mesenchymal markers with a corresponding loss of epithelial markers; have enhanced expression levels of interleukin-1ß (IL-1ß), IL-6, IL-8, transforming growth factor ß (TGF-ß), and tumor necrosis factor alpha (TNF-α) mRNAs; and demonstrate increases in migratory and invasive behaviors. Additional experiments showed that the activation of the phosphatidylinositol 3-kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK) signaling pathways via TGF-ß is critical for the TGEV-mediated EMT process. Cellular uptake is also modified in cells that have undergone EMT. TGEV-infected cells have higher levels of integrin α5 and fibronectin and exhibit enhanced ETEC K88 adhesion. Reversal of EMT reduces ETEC K88 adhesion and inhibits the expression of integrin α5 and fibronectin. Overall, these results suggest that TGEV infection induces EMT in IPEC-J2 cells, increasing the adhesion of ETEC K88 in the intestine and facilitating dual infection.IMPORTANCE Transmissible gastroenteritis virus (TGEV) causes pig diarrhea and is often followed by secondary infection by other pathogens. In this study, we showed that persistent TGEV infection induces an EMT in porcine intestinal columnar epithelial cells (IPEC-J2) and enhances the adhesion of the secondary pathogen ETEC K88. Additional experiments suggest that integrin α5 and fibronectin play an important role in TGEV-enhanced ETEC K88 adhesion. Reversal of EMT reduces the expression of integrin α5 and fibronectin and also reduces ETEC K88 adhesion. We conclude that TGEV infection triggers EMT and facilitates dual infection. Our results provide new insights into secondary infection and suggest that targeted anti-EMT therapy may have implications for the prevention and treatment of secondary infection.


Assuntos
Aderência Bacteriana , Escherichia coli Enterotoxigênica/patogenicidade , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal , Infecções por Escherichia coli/microbiologia , Gastroenterite Suína Transmissível/transmissão , Intestinos/patologia , Vírus da Gastroenterite Transmissível/patogenicidade , Animais , Animais Recém-Nascidos , Células Epiteliais/microbiologia , Células Epiteliais/virologia , Gastroenterite Suína Transmissível/virologia , Enteropatias/etiologia , Enteropatias/patologia , Intestinos/microbiologia , Intestinos/virologia , Suínos , Doenças dos Suínos/etiologia , Doenças dos Suínos/patologia
16.
Virol J ; 15(1): 102, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29914507

RESUMO

BACKGROUND: Pig diarrhea causes high mortality and large economic losses in the swine industry. Transmissible gastroenteritis virus (TGEV) causes pig diarrhea, with 100% mortality in piglets less than 2 weeks old. No investigation has yet been made of the small intestine of piglets that survived infection by TGEV. METHODS: In this study, we evaluated the impact of TGEV infection on the small intestine of recovered pigs. RESULTS: Histological analyses showed that TGEV infection led to villi atrophy, and reduced villous height and crypt depth. The number of SIgA positive cells, CD3+T cells, and dendritic cells (DCs) in jejunum decreased after TGEV infection in vivo. In contrast, microfold cell (M cell) numbers and cell proliferation increased in infected pigs. TGEV infection also significantly enhanced the mRNA expression levels of cytokine IL-1ß, IL-6, TNF-α, IL-10, and TGF-ß. Additionally, lower gene copy numbers of Lactobacillus, and higher numbers of Enterobacteriaceae, were detected in mucosal scraping samples from TGEV-infected pigs. CONCLUSIONS: TGEV infection damages the small intestine, impairs immune functions, and increases pathogenic bacterial loading, all of which may facilitate secondary infections by other pathogens. These findings help quantify the impact of TGEV infection and clarify the pathogenic mechanisms underlying its effects in pigs.


Assuntos
Gastroenterite Suína Transmissível/patologia , Intestino Delgado/patologia , Vírus da Gastroenterite Transmissível/fisiologia , Animais , Citocinas/genética , Gastroenterite Suína Transmissível/virologia , Microbioma Gastrointestinal , Intestino Delgado/imunologia , Intestino Delgado/microbiologia , Intestino Delgado/virologia , Suínos , Subpopulações de Linfócitos T/imunologia , Regulação para Cima/imunologia
17.
Vet Res ; 49(1): 95, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30236161

RESUMO

Transmissible gastroenteritis virus (TGEV) is a coronavirus that causes severe diarrhea in suckling piglets. TGEV primarily targets and infects porcine intestinal epithelial cells, which play an important role in nutrient absorption. However, the effects of TGEV infection on nutrient absorption in swine have not yet been investigated. In this study, we evaluated the impact of TGEV infection on arginine uptake using the porcine small intestinal epithelial cell line IPEC-J2 as a model system. High performance liquid chromatography (HPLC) analyses showed that TGEV infection leads to reduced arginine uptake at 48 hours post-infection (hpi). Expression of cationic amino acid transporter 1 (CAT-1) was attenuated as well. TGEV infection induced activation of phospho-protein kinase C α (p-PKC α), phospho-epidermal growth factor receptor (p-EGFR), and enhanced the expression of caveolin-1, all of which appear to be involved in down-regulating arginine uptake and CAT-1 expression. These results illuminate the relationship between TGEV infection and nutrient absorption, and further our understanding of the mechanisms of TGEV infection.


Assuntos
Arginina/metabolismo , Transportador 1 de Aminoácidos Catiônicos/genética , Regulação para Baixo , Gastroenterite Suína Transmissível/genética , Regulação da Expressão Gênica , Vírus da Gastroenterite Transmissível/fisiologia , Animais , Transportador 1 de Aminoácidos Catiônicos/metabolismo , Linhagem Celular , Gastroenterite Suína Transmissível/fisiopatologia , Gastroenterite Suína Transmissível/virologia , Intestino Delgado/metabolismo , Intestino Delgado/virologia , Transdução de Sinais , Suínos
18.
BMC Vet Res ; 14(1): 313, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30340595

RESUMO

BACKGROUND: Surveillance and characterization of pig enteric viruses such as transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), rotavirus, astrovirus (PAstV), sapovirus (PSaV), kobuvirus and other agents is essential to evaluate the risks to animal health and determination of economic impacts on pig farming. This study reports the detection and genetic characterization of PAstV, PSaV in healthy and diarrheic domestic pigs and PEDV and TGEV in diarrheic pigs of different age groups. RESULTS: The presence of PAstV and PSaV was studied in 411 rectal swabs collected from healthy (n = 251) and diarrheic (n = 160) pigs of different age categories: suckling (n = 143), weaned (n = 147) and fattening (n = 121) animals on farms in Slovakia. The presence of TGEV and PEDV was investigated in the diarrheic pigs (n = 160). A high presence of PAstV infections was detected in both healthy (94.4%) and diarrheic (91.3%) pigs. PSaV was detected less often, but also equally in clinically healthy (8.4%) and diarrheic (10%) pigs. Neither TGEV nor PEDV was detected in any diarrheic sample. The phylogenetic analysis of a part of the RdRp region revealed the presence of all five lineages of PAstV in Slovakia (PAstV-1 - PAstV-5), with the most frequent lineages being PAstV-2 and PAstV-4. Analysis of partial capsid genome sequences of the PSaVs indicated that virus strains belonged to genogroup GIII. Most of the PSaV sequences from Slovakia clustered with sequences originating from neighbouring countries. CONCLUSIONS: Due to no significant difference between healthy and diarrheic pigs testing of the presence of PAstV and PSaV provides no diagnostic value. Genetic diversity of PAstV was very high as all five lineages were identified in pig farms in Slovakia. PSaV strains were genetically related to the strains circulating in Central European region.


Assuntos
Infecções por Astroviridae/veterinária , Astroviridae , Infecções por Caliciviridae/veterinária , Gastroenterite/veterinária , Sapovirus , Doenças dos Suínos/virologia , Animais , Astroviridae/genética , Infecções por Astroviridae/diagnóstico , Infecções por Astroviridae/epidemiologia , Infecções por Astroviridae/virologia , Infecções por Caliciviridae/diagnóstico , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/virologia , Proteínas do Capsídeo/genética , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Gastroenterite/diagnóstico , Gastroenterite/epidemiologia , Gastroenterite/virologia , Gastroenterite Suína Transmissível/diagnóstico , Gastroenterite Suína Transmissível/epidemiologia , Gastroenterite Suína Transmissível/virologia , Filogenia , Vírus da Diarreia Epidêmica Suína/genética , Sapovirus/genética , Análise de Sequência de DNA/veterinária , Eslováquia/epidemiologia , Suínos , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/epidemiologia , Vírus da Gastroenterite Transmissível/genética
19.
J Gen Virol ; 98(2): 173-178, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27995863

RESUMO

Porcine deltacoronavirus (PDCoV) is an emerging swine enteric coronavirus. Bioinformatics predicts that PDCoV encodes two accessory proteins (NS6 and NS7), the species-specific proteins for coronavirus. In this study, four mAbs against the predicted NS7 were prepared by using the purified recombinant NS7 protein. Indirect immunofluorescence assay demonstrated that all mAbs recognized cells transfected with an NS7 expression construct or infected with PDCoV. Western blot showed that NS7-specific mAbs recognized an additional protein band of about 12 kDa from PDCoV-infected cell lysates but not from cells with the ectopic expression of NS7. Detailed analysis suggested that this additional protein band represented a novel accessory protein, termed NS7a, a 100 amino acid polypeptide identical to the 3' end of NS7. Moreover, NS7a is encoded by a separate subgenomic mRNA with a non-canonical transcription regulatory sequence. In summary, our results identified a third accessory protein encoded by PDCoV, which will enhance our understanding of PDCoV.


Assuntos
Coronavirus/metabolismo , Gastroenterite Suína Transmissível/virologia , Proteínas Virais Reguladoras e Acessórias/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Sequência de Bases , Sequência Conservada , Coronavirus/genética , Técnica Indireta de Fluorescência para Anticorpo , Mutação , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Suínos , Transfecção , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/imunologia
20.
Virus Genes ; 53(2): 226-232, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27848068

RESUMO

The membrane (M) protein is the most abundant component of the porcine transmissible gastroenteritis virus (TGEV) particle. To exploit the possibility of using RNA interference (RNAi) as a strategy against TGEV infection, three plasmids (pRNAT-1, pRNAT-2, and pRNAT-3) expressing short hairpin RNAs were designed to target three different coding regions of the M gene of TGEV. The plasmids were constructed and transiently transfected into a porcine kidney cells, PK-15, to determine whether these constructs inhibited TGEV production. The analysis of cytopathic effects demonstrated that pRNAT-2 and pRNAT-3 could protect PK-15 cells against pathological changes specifically and efficiently. Additionally, indirect immunofluorescence and 50% tissue culture infectious dose (TCID50) assays showed that pRNAT-2 and pRNAT-3 inhibited the multiplication of the virus at the protein level effectively. Quantitative real-time PCR further confirmed that the amounts of viral RNAs in cell cultures pre-transfected with the three plasmids were reduced by 13, 68, and 70%, respectively. This is the first report showing that RNAi targeting of the M gene. Our results could promote studies of the specific function of viral genes associated with TGEV infection and might provide a theoretical basis for potential therapeutic applications.


Assuntos
Gastroenterite Suína Transmissível/genética , Proteínas de Membrana/genética , RNA Interferente Pequeno/genética , Vírus da Gastroenterite Transmissível/genética , Animais , Gastroenterite Suína Transmissível/terapia , Gastroenterite Suína Transmissível/virologia , Rim/patologia , Rim/virologia , Proteínas de Membrana/antagonistas & inibidores , Interferência de RNA , Suínos/genética , Suínos/virologia , Vírus da Gastroenterite Transmissível/patogenicidade , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA